共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract In this paper we report the results of extensive Monte Carlo simulations of a pure fluid of Buckingham modified exponential-six molecules. Data are presented for the configurational energy and pressure covering a wide range of temperatures and densities. These data are interpreted using the generalized van der Waals partition function with a novel separation into free volume and mean potential terms. We find, surprisingly, that the Buckingham fluid is described by a simple van der Waals-like equation of state provided that the b parameter is temperature dependent and chosen in a theoretically correct manner. 相似文献
2.
A rigorous quantitative assessment of atomic contacts and packing in native protein structures is presented. The analysis is based on optimized atomic radii derived from a set of high-resolution protein structures and reveals that the distribution of atomic contacts and overlaps is a structural constraint in proteins, irrespective of structural or functional classification and size. Furthermore, a newly developed method for calculating packing properties is introduced and applied to sets of protein structures at different levels of resolution. The results show that limited resolution yields decreasing packing quality, which underscores the relevance of packing considerations for structure prediction, design, dynamics, and docking. 相似文献
3.
Most proteins contain small cavities that can be filled by replacing cavity-lining residues by larger ones. Since shortening mutations in hydrophobic cores tend to destabilize proteins, it is expected that cavity-filling mutations may conversely increase protein stability. We have filled three small cavities in apoflavodoxin and determined by NMR and equilibrium unfolding analysis their impact in protein structure and stability. The smallest cavity (14 A3) has been filled, at two different positions, with a variety of residues and, in all cases, the mutant proteins are locally unfolded, their structure and energetics resembling those of an equilibrium intermediate of the thermal unfolding of the wild-type protein. In contrast, two slightly larger cavities of 20 A3 and 21 A3 have been filled with Val to Ile or Val to Leu mutations and the mutants preserve both the native fold and the equilibrium unfolding mechanism. From the known relationship, observed in shortening mutations, between stability changes and the differential hydrophobicity of the exchanged residues and the volume of the cavities, the filling of these apoflavodoxin cavities is expected to stabilize the protein by approximately 1.5 kcal mol(-1). However, both urea and thermal denaturation analysis reveal much more modest stabilizations, ranging from 0.0 kcal mol(-1) to 0.6 kcal mol(-1), which reflects that the accommodation of single extra methyl groups in small cavities requires some rearrangement, necessarily destabilizing, that lowers the expected theoretical stabilization. As the size of these cavities is representative of that of the typical small, empty cavities found in most proteins, it seems unlikely that filling this type of cavities will give rise to large stabilizations. 相似文献
4.
《Proteins》2017,85(4):741-752
Protein–RNA docking is still an open question. One of the main challenges is to develop an effective scoring function that can discriminate near‐native structures from the incorrect ones. To solve the problem, we have constructed a knowledge‐based residue‐nucleotide pairwise potential with secondary structure information considered for nonribosomal protein–RNA docking. Here we developed a weighted combined scoring function RpveScore that consists of the pairwise potential and six physics‐based energy terms. The weights were optimized using the multiple linear regression method by fitting the scoring function to L_rmsd for the bound docking decoys from Benchmark II. The scoring functions were tested on 35 unbound docking cases. The results show that the scoring function RpveScore including all terms performs best. Also RpveScore was compared with the statistical mechanics‐based method derived potential ITScore‐PR, and the united atom‐based statistical potentials QUASI‐RNP and DARS‐RNP. The success rate of RpveScore is 71.6% for the top 1000 structures and the number of cases where a near‐native structure is ranked in top 30 is 25 out of 35 cases. For 32 systems (91.4%), RpveScore can find the binding mode in top 5 that has no lower than 50% native interface residues on protein and nucleotides on RNA. Additionally, it was found that the long‐range electrostatic attractive energy plays an important role in distinguishing near‐native structures from the incorrect ones. This work can be helpful for the development of protein–RNA docking methods and for the understanding of protein–RNA interactions. RpveScore program is available to the public at http://life.bjut.edu.cn/kxyj/kycg/2017116/14845362285362368_1.html Proteins 2017; 85:741–752. © 2016 Wiley Periodicals, Inc. 相似文献
5.
Faham S Yang D Bare E Yohannan S Whitelegge JP Bowie JU 《Journal of molecular biology》2004,335(1):297-305
The molecular forces that stabilize membrane protein structure are poorly understood. To investigate these forces we introduced alanine substitutions at 24 positions in the B helix of bacteriorhodopsin and examined their effects on structure and stability. Although most of the results can be rationalized in terms of the folded structure, there are a number of surprises. (1) We find a remarkably high frequency of stabilizing mutations (17%), indicating that membrane proteins are not highly optimized for stability. (2) Helix B is kinked, with the kink centered around Pro50. The P50A mutation has no effect on stability, however, and a crystal structure reveals that the helix remains bent, indicating that tertiary contacts dominate in the distortion of this helix. (3) We find that the protein is stabilized by about 1kcal/mol for every 38A(2) of surface area buried, which is quite similar to soluble proteins in spite of their dramatically different environments. (4) We find little energetic difference, on average, in the burial of apolar surface or polar surface area, implying that van der Waals packing is the dominant force that drives membrane protein folding. 相似文献
6.
The bioinformatics revolution of the last decade has been instrumental in the development of empirical potentials to quantitatively estimate protein interactions for modeling and design. Although computationally efficient, these potentials hide most of the relevant thermodynamics in 5-to-40 parameters that are fitted against a large experimental database. Here, we revisit this longstanding problem and show that a careful consideration of the change in hydrophobicity, electrostatics, and configurational entropy between the folded and unfolded state of aliphatic point mutations predicts 20-30% less false positives and yields more accurate predictions than any published empirical energy function. This significant improvement is achieved with essentially no free parameters, validating past theoretical and experimental efforts to understand the thermodynamics of protein folding. Our first principle analysis strongly suggests that both the solute-solute van der Waals interactions in the folded state and the electrostatics free energy change of exposed aliphatic mutations are almost completely compensated by similar interactions operating in the unfolded ensemble. Not surprisingly, the problem of properly accounting for the solvent contribution to the free energy of polar and charged group mutations, as well as of mutations that disrupt the protein backbone remains open. 相似文献
7.
Leckband D Chen YL Israelachvili J Wickman HH Fletcher M Zimmerman R 《Biotechnology and bioengineering》1993,42(2):167-177
The adhesion forces between various surfaces were measured using the "surface forces apparatus" technique. This technique allows for the thickness of surface layers and the adhesion force between them to be directly measured in controlled vapor or liquid environments. Three types of biological surfaces were prepared by depositing various lipid-protein monolayers (with thicknesses ranging from 1 to 4 nm) on the inert, molecularly smooth mica surface: (i) hydrophobic lipid monolayers; (ii) amphiphilic polyelectrolyte surfaces of adsorbed polylysine; and (iii) deposited bacterial S-layer proteins. The adhesion, swelling, and wetting properties of these surfaces was measured as a function of relative humidity and time. Initial adhesion is due mainly to the van der Waals forces arising from nonpolar (hydrophobic) contacts. Following adhesive contact, significant molecular rearrangements can occur which alter their hydrophobic-hydrophilic balance and increase their adhesion with time. Increased adhesion is generally enhanced by (i) increased relative humidity (or degree of hydration); (ii) increased contact time; and (iii) increased rates of separation. The results are likely to be applicable to the adhesion of many other biosurfaces, and show that the hydrophobicity of a lipid or protein surface is not an intrinsic property of that surface but depends on its environment (e.g., on whether it is in aqueous solution or exposed to the atmosphere), and on the relative humidity of the atmosphere. It also depends on whether the surface is in adhesive contact with another surface and-when considering dynamic (nonequilibrium) conditions-on the time and previous history of its interaction with that surface. (c) 1993 John Wiley & Sons, Inc. 相似文献
8.
Delgado-Barrio G. García-Vela A. García-Rizo C. Hernández M.I. Villarreal P. 《Molecular Engineering》1997,7(1-2):219-230
A method is proposed for selecting initial conditions in order to study the classical dynamics of vibrational predissociation of van der Waals (vdW) clusters. The method starts from the quantum initial state of the system, which is used to sample and weight the initial positions of the different modes. The initial values of the associated momenta are calculated in such a way that they correspond with the total energy and angular momentum of the system initial state, at which the classical trajectory simulation is to be carried out. An application to the case of Cl2–-He2 is presented and discussed. 相似文献
9.
Background
Voids and cavities in the native protein structure determine the pressure unfolding of proteins. In addition, the volume changes due to the interaction of newly exposed atoms with solvent upon protein unfolding also contribute to the pressure unfolding of proteins. Quantitative understanding of these effects is important for predicting and designing proteins with predefined response to changes in hydrostatic pressure using computational approaches. The molecular surface volume is a useful metric that describes contribution of geometrical volume, which includes van der Waals volume and volume of the voids, to the total volume of a protein in solution, thus isolating the effects of hydration for separate calculations.Results
We developed ProteinVolume, a highly robust and easy-to-use tool to compute geometric volumes of proteins. ProteinVolume generates the molecular surface of a protein and uses an innovative flood-fill algorithm to calculate the individual components of the molecular surface volume, van der Waals and intramolecular void volumes. ProteinVolume is user friendly and is available as a web-server or a platform-independent command-line version.Conclusions
ProteinVolume is a highly accurate and fast application to interrogate geometric volumes of proteins. ProteinVolume is a free web server available on http://gmlab.bio.rpi.edu. Free-standing platform-independent Java-based ProteinVolume executable is also freely available at this web site.Electronic supplementary material
The online version of this article (doi:10.1186/s12859-015-0531-2) contains supplementary material, which is available to authorized users. 相似文献10.
Artur Sikorski 《Carbohydrate research》2009,344(6):830-833
Single-crystal X-ray diffraction and high-resolution 1H and 13C NMR spectral data for methyl 6-deoxy-6-iodo-α-d-glucopyranoside are reported. The 4C1 conformation was found to be the preferred form for this compound, both in the crystal lattice and in solution. The rotational preferences of all the groups bound to the pyranose ring are presented. The stabilization of the crystal structure by a network of O-H···O intra- and intermolecular interactions as well as the short contacts of the iodine atoms is discussed. 相似文献
11.
David L. Azevedo Fernando Sato Antonio Gomes de Sousa Filho Douglas S. Galvão 《Molecular simulation》2013,39(9):746-751
In this work, we carried out geometry optimisations and classical molecular dynamics for the problem of cobaltocene (CC) encapsulation into different carbon nanotubes (CNTs) ((7,7), (8,8), (13,0) and (14,0) tubes were used). CCs are molecules composed of two aromatic pentagonal rings (C5H5) sandwiching one cobalt atom. From our simulation results, we observed that CC was encapsulated into CNTs (8,8), (13,0) and (14,0). However, for CNT (7,7), the encapsulation could not occur, in disaggrement with some previous works in the literature. Our results show that the encapsulation process is mainly governed by van der Waals potential barriers. 相似文献
12.
Spassov VZ Yan L Flook PK 《Protein science : a publication of the Protein Society》2007,16(3):494-506
The basic differences between the 20 natural amino acid residues are due to differences in their side-chain structures. This characteristic design of protein building blocks implies that side-chain-side-chain interactions play an important, even dominant role in 3D-structural realization of amino acid codes. Here we present the results of a comparative analysis of the contributions of side-chain-side-chain (s-s) and side-chain-backbone (s-b) interactions to the stabilization of folded protein structures within the framework of the CHARMm molecular data model. Contrary to intuition, our results suggest that side-chain-backbone interactions play the major role in side-chain packing, in stabilizing the folded structures, and in differentiating the folded structures from the unfolded or misfolded structures, while the interactions between side chains have a secondary effect. An additional analysis of electrostatic energies suggests that combinatorial dominance of the interactions between opposite charges makes the electrostatic interactions act as an unspecific folding force that stabilizes not only native structure, but also compact random conformations. This observation is in agreement with experimental findings that, in the denatured state, the charge-charge interactions stabilize more compact conformations. Taking advantage of the dominant role of side-chain-backbone interactions in side-chain packing to reduce the combinatorial problem, we developed a new algorithm, ChiRotor, for rapid prediction of side-chain conformations. We present the results of a validation study of the method based on a set of high resolution X-ray structures. 相似文献
13.
Binocular-like carbon structure was successfully fabricated using forced-field-based molecular dynamics simulations. The mechanism for the self-scrolling of graphene sheet using carbon nanotubes as template was analysed. By analysing the self-scrolling process, it was found that the van der Waals interactions were responsible for the formation of the binocular-like carbon nanostructures. Furthermore, the position and number of carbon tubes influenced the self-scrolling process. Moreover, the mechanism was also discussed. Our theoretical results will provide researchers a powerful guide and helpful assistance in designing better targeted programmes in experiments. 相似文献
14.
Miller BG 《Protein science : a publication of the Protein Society》2007,16(9):1965-1968
Investigations of enzyme action typically focus on elucidating the catalytic roles of hydrogen bonding interactions between polar active-site residues and substrate molecules. Less clear is the importance of non-hydrogen bonding contacts to enzymatic rate accelerations. To investigate the importance of such interactions in a model system, six residues that participate in van der Waals contacts with substrate glucose within the active site of Escherichia coli glucokinase were individually randomized via site-directed mutagenesis. In vivo selection in a glucokinase-deficient bacterium was employed to identify amino acid substitutions that were complicit with enzyme activity. The results suggest that small residues, such as alanine and glycine, are largely immutable, whereas larger amino acids are more tolerant of diverse substitution patterns. Surprisingly, a glucokinase variant that contains glycine in place of six non-hydrogen bonding contacts retains approximately 1% of the wild-type activity. These findings establish non-hydrogen bonding shape determinants as highly appealing targets for widespread substitution during efforts to redesign the catalytic properties of natural enzymes. 相似文献
15.
Based on second-order perturbation theory (MP2) predictions with large 6-311++G(3df, 3pd) basis set we have reviewed the possible structures and stabilities of a series of neutral MHn(M=Al, Ga; n=4, 5, 6) species. For AlH4 and AlH5, our results confirm the previous theoretical findings, which indicate the dihydrogen Cs complexes (2A′) AlH2(H2) and (1A′) AlH3(H2), respectively, as the lowest energy isomers. We found, similarly, Cs (2A′) GaH2(H2) and (1A′) GaH3(H2) van der Waals complexes as the most stable species of the gallium analogues GaH4 and GaH5. The calculated H2 dissociation energies (De) for AlH2(H2) and AlH3(H2) are of the order 1.8–2.5 kcalmol1, whereas this range of values for GaH2(H2) and GaH3(H2) is 1.4–1.8 kcalmol1 . Symmetry-adapted perturbation theory (SAPT) was used to analyze the interaction energies of these dihydrogen complexes (for n=5) to determine why the Ga species show a smaller binding energy than the Al species. The SAPT partitioning of the interaction energy showed significant differences between AlH3(H2) and GaH3(H2), resulting from the much stronger “hydride” character of the aluminum species. The experimental observation of AlH2(H2) and AlH3(H2), and likely GaH3(H2), via low-temperature matrix isolation has been reported recently by Pullumbi et al. and Andrews et al., supporting the theoretical predictions. For n=6, we found the degenerate C2(2A) and Cs(2A′) MH2(H2)2 “double H2” type van der Waals complexes as the lowest energy species for both M=Al and Ga.Electronic Supplementary Material Supplementary material is available for this article at 相似文献
16.
Van der Waals (vdW) heterostructures, which can be assembled by combining 2D atomic crystals in a precisely chosen sequence, enable a wide range of potential applications in optoelectronics, photovoltaics, and photocatalysis. However, the difficulty of peeling isolated atomic planes and the lattice mismatch between different materials is the main obstacle to hinder vdW materials from more practical applications. In this work, the mixed valence tin oxides, SnxOy (0.5 < x/y < 1), are proposed as a new member of vdW materials and these mixed valence tin oxides show promise to overcome the above‐mentioned obstacle. Density‐functional theory calculations are combined with an evolutionary algorithm to predict the crystal structures of a series of previously reported tin oxides (Sn2O3, Sn3O4, Sn4O5, and Sn5O6), unreported compositions (Sn7O8, Sn9O10, and Sn11O12), and a new β ‐ SnO phase. These structures consist of β‐SnO, Sn2O3, and Sn3O4 monolayers. Their band gaps can be engineered in the 1.56–3.25 eV range by stacking the monolayers appropriately. The band gap depends linearly on the interlayer distance, as understood from interlayer Sn2+–Sn2+ and intralayer Sn2+–O interactions. SnxOy structures exhibit high photoabsorption coefficients and suitable band‐edge positions for photoexcited H2 evolution; this indicates potential for environmentally benign solar energy conversion in photovoltaic and photocatalytic applications. 相似文献
17.
This article describes a new method for predicting ligand-binding sites of proteins. The method involves calculating the van der Waals interaction energy between a protein and probes placed on the protein surface, and then clustering the probes with attractive interaction to find the energetically most favorable locus. In 80% (28/35) of the test cases, the ligand-binding site was successfully predicted on a ligand-bound protein structure, and in 77% (27/35) was successfully predicted on an unbound structure. Our method was used to successfully predict ligand-binding sites unaffected by induced-fit as long as its scales were not very large, and it contributed to a significant improvement in prediction with unbound state protein structures. This represents a significant advance over conventional methods in detecting ligand-binding sites on uncharacterized proteins. Moreover, our method can predict ligand-binding sites with a narrower locus than those achieved using conventional methods. 相似文献
18.
Year 2010 marked the 25th year since we came to know that roughness of a protein surface has fractal symmetry. Ever since the publication of Lewis and Rees' paper, hundreds of works from a spectrum of perspectives have established that fractal dimension (FD) can be considered as a reliable marker that describes roughness of protein surface objectively. In this article, we introduce readers to the fundamentals of fractals and present categorical biophysical and geometrical reasons as to why FD‐based constructs can describe protein surface roughness more accurately. We then review the commonality (and the lack of it) between numerous approaches that have attempted to investigate protein surface with fractal measures, before exploring the patterns in the results that they have produced. Apart from presenting the genealogy of approaches and results, we present an analysis that quantifies the difference in surface roughness in stretches of protein surface containing the active site, before and after binding to ligands, to underline the utility of FD‐based measures further. It has been found that surface stretches containing the active site, in general, undergo a significant increment in its roughness after binding. After presenting the entire repertoire of FD‐based surface roughness studies, we talk about two yet‐unexplored problems where application of FD‐based techniques can help in deciphering underlying patterns of surface interactions. Finally, we list the limitations of FD‐based constructs and put down several precautions that one must take while working with them. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
20.
A complete understanding of protein and RNA structures and their interactions is important for determining the binding sites in protein-RNA complexes. Computational approaches exist for identifying secondary structural elements in proteins from atomic coordinates. However, similar methods have not been developed for RNA, due in part to the very limited structural data so far available. We have developed a set of algorithms for extracting and visualizing secondary and tertiary structures of RNA and for analyzing protein-RNA complexes. These algorithms have been implemented in a web-based program called PRI-Modeler (protein-RNA interaction modeler). Given one or more protein data bank files of protein-RNA complexes, PRI-Modeler analyzes the conformation of the RNA, calculates the hydrogen bond (H bond) and van der Waals interactions between amino acids and nucleotides, extracts secondary and tertiary RNA structure elements, and identifies the patterns of interactions between the proteins and RNAs. This paper presents PRI-Modeler and its application to the hydrogen bond and van der Waals interactions in the most representative set of protein-RNA complexes. The analysis reveals several interesting interaction patterns at various levels. The information provided by PRI-Modeler should prove useful for determining the binding sites in protein-RNA complexes. PRI-Modeler is accessible at http://wilab.inha.ac.kr/primodeler/, and supplementary materials are available in the analysis results section at http://wilab.inha.ac.kr/primodeler/. 相似文献