首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active-site-specific chaperone therapy for Fabry disease is a genotype-specific therapy using a competitive inhibitor, 1-deoxygalactonojirimycin (DGJ). To elucidate the mechanism of enhancing alpha-galactosidase A (alpha-Gal A) activity by DGJ-treatment, we studied the degradation of a mutant protein and the effect of DGJ in the endoplasmic reticulum (ER). We first established an in vitro translation and translocation system using rabbit reticulocyte lysates and canine pancreas microsomal vesicles for a study on the stability of mutant alpha-Gal A with an amino acid substitution (R301Q) in the ER. R301Q was rapidly degraded, but no degradation of wild-type alpha-Gal A was observed when microsomal vesicles containing wild-type or R301Q alpha-Gal A were isolated and incubated. A pulse-chase experiment on R301Q-expressing TgM/KO mouse fibroblasts showed rapid degradation of R301Q, and its degradation was blocked by the addition of lactacystin, indicating that R301Q was degraded by ER-associated degradation (ERAD). Rapid degradation of R301Q was also observed in TgM/KO mouse fibroblasts treated with brefeldin A, and the amount of R301Q enzyme markedly increased by pretreatment with DGJ starting 12 h prior to addition of brefeldin A. The enhancement of alpha-Gal A activity and its protein level by DGJ-treatment was selectively observed in brefeldin A-treated COS-7 cells expressing R301Q but not in cells expressing the wild-type alpha-Gal A. Observation by immunoelectron microscopy showed that the localization of R301Q in COS-7 cells was in the lysosomes, not the ER. These data suggest that the rescue of R301Q from ERAD is a key step for normalization of intracellular trafficking of R301Q.  相似文献   

2.
Fabry disease is an inborn error of glycosphingolipid metabolism caused by the deficiency of lysosomal alpha-galactosidase A (alpha-Gal A). We have established transgenic mice that exclusively express human mutant alpha-Gal A (R301Q) in an alpha-Gal A knock-out background (TgM/KO mice). This serves as a biochemical model to study and evaluate active-site specific chaperone (ASSC) therapy for Fabry disease, which is specific for those missense mutations that cause misfolding of alpha-Gal A. The alpha-Gal A activities in the heart, kidney, spleen, and liver of homozygous TgM/KO mice were 52.6, 9.9, 29.6 and 44.4 unit/mg protein, respectively, corresponding to 16.4-, 0.8-, 0.6- and 1.4-fold of the endogenous enzyme activities in the same tissues of non-transgenic mice with a similar genetic background. Oral administration of 1-deoxygalactonojirimycin (DGJ), a competitive inhibitor of alpha-Gal A and an effective ASSC for Fabry disease, at 0.05 mM in the drinking water of the mice for 2 weeks resulted in 13.8-, 3.3-, 3.9-, and 2.6-fold increases in enzyme activities in the heart, kidney, spleen and liver, respectively. No accumulation of globotriaosylceramide, a natural substrate of alpha-Gal A, could be detected in the heart of TgM/KO mice after DGJ treatment, indicating that degradation of the glycolipid in the heart was not inhibited by DGJ at that dosage. The alpha-Gal A activity in homozygous or heterozygous fibroblasts established from TgM/KO mice (TMK cells) was approximately 39 and 20 unit/mg protein, respectively. These TgM/KO mice and TMK cells are useful tools for studying the mechanism of ASSC therapy, and for screening ASSCs for Fabry disease.  相似文献   

3.
The mutant products Q279E ((279)Gln to Glu) and R301Q ((301)Arg to Gln) of the X-chromosomal inherited alpha-galactosidase (EC 3.2.1. 22) gene, found in unrelated male patients with variant Fabry disease (late-onset cardiac form) were characterized. In contrast to patients with classic Fabry disease, who have no detectable alpha-galactosidase activity, atypical variants have residual enzyme activity. First, the properties of insect cell-derived recombinant enzymes were studied. The K(m) and V(max) values of Q279E, R301Q, and wild-type alpha-galactosidase toward an artificial substrate, 4-methylumbelliferyl-alpha-D-galactopyranoside, were almost the same. In order to mimic intralysosomal conditions, the degradation of the natural substrate, globotriaosylceramide, by the alpha-galactosidases was analyzed in a detergent-free-liposomal system, in the presence of sphingolipid activator protein B (SAP-B, saposin B). Kinetic analysis revealed that there was no difference in the degradative activity between the mutants and wild-type alpha-galactosidase activity toward the natural substrate. Then, immunotitration studies were carried out to determine the amounts of the mutant gene products naturally occurring in cells. Cultured lymphoblasts, L-57 (Q279E) and L-148 (R301Q), from patients with variant Fabry disease, and L-20 (wild-type) from a normal subject were used. The 50% precipitation doses were 7% (L-57) and 10% (L-148) of that for normal lymphoblast L-20, respectively. The residual alpha-galactosidase activity was 3 and 5% of the normal level in L-57 and L-148, respectively. The quantities of immuno cross-reacting materials roughly correlated with the residual alpha-galactosidase activities in lymphoblast cells from the patients. Compared to normal control cells, fibroblast cells from a patient with variant Fabry disease, Q279E mutation, secreted only small amounts of alpha-galactosidase activity even in the presence of 10 mM NH(4)Cl. It is concluded that Q279E and R301Q substitutions do not significantly affect the enzymatic activity, but the mutant protein levels are decreased presumably in the ER of the cells.  相似文献   

4.
BACKGROUND: Fabry disease (OMIM 301500) is an X-linked inborn error of glycosphingolipid metabolism resulting from mutations in the alpha-galactosidase A (alpha-Gal A) gene. The disease is phenotypically heterogeneous with classic and variant phenotypes. To assess the molecular heterogeneity, define genotype/phenotype correlations, and for precise carrier identification, the nature of the molecular lesions in the alpha-Gal A gene was determined in 40 unrelated families with Fabry disease. MATERIALS AND METHODS: Genomic DNA was isolated from affected males or obligate carrier females and the entire alpha-Gal A coding region and flanking sequences were amplified by PCR and analyzed by automated sequencing. Haplotype analyses were performed with polymorphisms within and flanking the alpha-Gal A gene. RESULTS: Twenty new mutations were identified (G43R, R49G, M72I, G138E, W236X, L243F, W245X, S247C, D266E, W287C, S297C, N355K, E358G, P409S, g1237del15, g10274insG, g10679insG, g10702delA, g11018insA, g11185-delT), each in a single family. In the remaining 20 Fabry families, 18 previously reported mutations were detected (R49P, D92N, C94Y, R112C [two families], F113S, W162X, G183D, R220X, R227X, R227Q, Q250X, R301X, R301Q, G328R, R342Q, E358K, P409A, g10208delAA [two families]). Haplotype analyses indicated that the families with the R112C or g10208delAA mutations were not related. The proband with the D266E lesion had a severe classic phenotype, having developed renal failure at 15 years. In contrast, the patient with the S247C mutation had a variant phenotype, lacking the classic manifestations and having mild renal involvement at 64 years. CONCLUSIONS: These results further define the heterogeneity of alpha-Gal A mutations causing Fabry disease, permit precise heterozygote detection and prenatal diagnosis in these families, and provide additional genotype/phenotype correlations in this lysosomal storage disease.  相似文献   

5.
The classic phenotype of Fabry disease, X-linked alpha -galactosidase A (alpha -Gal A) deficiency, has an estimated incidence of approximately 1 in 50,000 males. The recent recognition of later-onset variants suggested that this treatable lysosomal disease is more frequent. To determine the disease incidence, we undertook newborn screening by assaying the alpha-Gal A activity in blood spots from 37,104 consecutive Italian male neonates. Enzyme-deficient infants were retested, and "doubly screened-positive" infants and their relatives were diagnostically confirmed by enzyme and mutation analyses. Twelve (0.03%) neonates had deficient alpha-Gal A activities and specific mutations, including four novel missense mutations (M51I, E66G, A73V, and R118C), three missense mutations (F113L, A143T, and N215S) identified previously in later-onset patients, and one splicing defect (IVS5(+1G-->T)) reported in a patient with the classic phenotype. Molecular modeling and in vitro overexpression of the missense mutations demonstrated structures and residual activities, which were rescued/enhanced by an alpha-Gal A-specific pharmacologic chaperone, consistent with mutations that cause the later-onset phenotype. Family studies revealed undiagnosed Fabry disease in affected individuals. In this population, the incidence of alpha-Gal A deficiency was 1 in approximately 3,100, with an 11 : 1 ratio of patients with the later-onset : classic phenotypes. If only known disease-causing mutations were included, the incidence would be 1 in approximately 4,600, with a 7 : 1 ratio of patients with the later-onset : classic phenotypes. These results suggest that the later-onset phenotype of Fabry disease is underdiagnosed among males with cardiac, cerebrovascular, and/or renal disease. Recognition of these patients would permit family screening and earlier therapeutic intervention. However, the higher incidence of the later-onset phenotype in patients raises ethical issues related to when screening should be performed--in the neonatal period or at early maturity, perhaps in conjunction with screening for other treatable adult-onset disorders.  相似文献   

6.
BACKGROUND: Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from mutations in the alpha-galactosidase A (alpha-Gal A) gene located at Xq22.1. To determine the nature and frequency of the molecular lesions causing the classical and milder variant Fabry phenotypes and for precise carrier detection, the alpha-Gal A lesions in 42 unrelated Fabry hemizygotes were determined. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and their family members. The seven alpha-galactosidase A exons and flanking intronic sequences were PCR amplified and the nucleotide sequence was determined by solid-phase direct sequencing. RESULTS: Two patients with the mild cardiac phenotype had missense mutations, I9IT and F113L, respectively. In 38 classically affected patients, 33 new mutations were identified including 20 missense (MIT, A31V, H46R, Y86C, L89P, D92Y, C94Y, A97V, R100T, Y134S, G138R, A143T, S148R, G163V, D170V, C202Y, Y216D, N263S, W287C, and N298S), two nonsense (Q386X, W399X), one splice site mutation (IVS4 + 2T-->C), and eight small exonic insertions or deletions (304del1, 613del9, 777del1, 1057del2, 1074del2, 1077del1, 1212del3, and 1094ins1), which identified exon 7 as a region prone to gene rearrangements. In addition, two unique complex rearrangements consisting of contiguous small insertions and deletions were found in exons 1 and 2 causing L45R/H46S and L120X, respectively. CONCLUSIONS: These studies further define the heterogeneity of mutations causing Fabry disease, permit precise carrier identification and prenatal diagnosis in these families, and facilitate the identification of candidates for enzyme replacement therapy.  相似文献   

7.
8.
Efforts were directed to identify the specific mutations in the alpha-galactosidase A (alpha-Gal A) gene which cause Fabry disease in families of Japanese origin. By polymerase-chain-reaction-amplification of DNA from reverse-transcribed mRNA and genomic DNA, different point mutations were found in two unrelated Fabry hemizygotes. A hemizygote with classic disease manifestations and no detectable alpha-Gal A activity had a G-to-A transition in exon 1 (codon 44) which substituted a termination codon (TAG) for a tryptophan codon (TGG) and created an NheI restriction site. This point mutation would predict a truncated alpha-Gal A polypeptide, consistent with the observed absence of enzymatic activity and a classic Fabry phenotype. In an unrelated Japanese hemizygote who had an atypical clinical course characterized by late-onset cardiac involvement and significant residual alpha-Gal activity, a G-to-A transition in exon 6 (codon 301) resulted in the replacement of a glutamine for an arginine residue. This amino acid substitution apparently altered the properties of the enzyme such that sufficient enzymatic activity was retained to markedly alter the disease course. Identification of these mutations permitted accurate molecular heterozygote diagnosis in these families.  相似文献   

9.
Fabry disease is an X-linked lysosomal storage disorder caused by the deficiency of alpha-galactosidase A that results in the accumulation of neutral sphingolipids. We report a novel point mutation in exon 6, Q279K, carried by an asymptomatic child with a family history of classic Fabry disease. Moreover, we comparatively study the in vitro expression and enzyme activity of Q279K and three other already described mutants in glutamine 279. The Q279K, Q279H and Q279R mutants transfected in COS-1 cells expressed no activity while the residual enzyme activity of the Q279E mutant represented 10% of wild type value. Western blot analysis demonstrated a differential behavior of the mutant proteins: Q279K and Q279H persisted as the inactive 50-kD precursor, indicating that these mutations may affect the normal processing of the enzyme, while the Q279R mutant was not detected probably due to an unstable protein which is rapidly degraded. The in vitro expression studies of the novel Q279K mutation were confirmed by Western blot analysis performed in the patient's lymphocytes which revealed the alpha-galactosidase A precursor of 50 kD but not the processed form.  相似文献   

10.
BACKGROUND: Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from the deficient activity of the lysosomal exoglycohydrolase alpha-galactosidase A (EC 3.2.1.22; alpha-Gal A). The nature of the molecular lesions in the alpha-Gal A gene in 30 unrelated families was determined to provide precise heterozygote detection, prenatal diagnosis, and define genotype-phenotype correlations. MATERIALS AND METHODS: Genomic DNA was isolated from affected males and/or carrier females from 30 unrelated families with Fabry disease. The entire alpha-Gal A coding region and flanking intronic sequences were analyzed by PCR amplification and automated sequencing. RESULTS: Twenty new mutations were identified, each in a single family: C142R, G183D, S235C, W236L, D244H, P259L, M267I, I289F, Q321E, C378Y, C52X, W277X, IVS4(+4), IVS6(+2), IVS6(-1), 35del13, 256del1, 892ins1, 1176del4, and 1188del1. In the remaining 10 unrelated Fabry families, 9 previously reported mutations were detected: M42V, R112C, S148R, D165V, N215S (in 2 families), Q99X, C142X, R227X, and 1072del3. Haplotype analysis using markers closely flanking the alpha-Gal A gene indicated that the two patients with the N215S lesion were unrelated. The IVS4(+4) mutation was a rare intronic splice site mutation that causes Fabry disease. CONCLUSIONS: These studies further define the heterogeneity of mutations in the alpha-Gal A gene causing Fabry disease, permit precise heterozygote detection and prenatal diagnosis, and help delineate phenotype-genotype correlations in this disease. 相似文献   

11.
Fan JQ  Ishii S 《The FEBS journal》2007,274(19):4962-4971
Protein misfolding is recognized as an important pathophysiological cause of protein deficiency in many genetic disorders. Inherited mutations can disrupt native protein folding, thereby producing proteins with misfolded conformations. These misfolded proteins are consequently retained and degraded by endoplasmic reticulum-associated degradation, although they would otherwise be catalytically fully or partially active. Active-site directed competitive inhibitors are often effective active-site-specific chaperones when they are used at subinhibitory concentrations. Active-site-specific chaperones act as a folding template in the endoplasmic reticulum to facilitate folding of mutant proteins, thereby accelerating their smooth escape from the endoplasmic reticulum-associated degradation to maintain a higher level of residual enzyme activity. In Fabry disease, degradation of mutant lysosomal alpha-galactosidase A caused by a large set of missense mutations was demonstrated to occur within the endoplasmic reticulum-associated degradation as a result of the misfolding of mutant proteins. 1-Deoxygalactonojirimycin is one of the most potent inhibitors of alpha-galactosidase A. It has also been shown to be the most effective active-site-specific chaperone at increasing residual enzyme activity in cultured fibroblasts and lymphoblasts established from Fabry patients with a variety of missense mutations. Oral administration of 1-deoxygalactonojirimycin to transgenic mice expressing human R301Q alpha-galactosidase A yielded higher alpha-galactosidase A activity in major tissues. These results indicate that 1-deoxygalactonojirimycin could be of therapeutic benefit to Fabry patients with a variety of missense mutations, and that the active-site-specific chaperone approach using functional small molecules may be broadly applicable to other lysosomal storage disorders and other protein deficiencies.  相似文献   

12.
Fabry disease is a lysosomal storage disorder caused by deficiency of -galactosidase A (-Gal A) resulting in lysosomal accumulation of glycosphingolipid globotriosylceramide Gb3. Misfolded -Gal A variants can have residual enzyme activity but are unstable. Their lysosomal trafficking is impaired because they are retained in the endoplasmic reticulum (ER) by quality control. Subinhibitory doses of the competitive inhibitor of -Gal A, 1-deoxygalactonojirimycin (DGJ), stabilize mutant -Gal A in vitro and correct the trafficking defect. We showed by immunolabeling that the chaperone-like action of DGJ significantly reduces the lysosomal Gb3 storage in human Fabry fibroblasts harboring the novel mutations T194I and V390fsX8. The specificity of the DGJ effect was proven by RNA interference. Electron microscopic morphometry demonstrated a reduction of large-size, disease-associated lysosomes and loss of characteristic multilamellar lysosomal inclusions on DGJ treatment. In addition, the pre-Golgi intermediates were decreased. However, the rough ER was not different between DGJ-treated and untreated cells. Pulse-chase experiments revealed that DGJ treatment resulted in maturation and stabilization of mutant -Gal A. Genes involved in cell stress signaling, heat shock response, unfolded protein response, and ER-associated degradation show no apparent difference in expression between untreated and DGJ-treated fibroblasts. The DGJ treatment has no apparent cytotoxic effects. Thus our data show the usefulness of a pharmacological chaperone for correction of the lysosomal storage in Fabry fibroblasts harboring different mutations with residual enzyme activity. Pharmacological chaperones acting on misfolded, unstable mutant proteins that exhibit residual biological activity offer a convenient and cost-efficient therapeutic strategy. protein trafficking; Gb3 storage; lysosomes  相似文献   

13.
The lysosomal enzyme alpha-galactosidase A (alpha-Gal A) metabolizes neutral glycosphingolipids that possess alpha-galactoside residues at the non-reducing terminus, and inherited defects in the activity of alpha-Gal A lead to Fabry disease. We describe here an efficient and rapid purification procedure for recombinant alpha-Gal A by sequential Concanavalin A (Con A)-Sepharose and immobilized thio-alpha-galactoside (thio-Gal) agarose column chromatography. Optimal elution conditions for both columns were obtained using overexpressed human alpha-Gal A. We recommend the use of a mixture of 0.9 M methyl alpha-mannoside and 0.9 M methyl alpha-glucoside in 0.1 M acetate buffer (pH 6.0) with 0.1 M NaCl for the maximum recovery of glycoproteins with multiple high-mannose type sugar chains from Con A column chromatography, and that the Con A column should not be reused for the purification of glycoproteins that are used for structural studies. Binding of the enzyme to the thio-Gal column requires acidic condition at pH 4.8. A galactose-containing buffer (25 mM citrate-phosphate buffer, pH 5.5, with 0.1 M galactose, and 0.1 M NaCl) was used to elute alpha-Gal A. This procedure is especially useful for the purification of mutant forms of alpha-Gal A, which are not stable under conventional purification techniques. A protocol that purifies an intracellular mutant alpha-Gal A (M279I) expressed in COS-7 cells within 6h at 62% overall yield is presented.  相似文献   

14.
15.
Fabry disease is a lysosomal storage disorder caused by deficient lysosomal alpha-galactosidase A (alpha-Gal A) activity. Deficiency of the enzyme activity results in progressive deposition of neutral glycosphingolipids with terminal alpha-galactosyl residue in vascular endothelial cells. We recently proposed a chemical chaperone therapy for this disease by administration of 1-deoxygalactonojirimycin, a potent inhibitor of the enzyme, at subinhibitory intracellular concentrations [Fan, J.-Q., Ishii, S., Asano, N. and Suzuki, Y. (1999) Nat. Med. 5, 112-115]. 1-Deoxygalactonojirimycin served as a specific chaperone for those mutant enzymes that failed to maintain their proper conformation to avoid excessive degradation. In order to establish a correlation between in vitro inhibitory activity and intracellular enhancement activity of the specific chemical chaperone, a series of 1-deoxygalactonojirimycin derivatives were tested for activity with both alpha-Gal A and Fabry lymphoblasts. 1-Deoxygalactonojirimycin was the most potent inhibitor of alpha-Gal A with an IC50 value of 0.04 microM. alpha-Galacto-homonojirimycin, alpha-allo-homonojirimycin and beta-1-C-butyl-deoxygalactonojirimycin were effective inhibitors with IC50 values of 0.21, 4.3 and 16 microM, respectively. N-Alkylation, deoxygenation at C-2 and epimerization at C-3 of 1-deoxygalactonojirimycin markedly lowered or abolished its inhibition toward alpha-Gal A. Inclusion of 1-deoxygalactonojirimycin, alpha-galacto-homonojirimycin, alpha-allo-homonojirimycin and beta-1-C-butyl-deoxygalactonojirimycin at 100 microM in culture medium of Fabry lymphoblasts increased the intracellular alpha-Gal A activity by 14-fold, 5.2-fold, 2.4-fold and 2.3-fold, respectively. Weaker inhibitors showed only a minimum enhancement effect. These results suggest that more potent inhibitors act as more effective specific chemical chaperones for the mutant enzyme, and the potent competitive inhibitors of alpha-Gal A are effective specific chemical chaperones for Fabry disease.  相似文献   

16.
Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A. Most mutant enzyme is catalytically active but due to misfolding retained in the endoplasmic reticulum. We have tested 4-phenylbutyrate for its potential to rescue various trafficking incompetent mutant alpha-galactosidase A. Although we found that the trafficking blockade for endoplasmic reticulum-retained mutant alpha-Gal A was released, neither a mature enzyme was detectable in transgenic mice fibroblasts nor a reversal of lysosomal Gb3 storage in fibroblasts from Fabry patients could be observed. Because of lack of functionality of rescued mutant alpha-galactosidase A, 4-phenylbutyrate seems to be of limited use as a chemical chaperone for Fabry disease.  相似文献   

17.
Lesions in the gene encoding steroid 21-hydroxylase result in congenital adrenal hyperplasia, with impaired secretion of cortisol and aldosterone from the adrenal cortex and overproduction of androgens. A limited number of mutations account for the majority of mutated alleles, but additional rare mutations are responsible for the symptoms in some patients. A total of 11 missense mutations has previously been implicated in this enzyme deficiency. We describe two novel missense mutations, both affecting the same amino acid residue, Arg356. The two mutations, R356P and R356Q, were reconstructed by in vitro site-directed mutagenesis, the proteins were transiently expressed in COS-1 cells, and enzyme activity towards the two natural substrates, 17-hydroxyprogesterone and progesterone, was determined. The R356P mutant reduced enzyme activity to 0.15% towards both substrates, whereas the R356Q mutant exhibited 0.65% of normal activity towards 17-hydroxyprogesterone, and 1.1% of normal activity towards progesterone. These activities correspond to the degrees of disease manifestation of the patients in whom they were found. Arg356 is located in a region which recently has been implicated in redox partner interaction, by modelling the structure of two other members of the cytochrome P450 superfamily. Of the 11 previously described missense mutations, three affect arginine residues within this protein domain. With the addition of R356P and R356Q, there is a clear clustering of five mutations to three closely located basic amino acids. This supports the model in which this protein domain is involved in redox partner interaction, which takes places through electrostatic interactions between charged amino acid residues. Received:17 December 1996 / Revised: 28 January 1997  相似文献   

18.
Fabry disease is a genetic disorder caused by deficient activity of alpha-galactosidase A (alpha-Gal A). Recent gene analysis of a Fabry patient revealed a point mutation (S65T) resulting in a significant decrease of enzyme activity (Chen, C.-H., et al. (1998) Hum. Mutat. 11, 328-330). In order to evaluate the role of Ser-65 in the alpha-Gal A activity and the molecular mechanism of its deficient enzyme activity in mammalian cells, we prepared gene products of S65T, S65A, and E66D mutations of alpha-Gal A by using an expression system with baculovirus/insect cells and characterized the kinetic and physical properties of those purified enzymes. The Km values of mutant enzymes were 3.5 (S65T), 3.4 (S65A), and 2.3 mM (E66D), using 4-methylumbelliferyl alpha-D-galactoside as a substrate, and the Vmax values were 2.7 x 10(6) (S65T), 3.4 x 10(6) (S65A), and 2.5 x 10(6) units/mg (E66D), respectively, which were similar to those of the normal enzyme (Km, 2.3 mM; Vmax, 2.3 x 10(6) units/mg). The in vitro stability of mutant enzymes at neutral pH was significantly reduced (S65T, 4% of normal; S65A, 29%; E66D, 54%). The intracellular alpha-Gal A activities of S65T, S65A, and E66D in COS1 cells transfected with corresponding plasmid DNAs were markedly lower than the normal enzyme activity (9, 26, and 68% of normal, respectively). However, intracellular enzyme activities were enhanced to 34% (S65T), 44% (S65A), and 80% (E66D) of normal, respectively, by cultivation of the cells with 20 microM 1-deoxygalactonojirimycin (a potent inhibitor of alpha-Gal A) for 24 h. These results suggest that Ser-65 is responsible for the stability of alpha-Gal A but not for the enzyme function.  相似文献   

19.
20.
The lysosomal storage disorder, mucopolysaccharidosis type I (MPS I), is caused by a deficiency of the enzyme alpha-L-iduronidase, which is involved in the breakdown of dermatan and heparan sulphates. There are three clinical phenotypes, ranging from the Hurler form characterised by skeletal abnormalities, hepatosplenomegaly and severe mental retardation, to the milder Scheie phenotype where there is aortic valve disease, corneal clouding, limited skeletal problems, but no mental retardation. In this study, 85 MPS I families (73 Hurler, 5 Hurler/Scheie, 7 Scheie) were screened for 9 known mutations (Q70X, A75T, 474-2a>g, L218P, A327P, W402X, P533R, R89Q, 678-7g>a). W402X was the most frequent mutation in our population (45.3%) and Q70X was the second most frequent (15.9%). In 30 families, either one or both of the mutations were not identified, which accounted for 25.9% of the total alleles. Therefore, all 14 exons of the alpha-L-iduronidase gene were screened in these patients and 23 different sequence changes were found, 17 of which were previously unknown. The novel sequence changes include 4 deletions (153delC, 628del5, 740delC, 747delG), 5 nonsense mutations (Q60X, Y167X, Q400X, R619X, R628X), 6 missense mutations (C205Y, G208V, H240R, A319V, P496R, S633L), a splice site mutation (IVS12+5g>a), and a rare polymorphism (A591T). The polymorphism and novel missense mutations were transiently expressed in COS-7 cells and all of them except the polymorphism showed complete loss of enzyme activity. In total, 165 of the 170 mutant alleles were identified in this study and despite the high frequency of W402X and Q70X, the identification of many novel mutations unique to individual families further highlights the genetic heterogeneity of MPS I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号