共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was conducted from 2006 to 2008 at South Charleston and Wooster, Ohio, USA, to evaluate the potential use of planting dates in combination with Bacillus thuringiensis transgenic maize and insecticidal seed treatments to manage the root feeding of western corn rootworm (Diabrotica virgifera virgifera, Coleoptera: Chrysomelidae). Three planting dates (early, middle and late), targeting late April/early, mid‐May and early June, respectively, were used. We planted six hybrid treatments consisting of two seed‐treated hybrids with seed treatment, two transgenic hybrids and two untreated hybrids, each set represented by one short and one full season maturity hybrid. When root injury was high, significant lodging and stunted growth were observed on untreated maize and declined when planting was delayed. Root injury by rootworm larval feeding was significantly reduced by later planting maize, that is, early June. The use of transgenic maize and seed treatment also significantly reduced root injury by rootworm larvae. The influence of planting date on grain yield was inconsistent from year to year. Grain yields from short season hybrids were comparable to full season hybrids especially on later plantings. These results showed that the use of a seed treatment and transgenic maize might be beneficial only when rootworm population is high and planting is early. 相似文献
2.
R. R. Binning S. A. Lefko A. Y. Millsap S. D. Thompson T. M. Nowatzki 《Journal of Applied Entomology》2010,134(7):551-561
Susceptibility of Diabrotica virgifera virgifera (LeConte) larvae to DAS‐59122‐7 maize was evaluated using a laboratory technique that measures rootworm survival to adulthood on maize seedlings. This method produces direct measures of larval susceptibility using realistic exposure to the same range of insecticidal protein concentrations found in field‐grown DAS‐59122‐7 maize roots. First, second and third instars were reared to adulthood on DAS‐59122‐7 maize seedlings or a non‐transgenic, near‐isoline maize. Data on survival, adult gender ratio, adult weight and median emergence were collected. Overall, larval susceptibility to DAS‐59122‐7 maize was lower than earlier predictions ( Storer et al. 2006 ). Neonate survival on DAS‐59122‐7 maize was approximately 33% of isoline survival after 17 days, and the same 33% recovered and developed to adulthood when the isoline maize was substituted. Survival rate on DAS‐59122‐7 maize increased with instar. The mean survivorship was 0.5%, 26% and 65% when exposure to DAS‐59122‐7 maize began at the first, second and third instars, respectively. Exposure to DAS‐59122‐7 maize led to sub‐lethal effects on adult gender ratio, weight and median emergence. These effects decreased when exposure to DAS‐59122‐7 maize began at later instars. The killing effect of DAS‐59122‐7 maize on rootworm larvae appeared to result from the combined chronic effects and absence of a suitable host as perceived by the larvae. The relevance of these data and the methodology of estimating rootworm susceptibility to plant‐incorporated protectants are discussed in the context of the US Environmental Protection Agency’s functional definition of ‘high dose’ and use of refuge for resistance management ( EPA 1998a ). Based on these results it is evident that DAS‐59122‐7 maize does not meet the functional definitions of high dose as described by EPA (1998a,b) and ILSI (1999) , and the utility of refuge, refuge size and refuge placement for delaying rootworm resistance should be further investigated. 相似文献
3.
E.A. El-Shazly I.A. Ismail H.A. El Shabrawy R.S. Abdel-Rahman 《Archives Of Phytopathology And Plant Protection》2013,46(19):2304-2313
This study was conducted on Bt and normal maize hybrids during two successive sowing dates, early and late summer plantation. The Sesamia cretica larvae were observed for the first time on first week of April on different commercial maize hybrids. While there was no larva/plant on transgenic maize hybrids, YieldGard and Ageeb-YG, while larvae were found on last week of July by a very little number on maize hybrids for late one. In Early summer planting date showed highly significant differences in reduction percent, between tested compounds and control one, in the pink corn borer population. The bio-residual activity of the NeemAzal-T/S 0.5% on TWC310 was significantly less pronounced, i.e. 75.5%, than other tested ones; the highest percentage of reduction, 86.6%, was achieved by Chlorophan 0.005% on SC2031, followed by NeemAzal-T/S 0.5% on SC2031 83.5% and Chlorophan 0.005% on SC2030 83.4%, respectively. Also the average reduction percentage of S. cretica larvae differed significantly from 69.6%, on NeemAzal-T/S SC2031, to 83.0%, on Chlorophan SC2031, in the late summer planting. The different treatments had positive effects on maize yield in the two planting dates. In the first plantation date, the increased rate of control ranged from 1.04 to 1.24, when NeemAzal-T/S acted on TWC310 and transgenic IYG, respectively. And in the second plantation date, rate of control obtained was 1.06–1.30, when NeemAzal-T/S acted on SC 2031 and transgenic IYG, respectively. The tested compounds played an important role in controlling the pink corn borer insect, S. cretica, and this study suggests that Cry 1Ab-expressing corn hybrids would provide a great value as a component of corn IPM in Egypt. 相似文献
4.
T. L. Clark D. L. Frank B. W. French L. J. Meinke D. Moellenbeck T. T. Vaughn B. E. Hibbard 《Journal of Applied Entomology》2012,136(10):721-729
Mortality of western corn rootworm (Diabrotica virgifera virgifera LeConte) due to feeding on MON863 transgenic maize (Zea mays L.) expressing the Cry3Bb1 protein was evaluated at three Missouri sites in both 2003 and 2004 and at one site each in South Dakota, Nebraska and Iowa in 2004. To do this, survivorship relative to survivorship on isoline maize (i.e. the same genetic background, but without Cry3Bb1) was evaluated. Comparisons were made using low (1650–2500 eggs/m) and high (3300–3500 eggs/m) western corn rootworm egg densities. Significantly fewer beetles were recovered from MON863 than from isoline maize. Emergence from MON863 as a percentage of viable eggs ranged from 0.02% to 0.10%, whereas percentage emergence from isoline maize ranged from 1.09% to 7.14%. Survivorship on MON863 relative to survivorship on isoline averaged 1.51% when averaged across all environments and both years, so mortality because of the Cry3Bb1 protein averaged 98.49%. The average time delay to 50% cumulative beetle emergence from MON863 was 18.3 days later than from isoline maize. Females comprised 56% and 71% of total beetles recovered from MON863 in 2003 and 2004, respectively. Results are discussed in relation to insect resistance management (IRM) of western corn rootworm. 相似文献
5.
Field-evolved resistance to Bt maize by western corn rootworm 总被引:2,自引:0,他引:2
Background
Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).Methodology/Principal Findings
We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins.Conclusions/Significance
This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary. 相似文献6.
Several maize, Zea mays L., inbred lines developed from an Antiguan maize population have been shown to exhibit resistance to numerous aboveground lepidopteran pests. This study shows that these genotypes are able to significantly reduce the survival of two root feeding pests, western corn rootworm, Diabrotica virgifera virgifera LeConte, and southern corn rootworm, Diabrotica undecimpunctata howardi Barber. The results also demonstrated that feeding by the aboveground herbivore fall armyworm, Spodoptera frugiperda (J. E. Smith), before infestation by western corn rootworm reduced survivorship of western corn rootworm in the root tissues of some, but not all, genotypes. Likewise, the presence of western corn rootworm in the soil seemed to increase resistance to fall armyworm in the whorl in several genotypes. However, genotypes derived from the Antiguan germplasm with genetic resistance to lepidopterans were still more resistant to the fall armyworm and both rootworm species than the susceptible genotypes even after defense induction. These results suggest that there may be intraplant communication that alters plant responses to aboveground and belowground herbivores. 相似文献
7.
Two field experiments were conducted in 1995-1996 to determine if there are common yield responses among maize hybrids to larval western corn rootworm, Diabrotica virgifera virgifera LeConte injury. Three yellow dent hybrids, five white food grade dent hybrids, and a popcorn hybrid were included in the study. The minimum level of rootworm injury as measured by root damage ratings (3.2-4.2) that significantly reduced yield was similar across the hybrids included in the study. However, the pattern of yield response to different rootworm injury levels varied among hybrids. This suggests that maize hybrids may inherently differ in their ability to tolerate rootworm injury and partition biomass in response to injury and other stresses. The complex interaction among hybrid, level of injury, and other stresses suggests that a common western corn rootworm injury-yield relationship may not exist within maize. 相似文献
8.
To investigate the development of resistance to mCry3A, a laboratory colony of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was established from field survivors of mCry3A-expressing (MIR604) corn, Zea mays L. Feral adults emerging from MIR604 (selected) and isoline (control) field plots were collected and returned to the laboratory. Progeny of each colony was reared one generation on isoline corn and then crossed reciprocally with a nondiapausing colony. The resulting nondiapausing progeny were then reared on greenhouse corn in accordance with the wild type parent's origin (on MIR604 or isoline corn). After four, seven, and 10 total generations of selection, the resistance ratio of the selected colony was 0.5, 4.3, and 15.4 in terms of lethal concentration (LC)50 values in toxicity assays, with the latter two LC50 values being significant. After seven generations of selection in total, selected and control colonies were screened on MIR604 and isoline corn under field conditions. There was a significant colony x corn pedigree interaction in terms of plant damage. There was no significant difference in damage between MIR604 and isoline corn, whereas this difference was significant for the control colony. After 14 generations of selection, a seedling bioassay was performed. Again, there was a significant colony x corn pedigree interaction, this time in terms of the number of larvae recovered. There was no significant difference in the number of larvae recovered from MIR604 and isoline corn for the selected colony, whereas this difference was significant for the control colony, although larval size was greater on isoline corn for both colonies. Resistance has developed in western corn rootworm laboratory colonies to all Bt proteins currently registered for corn rootworm management, which emphasizes the importance of adhering to resistance management plans for maintaining product efficacy. 相似文献
9.
The cultural practice of rotating corn, Zea mays L., with soybean, Glycine max (L.) Merrill, to manage larval injury by the western corn rootworm, Diabrotica virgifera virgifera LeConte, was used extensively throughout east central Illinois and northern Indiana until the mid-1990s. The effectiveness of this management tactic diminished due to a shift in the ovipositional behavior of the western corn rootworm. The variant western corn rootworm has since spread as far as northwestern Illinois, southern Wisconsin, southern Michigan, and eastern Ohio. The objective of this study was to evaluate the influence of four cropping systems on adult and egg densities of the western corn rootworm and to quantify the level of root injury in rotated corn after each system. The four cropping systems used included: 1) corn; 2) soybean; 3) double-cropped winter wheat, Triticum aestivum L., followed by soybean; and 4) winter wheat. Research trials were conducted near Monmouth (northwestern), DeKalb (northern), and Urbana (east central), IL, during 2003 and 2004. Results indicated variant western corn rootworm adults can be found in all four treatments at each location and consequently no crop was immune to oviposition or root injury by corn rootworm larvae in rotated corn the following season. Adults were found primarily in corn and soybean, whereas egg densities were greatest in corn plots in all three locations in both years of the study. Root injury by larvae was most abundant in corn following corn at all three sites. Of the four systems evaluated, the use of wheat demonstrated the most potential for preventing yield reducing levels of root injury in rotated corn. 相似文献
10.
A mathematical model was constructed to describe the evolution of resistance to the Bacillus thuringiensis toxin (Bt) in an insect pest (European corn borer) population on a transgenic crop (Bt corn). The model comprises a set of partial differential equations of the reaction-diffusion type; local interactions of three competing pest genotypes formed by alleles of Bt resistance and susceptibility are described as in the Kostitzin model, and the spread of insects is modeled as diffusion. The model was used to evaluate the influence of pest characteristics on the efficacy of the high-dose/refuge strategy aiming to prevent or delay the spread of Bt resistance in pest populations. It was shown, by contrast, that a model based on Fisher-Haldane-Wright equations and formally incorporating a diffusion term cannot adequately describe the evolution of Bt resistance in a spatially inhomogeneous pest population. Further development of the proposed demo-genetic model is discussed. 相似文献
11.
Crop rotation for portions of east central Illinois and northern Indiana no longer adequately protects corn (Zea mays L.) roots from western corn rootworm, Diabrotica virgifera virgifera LeConte. Seventeen growers in east central Illinois monitored western corn rootworm adults in soybean (Glycine max L.) fields with unbaited Pherocon AM traps during 1996 and 1997. In the following years (1997 and 1998), growers left untreated strips (no insecticide applied) when these fields were planted with corn. Damage to rotated corn by rootworms was more severe in untreated than in treated strips of rotated corn, ranging from minor root scarring to a full node of roots pruned. Densities of western corn rootworms in soybean fields from 1996 were significantly correlated with root injury to rotated corn the following season. Adult densities from 1997 were not significantly correlated with root injury in 1998, due to heavy precipitation throughout the spring of 1998 and extensive larval mortality. Twenty-eight additional growers volunteered in 1998 to monitor rootworm adults in soybean fields with Pherocon AM traps based on recommendations that resulted from our research efforts in 1996 and 1997. In 1999, these 28 fields were rotated to corn, and rootworm larval injury was measured in untreated strips. Based on 1996-1997 and 1998-1999 data, a regression analysis revealed that 27% of the variation in root injury to rotated corn could be explained by adult density in soybeans the previous season. We propose a sampling plan for soybean fields and a threshold for predicting western corn rootworm larval injury to rotated corn. 相似文献
12.
S. A. Lefko T. M. Nowatzki S. D. Thompson R. R. Binning M. A. Pascual M. L. Peters E. J. Simbro & B. H. Stanley 《Journal of Applied Entomology》2008,132(3):189-204
Event DAS‐59122‐7 is a novel transgenic trait designed to protect the roots and yield potential of maize from the insect pest corn rootworm Diabrotica spp. (Col.: Chrysomelidae). The increased pest status of corn rootworm, exceptional efficacy of this trait, and anticipated increases in farm efficiency and grower and environmental safety will drive adoption of this trait. Strong grower acceptance of this trait highlights the importance of science‐based and practical resistance management strategies. A non‐diapause trait was introgressed into two laboratory colonies of Diabrotica virgifera virgifera collected from geographically distinct locations: Rochelle, IL and York, NE. Both colonies were divided and each reared on maize containing event DAS‐59122‐7 or its near isoline. Selected and unselected colonies were evaluated for phenotypic change in larval development, injury potential and survival to adulthood during 10 and 11 generations. The F1 generation of both selected colonies displayed increased larval development, survivorship and measurable, but economically insignificant increases in injury potential on DAS‐59122‐7 maize. Survival rates of 0.4 and 1.3% in F1 generations of both selected colonies corroborate field estimates of survival on DAS‐59122‐7 maize. Over later generations, total phenotypic variation declined gradually and irregularly. Despite the absence of random mating, the tolerance trait could not be fixed in either population after 10 or 11 generations of selection. An allele conferring major resistance to DAS‐59122‐7 was not identified in either selected colony. The assessment also concluded that major resistance gene(s) are rare in populations of D. v. virgifera in the United States, and that a minor trait(s) conferring a low level of survival on DAS‐59122‐7 maize was present. The tolerance trait identified in this study was considered minor with respect to its impact on DAS‐59122‐7 maize efficacy, and the role this trait may play in total effective refuge for major resistance genes with recessive inheritance is the basis of future work. 相似文献
13.
14.
Onstad DW 《Journal of economic entomology》2006,99(4):1407-1414
I expanded the population dynamics and genetics model published in 2005 by Crowder and Onstad to include larval survival and movement to evaluate the role of mixtures of transgenic and nontransgenic corn, Zea mays L., seed for resistance management of western corn rootworm. I studied both density-independent and density-dependent toxin survival. In all but the worst-case scenarios, resistance did not evolve within 30 yr when the resistance allele, R, was recessive. The standard model with density-independent toxin survival based on the expression of a medium dose of toxin indicated that 50% R allele frequency will be reached by years 5 and 7, respectively, with dominant and partially recessive expression and 20% nontransgenic seed. The standard model with density-dependent toxin survival indicates that resistance will occur in year 5 under the same conditions. These results are similar to the published results of Crowder and Onstad who studied a model with adjacent block refuges and mostly nonrandom mating in the landscape (random only within each block). Results depended on the heterozygote advantage (differential survival between SS and RS) and the degree of random mating provided by the seed mixture. 相似文献
15.
A simulation model of the population dynamics and genetics of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was created for a landscape of corn, soybean, and other crops. Although the model was created to study a 2-locus problem for beetles having genes for resistance to both crop rotation and transgenic corn, during this first phase of the project, the model was simulated to evaluate only resistance management plans for transgenic corn. Allele expression in the rootworm and toxin dose in the corn plant were the two most important factors affecting resistance development. A dominant resistance allele allowed quick evolution of resistance to transgenic corn, whereas a recessive allele delayed resistance >99 yr. With high dosages of toxin and additive expression, the time required to reach 3% resistance allele frequency ranged from 13 to >99 yr. With additive expression, lower dosages permitted the resistant allele frequency to reach 3% in 2-9 yr with refuges occupying 5-30% of the land. The results were sensitive to delays in emergence by susceptible adults and configuration of the refuge (row strips versus blocks). 相似文献
16.
Polumetla A. Kumar Ajin Mandaokar Karra Sreenivasu Swarup K. Chakrabarti Suman Bisaria Surat R. Sharma Sarvjeet Kaur Rameshwar P. Sharma 《Molecular breeding : new strategies in plant improvement》1998,4(1):33-37
A synthetic cry1Ab gene coding for an insecticidal crystal protein (ICP) of Bacillus thuringiensis (Bt) was transferred to brinjal (eggplant) by cocultivating cotyledonary explants with Agrobacterium tumefaciens. Transformant plants resistant to kanamycin were regenerated. Hybridization experiments demonstrated gene integration and mRNA expression. Double-antibody sandwich ELISA analysis revealed Bt toxin protein expression in the transgenic plants. The expression resulted in a significant insecticidal activity of transgenic brinjal fruits against the larvae of fruit borer (Leucinodes orbonalis). The results also demonstrated that a synthetic gene based on monocot codon usage can be expressed in dicotyledonous plants for insect control. 相似文献
17.
Abstract Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Cry3Bb delta endotoxins expressed by Bt maize specifically target corn rootworms (genus Diabrotica) and have proven highly efficacious. However, development of resistance to Bt maize, especially among western corn rootworm (Diabrotica virgifera virgifera) populations, poses a significant threat to the future viability of this pest control biotechnology. The structured refuge insect resistance management (IRM) strategy implemented in the United States for Bt maize adopts a conservative approach to managing resistance by assuming no fitness costs of Bt resistance, even though these trade‐offs strongly influence the dynamics of Bt resistance within numerous agricultural pest species. To investigate the effects of Bt resistance on fitness components of western corn rootworm, we compared survivorship, fecundity and viability of five Bt‐resistant laboratory lines reared on MON863 (YieldGard Rootworm), a Bt maize product that expresses Cry3Bb1 delta endotoxin, and on its non‐transgenic isoline. Analysis of performance on the isoline maize demonstrated no fitness costs associated with Bt resistance. In fact, resistant lines emerged approximately 2–3 days earlier than control lines when reared on both MON863 and the isoline, indicating that selection for Bt resistance resulted in a general increase in the rate of larval development. In addition, resistant lines reared on Bt maize displayed higher fecundity than those reared on the isoline, which may have significant management implications. These data will be valuable for formulating improved IRM strategies for a principal agricultural pest of maize. 相似文献
18.
Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice 总被引:17,自引:0,他引:17
The tissue-specific, developmental, and genetic control of four endosperm-active genes was studied via expression of GUS reporter genes in transgenic maize plants. The transgenes included promoters from the maize granule-bound starch synthase (Waxy) gene (zmGBS), a maize 27 kDa zein gene (zmZ27), a rice small subunit ADP-glucose pyrophosphorylase gene (osAGP) and the rice glutelin 1 gene (osGT1). Most plants had a transgene expression profile similar to that of the endogenous gene: expression in the pollen and endosperm for the zmGBS transgene, and endosperm only for the others. Histological analysis indicated expression initiated at the periphery of the endosperm for zmGBS, zmZ27 and osGT1, while osAGP transgene activity tended to start in the lower portion of the seed. Transgene expression at the RNA level was proportional to GUS activity, and did not influence endogenous gene expression. Genetic analysis showed that there was a positive dosage response with most lines. Activity of the zmGBS transgene was threefold higher in a low starch (shrunken2) genetic background. This effect was not seen with zmZ27 or osGT1 transgenes. The expression of the transgenes is discussed relative to the known behaviour of the endogenous genes, and the developmental programme of the maize endosperm 相似文献
19.
Suresh Ramachandran G. David Buntin John N. All Paul L. Raymer C. Neal Stewart Jr. 《Entomologia Experimentalis et Applicata》1998,88(1):17-24
Canola (Brassica napus L.) cultivars Oscar and Westar, engineered with a Bacillus thuringiensis (Bt) cryIA(c) gene, were evaluated for resistance to lepidopterous pests, diamondback moth, Plutella xylostella L. (Plutellidae) and corn earworm, Helicoverpa zea (Boddie) (Noctuidae) in greenhouse and field conditions. In greenhouse preference assays conducted at vegetative and flowering plant stages, transgenic plants recorded very low levels of damage. A 100% diamondback moth mortality and 90% corn earworm mortality were obtained on transgenic plants in greenhouse antibiosis assays. The surviving corn earworm larvae on transgenic plants had reduced head capsule width and body weight. Mortality of diamondback moth and corn earworm were 100% and 95%, respectively, at different growth stages (seedling, vegetative, bolting, and flowering) on the transgenic plants in greenhouse tests. In field tests conducted during 1995–1997, plots were artificially infested with neonates of diamondback moth or corn earworm or left for natural infestation. Transgenic plants in all the treatments were highly resistant to diamondback moth and corn earworm larvae and had very low levels of defoliation. Plots infested with diamondback moth larvae had greater damage in both seasons as compared with corn earworm infested plots and plots under natural infestation. After exposure to defoliators, transgenic plants usually had higher final plant stand and produced more pods and seeds than non-transgenic plants. Diamondback moth injury caused the most pronounced difference in plant stand and pod and seed number between transgenic and non-transgenic plants. Our results suggest that transgenic canola could be used for effective management of diamondback moth and corn earworm on canola. 相似文献
20.
Abstract: Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, larval damage in maize following soybean was observed in Croatia in 2003 along the edges and within soybean fields which bordered continuous maize fields in previous year. The explanation was that WCR adults moved from the continuous maize to the neighbouring soybean fields to lay eggs. This study was designed to measure how far WCR adults will enter into neighbouring fields to lay eggs. The WCR adult population was monitored in continuous maize fields in 2003 and 2005 by using Pherocon® AM non-baited yellow sticky traps in the middle and on the borders of the maize field and at different distances and directions into neighbouring fields planted by wheat and soybean. Larval presence and root damage ratings (Iowa State University 1–6 ) were recorded at different locations within the maize field in following years. Approximately, the same concentration of WCR adults was recorded along the edges of the maize fields as recorded in the centres of those fields. A significant number of WCR adults was recorded up to a distance of 50 m into neighbouring fields. Regression analysis showed medium negative correlation between distance from previous maize field and root damage in the following year. Findings indicate that WCR egg lying can reach approximately 20 m into fields neighbouring maize fields and that significant root damage caused by WCR larvae in first-year maize following soybean and wheat can happen up to a distance of 20 m into those fields. Most farmers's fields in Croatia are up to approximately 50 m wide. As an edge effect for WCR egg laying can reach approximately 20 m into fields neighbouring maize fields, our research results indicate that it is possible to see WCR larval damage in rotated fields without those WCR's being the variant form. 相似文献