首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
In the Arabidopsis root, patterning of the epidermal cell types is position-dependent. The epidermal cell pattern arises early during root development, and can be visualized using reporter genes driven by the GLABRA (GL)2 promoter as markers. The GL2 gene is preferentially expressed in the differentiating hairless cells (atrichoblasts) during a period in which epidermal cell identity is believed to be established. We show that AtAGP30 is also expressed in atrichoblasts. This gene encodes an arabinogalactan-protein (AGP) that is known to play a role in root regeneration and increases abscisic acid (ABA)-response rates. Although the expression level of this gene is regulated by the plant growth factors ABA and ethylene, only ABA was found to affect the tissue-specific pattern of expression. ABA also disrupts the expression pattern of the GL2::GUS (beta-glucuronidase) reporter gene. Our results indicate that ABA regulates epidermal cell-type-specific gene expression in the meristematic zone of the Arabidopsis root, while ethylene is known to act at later stages of epidermal differentiation. Despite its effects on the early stages of root epidermal patterning, ABA does not affect root hair formation on mature wild-type epidermal cells, suggesting that other developmental cues, like positional information, can progressively over-ride the ABA-mediated disruption of early epidermal patterning.  相似文献   

2.
Gastrula organiser and embryonic patterning in the mouse   总被引:1,自引:0,他引:1  
Embryonic patterning of the mouse during gastrulation and early organogenesis engenders the specification of anterior versus posterior structures and body laterality by the interaction of signalling and modulating activities. A group of cells in the mouse gastrula, characterised by the expression of a repertoire of "organiser" genes, acts as a source and the conduit for allocation of the axial mesoderm, floor plate and definitive endoderm. The organiser and its derivatives provide the antagonistic activity that modulates WNT and TGFbeta signalling. Recent findings show that the organiser activity is augmented by morphogenetic activity of the extraembryonic and embryonic endoderm, suggesting embryonic patterning is not solely the function of the organiser.  相似文献   

3.
Combinatorial interactions of AUXIN RESPONSE FACTORs (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins through their common domains III and IV regulate auxin responses, but insight into the functions of individual proteins is still limited. As a new tool to explore this regulatory network, we generated a gain-of-function ARF genotype by eliminating domains III and IV from the functionally well-characterized ARF MONOPTEROS(MP)/ARF5. This truncated version of MP, termed MPΔ, conferred complementing MP activity, but also displayed a number of semi-dominant traits affecting auxin signaling and organ patterning. In MPΔ, the expression levels of many auxin-inducible genes, as well as rooting properties and vascular tissue abundance, were enhanced. Lateral organs were narrow, pointed and filled with parallel veins. This effect was epistatic over the vascular hypotrophy imposed by certain Aux/IAA mutations. Further, in MPΔ leaves, failure to turn off the procambium-selecting gene PIN1 led to the early establishment of oversized central procambial domains and very limited subsequent lateral growth of the leaf lamina. We conclude that MPΔ can selectively uncouple a single ARF from regulation by Aux/IAA proteins and can be used as a genetic tool to probe auxin pathways and explore leaf development.  相似文献   

4.
Direct‐developing amphibians form limbs during early embryonic stages, as opposed to the later, often postembryonic limb formation of metamorphosing species. Limb patterning is dramatically altered in direct‐developing frogs, but little attention has been given to direct‐developing salamanders. We use expression patterns of two genes, sox9 and col2a1, to assess skeletal patterning during embryonic limb development in the direct‐developing salamander Plethodon cinereus. Limb patterning in P. cinereus partially resembles that described in other urodele species, with early formation of digit II and a generally anterior‐to‐posterior formation of preaxial digits. Unlike other salamanders described to date, differentiation of preaxial zeugopodial cartilages (radius/tibia) is not accelerated in relation to the postaxial cartilages, and there is no early differentiation of autopodial elements in relation to more proximal cartilages. Instead, digit II forms in continuity with the ulnar/fibular arch. This amniote‐like connectivity to the first digit that forms may be a consequence of the embryonic formation of limbs in this direct‐developing species. Additionally, and contrary to recent models of amphibian digit identity, there is no evidence of vestigial digits. This is the first account of gene expression in a plethodontid salamander and only the second published account of embryonic limb patterning in a direct‐developing salamander species.  相似文献   

5.
6.
7.
K Simin  E A Bates  M A Horner  A Letsou 《Genetics》1998,148(2):801-813
TGF-beta (transforming growth factor-beta-) mediated signal transduction affects growth and patterning in a variety of organisms. Here we report a genetic characterization of the Drosophila punt gene that encodes a type II serine/threonine kinase TGF-beta/Dpp (Decapentaplegic) receptor. Although the punt gene was originally identified based on its requirement for embryonic dorsal closure, we have documented multiple periods of punt activity throughout the Drosophila life cycle. We demonstrate that potentially related embryonic punt phenotypes, defects in dorsoventral patterning and dorsal closure, correspond to distinct maternal and zygotic requirements for punt. In addition, we document postembryonic requirements for punt activity. The tight correspondence between both embryonic and postembryonic loss-of-function punt and dpp phenotypes implicates a role for Punt in mediating virtually all Dpp signaling events in Drosophila. Finally, our comparison of punt homoallelic and heteroallelic phenotypes provides direct evidence for interallelic complementation. Taken together, these results suggest that the Punt protein functions as a dimer or higher order multimer throughout the Drosophila life cycle.  相似文献   

8.
Embryogenesis is a critical stage of the sporophytic life cycle during which the basic body plan of the plant is established. Although positional information is implicated to play a major role in determining embryo cell fate, little is known about the nature of positional signals. Recent studies show that the monopterous and hobbit mutations reveal signaling during patterning of the embryonic axis. The LEAFY COTYLEDON1 and PICKLE genes have been implicated to play important roles in controlling embryo development.  相似文献   

9.
10.
Morphogens are secreted signalling molecules that act in a graded manner to control the pattern of cellular differentiation in developing tissues. An example is Sonic hedgehog (Shh), which acts in several developing vertebrate tissues, including the central nervous system, to provide positional information during embryonic patterning. Here we address how Shh signalling assigns the positional identities of distinct neuronal subtype progenitors throughout the ventral neural tube. Assays of intracellular signal transduction and gene expression indicate that the duration as well as level of signalling is critical for morphogen interpretation. Progenitors of the ventral neuronal subtypes are established sequentially, with progressively more ventral identities requiring correspondingly higher levels and longer periods of Shh signalling. Moreover, cells remain sensitive to changes in Shh signalling for an extended time, reverting to antecedent identities if signalling levels fall below a threshold. Thus, the duration of signalling is important not only for the assignment but also for the refinement and maintenance of positional identity. Together the data suggest a dynamic model for ventral neural tube patterning in which positional information corresponds to the time integral of Shh signalling. This suggests an alternative to conventional models of morphogen action that rely solely on the level of signalling.  相似文献   

11.
12.
13.
14.

Background

The spindle assembly checkpoint (SAC) delays anaphase onset by inhibiting the activity of the anaphase promoting complex/cyclosome (APC/C) until all of the kinetochores have properly attached to the spindle. The importance of SAC genes for genome stability is well established; however, the roles these genes play, during postembryonic development of a multicellular organism, remain largely unexplored.

Results

We have used GFP fusions of 5' upstream intergenic regulatory sequences to assay spatiotemporal expression patterns of eight conserved genes implicated in the spindle assembly checkpoint function in Caenorhabditis elegans. We have shown that regulatory sequences for all of the SAC genes drive ubiquitous GFP expression during early embryonic development. However, postembryonic spatial analysis revealed distinct, tissue-specific expression of SAC genes with striking co-expression in seam cells, as well as in the gut. Additionally, we show that the absence of MDF-2/Mad2 (one of the checkpoint genes) leads to aberrant number and alignment of seam cell nuclei, defects mainly attributed to abnormal postembryonic cell proliferation. Furthermore, we show that these defects are completely rescued by fzy-1(h1983)/CDC20, suggesting that regulation of the APC/CCDC20 by the SAC component MDF-2 is important for proper postembryonic cell proliferation.

Conclusion

Our results indicate that SAC genes display different tissue-specific expression patterns during postembryonic development in C. elegans with significant co-expression in hypodermal seam cells and gut cells, suggesting that these genes have distinct as well as overlapping roles in postembryonic development that may or may not be related to their established roles in mitosis. Furthermore, we provide evidence, by monitoring seam cell lineage, that one of the checkpoint genes is required for proper postembryonic cell proliferation. Importantly, our research provides the first evidence that postembryonic cell division is more sensitive to SAC loss, in particular MDF-2 loss, than embryonic cell division.  相似文献   

15.
The Hox genes confer positional information to the axial and paraxial tissues as they emerge gradually from the posterior aspect of the vertebrate embryo. Hox genes are sequentially activated in time and space, in a way that reflects their organisation into clusters in the genome. Although this co-linearity of expression of the Hox genes has been conserved during evolution, it is a phenomenon that is still not understood at the molecular level. This review aims to bring together recent findings that have advanced our understanding of the regulation of the Hox genes during mouse embryonic development. In particular, we highlight the integration of these transducers of anteroposterior positional information into the genetic network that drives tissue generation and patterning during axial elongation.  相似文献   

16.
17.
In the mouse and chick embryo, the node plays a central role in generating left-right (LR) positional information. Using several different strategies, we provide evidence in the mouse that bone morphogenetic protein 4 (Bmp4) is required independently in two different sites for node morphogenesis and for LR patterning. Bmp4 expression in the trophoblast-derived extra-embryonic ectoderm is essential for the normal formation of the node and primitive streak. However, tetraploid chimera analysis demonstrates that Bmp4 made in epiblast-derived tissues is required for robust LR patterning, even when normal node morphology is restored. In the absence of embryonic Bmp4, the expression of left-side determinants such as Nodal and Lefty2 is absent in the left lateral plate mesoderm (LPM). Noggin-mediated inhibition of Bmp activity in cultured wild-type embryos results in suppression of Nodal expression in the LPM. Thus, unlike previous models proposed in the chick embryo in which Bmp4 suppresses left-sided gene expression, our results suggest that Bmp acts as a positive facilitator of the left-sided molecular cascade and is required for Nodal induction and maintenance in the left LPM.  相似文献   

18.
Asymmetric cell divisions (ACDs) are used to create organismal form and cellular diversity during plant development. In several embryonic and postembryonic contexts, genes that specify cell fates and networks that provide positional information have been identified. The cellular mechanisms that translate this information into a physically ACD, however, are still obscure. In this review we examine the cell polarization events that precede asymmetric divisions in plants. Using principles derived from studies of other organisms and from postmitotic polarity generation in plants, we endeavor to provide a framework of what is known, what is on the horizon and what is critically needed to develop a rigorous mechanistic understanding of ACDs in plants.  相似文献   

19.
Retinoic acid signaling and the evolution of chordates   总被引:1,自引:0,他引:1       下载免费PDF全文
In chordates, which comprise urochordates, cephalochordates and vertebrates, the vitamin A-derived morphogen retinoic acid (RA) has a pivotal role during development. Altering levels of endogenous RA signaling during early embryology leads to severe malformations, mainly due to incorrect positional codes specifying the embryonic anteroposterior body axis. In this review, we present our current understanding of the RA signaling pathway and its roles during chordate development. In particular, we focus on the conserved roles of RA and its downstream mediators, the Hox genes, in conveying positional patterning information to different embryonic tissues, such as the endoderm and the central nervous system. We find that some of the control mechanisms governing RA-mediated patterning are well conserved between vertebrates and invertebrate chordates, such as the cephalochordate amphioxus. In contrast, outside the chordates, evidence for roles of RA signaling is scarce and the evolutionary origin of the RA pathway itself thus remains elusive. In sum, to fully understand the evolutionary history of the RA pathway, future research should focus on identification and study of components of the RA signaling cascade in non-chordate deuterostomes (such as hemichordates and echinoderms) and other invertebrates, such as insects, mollusks and cnidarians.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号