首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heart transplantation does not normalize exercise capacity or the ventilatory response to exercise. We hypothesized that excessive muscle reflex activity, as assessed by the muscle sympathetic nerve activity (MSNA) response to handgrip exercise, persists after cardiac transplantation and that this mechanism is related to exercise hyperpnea in heart transplant recipients (HTRs). We determined the MSNA, ventilatory, and cardiovascular responses to isometric and dynamic handgrips in 11 HTRs and 10 matched control subjects. Handgrips were followed by a post-handgrip ischemia to isolate the metaboreflex contribution to exercise responses. HTRs and control subjects also underwent recordings during isocapnic hypoxia and a maximal, symptom-limited, cycle ergometer exercise test. HTRs had higher resting MSNA (P < 0.01) and heart rate (P < 0.01) than the control subjects. Isometric handgrip increased MSNA in HTRs more than in the controls (P = 0.003). Dynamic handgrip increased MSNA only in HTRs. During post-handgrip ischemia, MSNA and ventilation remained more elevated in HTRs (P < 0.05). The MSNA and ventilatory responses to hypoxia were also higher in HTRs (both P < 0.04). In HTRs, metaboreflex overactivity was related to the ventilatory response to exercise, characterized by the regression slope relating ventilation to CO(2) output (r = +0.8; P < 0.05) and a lower peak ventilation (r = +0.81; P < 0.05) during cycle ergometer exercise tests. However, increased chemoreflex sensitivity (r = +0.91; P < 0.005), but not metaboreflex activity, accounted for the lower peak ventilation during exercise in a stepwise regression analysis. In conclusion, heart transplantation does not normalize muscle metaboreceptor activity; both increased metaboreflex and chemoreflex control are related to exercise intolerance in HTRs.  相似文献   

2.
The effect of exogenous dopamine on the development of exercise hyperpnea was studied. Using a bicycle ergometer, five subjects performed repetitive square-wave work-load testing from unloaded pedaling to 80% of each subject's estimated anaerobic threshold. The breath-by-breath ventilation (VE), CO2 production (VCO2), and O2 consumption (VO2) responses were analyzed by curve fitting a first-order exponential model. Comparisons were made between control experiments and experiments with a 3-micrograms X kg-1 X min-1 intravenous infusion of dopamine. Steady-state VE, VCO2 and VO2 were unchanged by the dopamine infusion, both during unloaded pedaling and at the heavier work load. The time constants for the increase in VE (tau VE) and VCO2 (tau CO2) were significantly (P less than 0.05) slowed (tau VE = 56.5 +/- 16.4 s for control, and tau VE = 76.4 +/- 26.6 s for dopamine; tau CO2 = 51.5 +/- 10.6 s for control, and tau CO2 = 64.8 +/- 17.4 s for dopamine) (mean +/- SD), but the time constant for VO2 (tau O2) was not significantly affected (tau O2 = 27.5 +/- 11.7 s for control, and tau O2 = 31.0 +/- 10.1 s for dopamine). We conclude that ablation of carotid body chemosensitivity with dopamine slows the transient ventilatory response to exercise while leaving the steady-state response unaffected.  相似文献   

3.
Ventilatory control during exercise in calves with artificial hearts   总被引:2,自引:0,他引:2  
To determine the role of cardiac reflexes in mediating exercise hyperpnea, we investigated ventilatory responses to treadmill exercise in seven calves with artificial hearts and seven controls. In both groups, the ventilatory responses were adequate for the metabolic demands of the exercise; this resulted in regulation of arterial PCO2 and pH despite the absence of cardiac output increase in the implanted group. In this group, there was a small but significant reduction of arterial PO2 by 4 +/- 3 Torr and a rise of blood lactate by 1.1 +/- 1 mmol/l. When cardiac output was experimentally increased in the implanted calves to a level commensurate with that spontaneously occurring in the control calves, ventilation was not affected. However, experimental reductions of cardiac output led to an immediate augmentation of exercise hyperpnea by 4.56 +/- 4.3 l/min and a further significant lactate increase of 1.2 +/- 1.22 mmol/l that was associated with a significant decrease in the exercise O2 consumption (0.32 +/- 0.13 l/min). These observations indicate that neither cardiac nor hemodynamic effects of increased cardiac output constitute an obligatory cause of exercise hyperpnea in the calf.  相似文献   

4.
Studies were performed to determine the effects of aging on the ventilatory responsiveness to two known respiratory stimulants, inhaled CO2 and exercise. Although explanation of the physiological mechanisms underlying development of exercise hyperpnea remains elusive, there is much circumstantial evidence that during exercise, however mediated, ventilation is coupled to CO2 production. Thus matched groups of young and elderly subjects were studied to determine the relationship between increasing ventilation and increasing CO2 production (VCO2) during steady-state exercise and the change in their minute ventilation in response to progressive hypercapnia during CO2 rebreathing. We found that the slope of the ventilatory response to hypercapnia was depressed in elderly subjects when compared with the younger control group (delta VE/delta PCO2 = 1.64 +/- 0.21 vs. 2.44 +/- 0.40 l X min-1 X mmHg-1, means +/- SE, respectively). In contrast, the slope of the relationship between ventilation and CO2 production during exercise in the elderly was greater than that of younger subjects (delta VE/delta VCO2 = 29.7 +/- 1.19 vs. 25.3 +/- 1.54, means +/- SE, respectively), as was minute ventilation at a single work load (50 W) (32.4 +/- 2.3 vs. 25.7 +/- 1.54 l/min, means +/- SE, respectively). This increased ventilation during exercise in the elderly was not produced by arterial O2 desaturation, and increased anaerobiasis did not play a role. Instead, the increased ventilation during exercise seems to compensate for increased inefficiency of gas exchange such that exercise remains essentially isocapnic. In conclusion, in the elderly the ventilatory response to hypercapnia is less than in young subjects, whereas the ventilatory response to exercise is greater.  相似文献   

5.
Chemoreflex modulation of ventilatory dynamics during exercise in humans   总被引:1,自引:0,他引:1  
The precision of arterial blood gas homeostasis following a change of work rate depends on the response kinetics of ventilation. The carotid bodies (CB's) have been proposed as modulators of these kinetics. The present investigation was undertaken to determine whether the effect is specific to CB activation or whether other factors that augment the exercise hyperpnea would produce a similar response. We therefore established the effects of increased CB and central (C) chemoreflex activation on the inspired ventilatory (VI) dynamics for moderate-intensity cycling. Work tests were separately performed with air, 12% O2 to increase CB activity, 100% O2 to "abolish" CB activity, and CO2 in O2 to increase C activity. The time constant of the VI response was substantially shortened by hypoxia (40 s) compared with air breathing (58 s) and increased by 100% O2 (92 s) and, even more so, by CO2 in O2 (101 s). We conclude that increased carotid (but not central) chemoreflex responsiveness speeds the kinetics of the exercise hyperpnea by a process that is not merely the consequence of increased ventilatory drive.  相似文献   

6.
Pulmonary CO2 flow (the product of cardiac output and mixed venous CO2 content) is purported to be an important determinant of ventilatory dynamics in moderate exercise. Depletion of body CO2 stores prior to exercise should thus slow these dynamics. We investigated, therefore, the effects of reducing the CO2 stores by controlled volitional hyperventilation on cardiorespiratory and gas exchange response dynamics to 100 W cycling in six healthy adults. The control responses of ventilation (VE), CO2 output (VCO2), O2 uptake (VO2), and heart rate were comprised of an abrupt increase at exercise onset, followed by a slower rise to the new steady state (t1/2 = 48, 43, 31, and 33 s, respectively). Following volitional hyperventilation (9 min, PETCO2 = 25 Torr), the steady-state exercise responses were unchanged. However, VE and VCO2 dynamics were slowed considerably (t1/2 = 76, 71 s) as PETCO2 rose to achieve the control exercise value. VO2 dynamics were slowed only slightly (t1/2 = 39 s), and heart rate dynamics were unaffected. We conclude that pulmonary CO2 flow provides a significant stimulus to the dynamics of the exercise hyperpnea in man.  相似文献   

7.
Humoral factors play an important role in the control of exercise hyperpnea. The role of neuromechanical ventilatory factors, however, is still being investigated. We tested the hypothesis that the afferents of the thoracopulmonary system, and consequently of the neuromechanical ventilatory loop, have an influence on the kinetics of oxygen consumption (VO2), carbon dioxide output (VCO2), and ventilation (VE) during moderate intensity exercise. We did this by comparing the ventilatory time constants (tau) of exercise with and without an inspiratory load. Fourteen healthy, trained men (age 22.6 +/- 3.2 yr) performed a continuous incremental cycle exercise test to determine maximal oxygen uptake (VO2max = 55.2 +/- 5.8 ml x min(-1) x kg(-1)). On another day, after unloaded warm-up they performed randomized constant-load tests at 40% of their VO2max for 8 min, one with and the other without an inspiratory threshold load of 15 cmH2O. Ventilatory variables were obtained breath by breath. Phase 2 ventilatory kinetics (VO2, VCO2, and VE) could be described in all cases by a monoexponential function. The bootstrap method revealed small coefficients of variation for the model parameters, indicating an accurate determination for all parameters. Paired Student's t-tests showed that the addition of the inspiratory resistance significantly increased the tau during phase 2 of VO2 (43.1 +/- 8.6 vs. 60.9 +/- 14.1 s; P < 0.001), VCO2 (60.3 +/- 17.6 vs. 84.5 +/- 18.1 s; P < 0.001) and VE (59.4 +/- 16.1 vs. 85.9 +/- 17.1 s; P < 0.001). The average rise in tau was 41.3% for VO2, 40.1% for VCO2, and 44.6% for VE. The tau changes indicated that neuromechanical ventilatory factors play a role in the ventilatory response to moderate exercise.  相似文献   

8.
We tested the hypothesis that humoral factors contribute to the onset of exercise hyperpnea in an electrically induced model of isocapnic exercise in alpha-chloralose-anesthetized dogs. A cannula placed in the inferior vena cava (IVC) permitted hindlimb venous blood to flow either directly to the lungs or through a variable-length extracorporeal circuit. Mean transit times (MTT) of blood from exercising hindlimbs were measured from the arrival at the pulmonary artery of green dye injected into the saphenous vein. Onset of hyperpnea was determined by the half time of the ventilatory response (T 1/2), the time required to reach 50% of the steady-state ventilation. In seven dogs, T 1/2 was directly related to MTT (P less than 0.001), suggesting that blood-borne substances released at the onset of exercise contribute to the hyperpneic response. The T 1/2-MTT relation persisted following L2 cord transection (n = 4), suggesting that intraspinal afferents are not required for this response. Chemoreceptor denervation (n = 4) slowed the onset of exercise hyperpnea but did not alter the T 1/2-MTT relation. In this model of electrically induced "exercise" in which neurogenic influences have been minimized, humoral factors alone may stimulate ventilation sufficiently to produce arterial isocapnia.  相似文献   

9.
To determine the importance of nonhumoral drives to exercise hyperpnea in birds, we exercised adult White Pekin ducks on a treadmill (3 degrees incline) at 1.44 km X h-1 for 15 min during unidirectional artificial ventilation. Intrapulmonary gas concentrations and arterial blood gases could be regulated with this ventilation procedure while allowing ventilatory effort to be measured during both rest and exercise. Ducks were ventilated with gases containing either 4.0 or 5.0% CO2 in 19% O2 (balance N2) at a flow rate of 12 l X min-1. At that flow rate, arterial CO2 partial pressure (PaCO2) could be maintained within +/- 2 Torr of resting values throughout exercise. Arterial O2 partial pressure did not change significantly with exercise. Heart rate, mean arterial blood pressure, and mean right ventricular pressure increased significantly during exercise. On the average, minute ventilation (used as an indicator of the output from the central nervous system) increased approximately 400% over resting levels because of an increase in both tidal volume and respiratory frequency. CO2-sensitivity curves were obtained for each bird during rest. If the CO2 sensitivity remained unchanged during exercise, then the observed 1.5 Torr increase in PaCO2 during exercise would account for only about 6% of the total increase in ventilation over resting levels. During exercise, arterial [H+] increased approximately 4 nmol X l-1; this increase could account for about 18% of the total rise in ventilation. We conclude that only a minor component of the exercise hyperpnea in birds can be accounted for by a humoral mechanism; other factors, possibly from muscle afferents, appear responsible for most of the hyperpnea observed in the running duck.  相似文献   

10.
Compensation for inspiratory flow-resistive loading was compared during progressive hypercapnia and incremental exercise to determine the effect of changing the background ventilatory stimulus and to assess the influence of the interindividual variability of the unloaded CO2 response on evaluation of load compensation in normal subjects. During progressive hypercapnia, ventilatory response was incompletely defended with loading (mean unloaded delta VE/delta PCO2 = 3.02 +/- 2.29, loaded = 1.60 +/- 0.67 1.min-1.Torr-1 CO2, where VE is minute ventilation and PCO2 is CO2 partial pressure; P less than 0.01). Furthermore the degree of defense of ventilation with loading was inversely correlated with the magnitude of the unloaded CO2 response. During exercise, loading produced no depression in ventilatory response (mean delta VE/delta VCO2 unloaded = 20.5 +/- 1.9, loaded = 19.2 +/- 2.5 l.min-1.l-1.min-1 CO2 where VCO is CO2 production; P = NS), and no relationship was demonstrated between degree of defense of the exercise ventilatory response and the unloaded CO2 response. Differences in load compensation during CO2 rebreathing and exercise suggest the presence of independent ventilatory control mechanisms in these states. The type of background ventilatory stimulus should therefore be considered in load compensation assessment.  相似文献   

11.
We have tested the response of 28 subjects to a three-stage ergometer test, with loads adjusted to 45, 60, and 75% of maximum aerobic power following ozone exposure. The subjects were exposed to one of 0.37, 0.50, or 0.75 ppm O3 for 2 h either at rest (R) or while exercising intermittently (IE) (15 min rest alternated with 15 min exercise at approximately 50 W. sufficient to increase VE by a factor of 2.5). Also, all subjects completed a mock exposure VE, respiratory frequency (fR), mixed expired PO2 and PCO2, and electrocardiogram were monitored continuously during the exercise test. Neither submaximal exercise oxygen consumption nor minute ventilation was significantly altered following any level of ozone exposure. The major response noted was an increase in respiratory frequency during exercise following ozone exposure. The increase in fR was closely correlated with the total dose of ozone (r = 0.98) and was accompanied by a decrease in tidal volume (r = 0.91) so that minute volume was unchanged. It is concluded that through its irritant properties, ozone modifies the normal ventilatory response to exercise, and that this effect is dose dependent.  相似文献   

12.
To examine the effect of menstrual cycle on the ventilatory sensitivity to rising body temperature, ten healthy women exercised for ~60 min on a cycle ergometer at 50% of peak oxygen uptake during the follicular and luteal phases of their cycle. Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase. On the other hand, end-tidal partial pressure of carbon dioxide was significantly lower during exercise in the luteal phase than the follicular phase. Plotting ventilatory parameters against esophageal temperature revealed there to be no significant menstrual cycle-related differences in the slopes or intercepts of the regression lines, although minute ventilation and tidal volume did significantly differ during exercise with mild hyperthermia. To evaluate the cutaneous vasodilatory response, relative laser-Doppler flowmetry values were plotted against mean body temperature, which revealed that the mean body temperature threshold for cutaneous vasodilation was significantly higher in the luteal phase than the follicular phase, but there were no significant differences in the sensitivity or peak values. These results suggest that the menstrual cycle phase influences the cutaneous vasodilatory response during exercise and the ventilatory response at rest and during exercise with mild hyperthermia, but it does not influence ventilatory responses during exercise with moderate hyperthermia.  相似文献   

13.
The ventilatory response to sinusoidally varying exercise was studied in five adults and seven prepubertal children to determine whether the faster kinetics of ventilation observed in children during abrupt changes in exercise intensity remained more rapid when exercise intensity varied continuously. Each subject exercised on a cycle ergometer first against a constant load and then against a load fluctuating over six different periods ranging from 0.75 to 10 min. The pedal rate was kept constant for all loads. The inspiratory minute ventilation was determined breath-by-breath. Amplitude (A) and phase angle (phi) of the fundamental component and the first harmonics of the ventilatory response were calculated by Fourier analysis for an integer number of waves for each period. From the relationship between A, phi and frequency, dynamic parameters of a first order model with and without delay were compared between adults and children. Firstly we found that the ventilatory time constant was significantly faster in children: 49.7 (SD 9.1) s vs 74.6 (SD 11.1) s (P less than 0.01). Secondly, the change in A and phi with the frequency was not however characteristic of a first order system without delay in most of the subjects (phi greater than 90 degrees for the shorter periods). Thirdly, even when the ventilatory control system was described as a first order model with a positive delay, time constants remained significantly shorter in children: 45.6 (SD 5.7) s vs 67.4 (SD 13) s (P less than 0.01). The ability to increase ventilation faster in children appeared to be a characteristic of the ventilatory control system during exercise independent of the type of drive used.  相似文献   

14.
The purpose of this study was to determine if inspiratory muscle training (IMT) alters the oxygen cost of breathing (Vo(2RM)) during voluntary hyperpnea. Sixteen male cyclists completed 6 wk of IMT using an inspiratory load of 50% (IMT) or 15% placebo (CON) of maximal inspiratory pressure (Pi(max)). Prior to training, a maximal incremental cycle ergometer test was performed to determine Vo(2) and ventilation (V(E)) at multiple workloads. Pre- and post-training, subjects performed three separate 4-min bouts of voluntary eucapnic hyperpnea (mimic), matching V(E) that occurred at 50, 75, and 100% of Vo(2 max). Pi(max) was significantly increased (P < 0.05) by 22.5 ± 8.7% from pre- to post-IMT and remained unchanged in the CON group. The Vo(2RM) required during the mimic trial corresponded to 5.1 ± 2.5, 5.7 ± 1.4, and 11.7% ± 2.5% of the total Vo(2) (Vo(2T)) at ventilatory workloads equivalent to 50, 75, and 100% of Vo(2 max), respectively. Following IMT, the Vo(2RM) requirement significantly decreased (P < 0.05) by 1.5% (4.2 ± 1.4% of Vo(2T)) at 75% Vo(2 max) and 3.4% (8.1 ± 3.5% of Vo(2T)) at 100% Vo(2 max). No significant changes were shown in the CON group. IMT significantly reduced the O(2) cost of voluntary hyperpnea, which suggests that a reduction in the O(2) requirement of the respiratory muscles following a period of IMT may facilitate increased O(2) availability to the active muscles during exercise. These data suggest that IMT may reduce the O(2) cost of ventilation during exercise, providing an insight into mechanism(s) underpinning the reported improvements in whole body endurance performance; however, this awaits further investigation.  相似文献   

15.
Increases in functional residual capacity (FRC) decrease inspiratory muscle efficiency; the present experiments were designed to determine the effect of FRC change on the ventilatory response to exercise. Six well-trained adults were exposed to expiratory threshold loads (ETL) ranging from 5 to 40 cmH2O during steady-state exercise on a bicycle ergometer at 40-95% VO2max. Inspiratory capacity (IC) was measured and changes of IC interpreted as changes of FRC. ETL did not consistently limit exercise performance. At heavy work (greater than 92% VO2max) minute ventilation decreased with increasing ETL; at moderate work (less than 58% VO2max) it did not. Decreases in ventilation were due to decreases in respiratory frequency with prolongation of the duration of expiration being the most consistent change in breathing pattern. At moderate work levels, FRC increased with ETL; at maximum work it did not. Changes in FRC were dictated by constancy of tidal volume and a fixed maximum end-inspiratory volume of 80-90% of the inspiratory capacity. When tidal volume was such that end-inspiratory volume was less than this value, FRC increased with ETL. Mouth pressure measured during the first 0-1 s of inspiratory effort against an occluded airway (P0-1) was increased by ETL equals 30 cmH2O, in spite of the fact that ventilation was decreased. We concluded that changes in FRC due to ETL had no effect on the ventilatory response to exercise and that changes in P0-1 induced by ETL did not reflect changes of inspiratory drive so much as changes of the pattern of inspiration.  相似文献   

16.
To study the effects of previous submaximal exercise on the ventilatory determination of the Aerobic Threshold (AeT), 16 men were subjected to three maximal exercise tests (standard test = ST, retest = RT, and test with previous exercise = TPE ) on a cycle ergometer. The protocol for the three tests consisted of 3 min pedalling against 25 W, followed by increments of 25 W every minute until volitional fatigue. TPE was preceded by 10 min cycling at a power output corresponding to the AeT as determined in ST, followed by a recovery period pedalling against 25 W until VO2 returned to values consistent with the initial VO2 response to 25 W. AeT was determined from the gas exchange curves (ventilatory equivalent for O2, fraction of expired O2, excess of VCO2, ventilation, and respiratory gas exchange ratio) printed every 30 s. The results showed good ST X RT reliability (r = 0.89). TPE showed significantly higher AeT values (2.548 +/- 0.44 1 X min-1) when compared with ST (2.049 +/- 0.331 X min-1) and RT (2.083 +/- 0.30 1 X min-1). There were no significant differences for the sub-threshold respiratory gas exchange ratios among the trials. The sub-threshold VO2 response showed significantly higher values for TPE at power outputs above 50 W. It was concluded that the performance of previous exercise can increase the value for the ventilatory determination of the AeT due to a faster sub-threshold VO2 response.  相似文献   

17.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

18.
To investigate the contribution of vascular and metabolic stimuli to the sustained hyperpnea after exercise, the respiratory effects of obstructing and then releasing the femoral blood flow were recorded in 15 normal volunteers during recovery from steady-state cycle exercise (80 W). Obstruction was achieved using cuffs around the upper thighs, inflated for the first 2 min of recovery to a pressure of 200 mmHg. Cuff inflation significantly reduced ventilation during recovery compared with control (P less than 0.001); the subsequent release of pressure was accompanied by an increase in ventilation (averaging 3.2 l/min), which began on the first breath after release. This preceded a rise in end-tidal CO2 (maximum 8.3 Torr increase), which first became significant on the fourth breath after release and led to a further rise in ventilation. The first-breath increase in ventilation after cuff release persisted, although slightly attenuated (averaging 2.5 l/min), in additional experiments with inspired O2 fraction of 1.0. The pattern of ventilatory response was also similar when the experiments were performed with 5% CO2 in air as the inspirate. The immediate rise in ventilation on cuff release, together with the persistent response on 100% O2, suggests that the vascular changes resulting from cuff release exert an influence on ventilation independent of the effects of released metabolites on the known chemoreceptors. The persistence of the response on 5% CO2 indicates that CO2-sensitive lung afferents do not have a major role in these responses.  相似文献   

19.
Steady-state ventilatory responses to CO2 inhalation, intravenous CO2 loading (loading), and intravenous CO2 unloading (unloading) were measured in chronic awake dogs while they exercised on an air-conditioned treadmill at 3 mph and 0% grade. End-tidal PO2 was maintained at control levels by manipulation of inspired gas. Responses obtained in three dogs demonstrated that the response to CO2 loading [average increase in CO2 output (Vco2) of 216 ml/min or 35%] was a hypercapnic hyperpnea in every instance. Also, the response to CO2 unloading [average decrease in Vco2 of 90 ml/min or 15% decrease] was a hypocapnic hypopnea in every case. Also, the analysis of the data by directional statistics indicates that there was no difference in the slopes of the responses (change in expiratory ventilation divided by change in arterial Pco2) for loading, unloading, and inhalation. These results indicate that the increased CO2 flow to the lung that occurs in exercise does not provide a direct signal to the respiratory controller that accounts for the exercise hyperpnea. Therefore, other mechanisms must be important in the regulation of ventilation during exercise.  相似文献   

20.
To investigate the role of the carotid bodies in exercise hyperpnea and acid-base control, normal and carotid body-resected subjects (CBR) were studied during constant-load and incremental exercise. There was no significant difference in the first-breath ventilatory responses to exercise between the groups; some subjects in each reproducibly exhibited abrupt responses. The subsequent change in Ve toward steady state was slower in the CBR group. The steady-state ventilatory responses were the same in both groups at work rates below the anaerobic threshold (AT). However, above the AT, the hyperpnea was less marked in the CBR group. Ve and acid-base measurements revealed that the CBR group failed to hyperventilate in response to the metabolic acidosis of either constant-load or incremental exercise. We conclude that the carotid bodies 1) are not responsible for the initial exercise hyperpnea, 2) do affect the time course of Ve to its steady state, and 3) are responsible for the respiratory compensation for the metabolic acidosis of exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号