首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
黄芳  时敏  陈学新  章金明 《昆虫学报》2011,54(9):989-996
半闭弯尾姬蜂Diadegma semiclausum是小菜蛾Plutella xylostella的优势内寄生蜂, 拥有毒液、多分DNA病毒(PDV)等寄生因子,能有效调控寄主幼虫的营养生理和免疫系统, 但其毒液在这过程中的功能不明。本文利用SDS-PAGE方法分析了半闭弯尾姬蜂毒液的蛋白组分,利用寄主幼虫血细胞体外原代培养的方法,研究了小菜蛾幼虫血细胞噬菌能力在半闭弯尾姬蜂寄生后的变化情况。结果表明:半闭弯尾姬蜂毒液蛋白分子量主要集中在35~220 kDa之间,少数小于15 kDa,但分子量处于35~70 kDa之间的蛋白含量较高,与其他寄生蜂毒液蛋白相似。半闭弯尾姬蜂毒液单独对寄主小菜蛾幼虫功能血细胞(浆血细胞和颗粒血细胞)的延展能力和吞噬功能不产生破坏作用。但半闭弯尾姬蜂寄生后短时间内,寄主功能血细胞的延展受到抑制,然而功能血细胞仍然能识别外源异物, 却无法进一步吞噬外源物; 寄生后24 h,功能血细胞的延展力恢复,颗粒血细胞的吞噬作用可顺利完成。本研究证明了半闭弯尾姬蜂寄生能暂时性地抑制颗粒血细胞的延展性从而影响其噬菌过程。  相似文献   

2.
张忠  叶恭银  胡萃 《昆虫学报》2004,47(5):551-561
活体微注射测定结果表明,将0.5毒囊当量(venom reservoir equivalent, VRE)的蝶蛹金小蜂毒液注射于其寄主菜粉蝶蛹体内,注射后4~24 h寄主浆血细胞和颗粒血细胞的延展、存活和对Sephadex A50微珠的包囊能力显著下降;以0.002~0.02 VRE/μL的该蜂毒液处理其离体寄主血细胞均能产生同样的生理效应。该毒液抑制90%菜粉蝶蛹浆血细胞和颗粒血细胞延展的浓度各为0.00076 VRE/μL和0.00804 VRE/μL。可见,蝶蛹金小蜂毒液能显著抑制其寄主血细胞的延展和包囊作用,并导致血细胞的死亡。然而,同样条件下丽蝇蛹集金小蜂毒液对其非自然寄主菜粉蝶蛹的血细胞延展、存活和包囊作用则无任何效应。可见,寄生蜂毒液的生理作用具有明显的寄主特异性。  相似文献   

3.
三种内寄生蜂寄生对小菜蛾幼虫精子发生的影响   总被引:3,自引:0,他引:3  
内寄生蜂寄生可能会引起寄主的寄生性去势。对小菜蛾Plutella xylostella与菜蛾啮小蜂Oomyzus sokolowskii Kurdumov (膜翅目: 姬小蜂科)、半闭弯尾姬蜂Diadegma semiclausum Hellén (膜翅目: 姬蜂科)、菜蛾盘绒茧蜂Cotesia plutellae (Kurdj.) (膜翅目: 茧蜂科) 3个寄生体系,利用形态学方法和蛋白质技术,研究了寄生对小菜蛾幼虫精子发生的影响。结果表明:菜蛾啮小蜂寄生对寄主的精子发生过程没有影响。半闭弯尾姬蜂寄生造成寄主精母细胞的细胞核畸形,精细胞的染色质超浓缩并趋向核膜,但能形成少量的精子;半闭弯尾姬蜂寄生会导致寄主精巢总蛋白的含量显著下降。菜蛾盘绒茧蜂寄生对小菜蛾幼虫精子发生的抑制程度最强,被寄生寄主的精母细胞出现肿胀,核膜皱缩,胞质中的线粒体发生病变;精细胞的染色体也出现超浓缩并趋向核膜,大量的精子溶解,无正常的精子形成;其精巢总蛋白含量的下降程度比姬蜂寄生的更为明显,且导致分子量为63.4 kD的主蛋白缺失。  相似文献   

4.
【目的】明确白蛾周氏啮小蜂Chouioia cunea毒液对其寄主美国白蛾Hyphantria cunea蛹细胞免疫的影响。【方法】采用Na_2-EDTA分离美国白蛾蛹颗粒细胞,尼龙毛法分离浆血细胞,再利用细胞离体培养法,测评了白蛾周氏啮小蜂毒液对寄主美国白蛾两种血细胞包囊作用和吞噬作用的影响。【结果】美国白蛾颗粒细胞的包囊指数强于浆血细胞。白蛾周氏啮小蜂毒液对颗粒细胞和浆血细胞的包囊指数均有明显的抑制作用,毒液浓度越大,抑制作用越强,两种血细胞的包囊作用均呈先增长后降低的趋势。在所有浓度毒液处理下,颗粒细胞的包囊指数在12 h时最强。未经小蜂毒液处理的浆血细胞包囊指数在15 h时达到最强,但经浓度为0.01~0.03 VRE/μL的毒液处理后浆血细胞的包囊指数在12 h时达到最强,而经浓度为0.04~0.10 VRE/μL的毒液处理后包囊指数在9 h时最强。白蛾周氏啮小蜂毒液对美国白蛾蛹颗粒细胞的吞噬作用强于浆血细胞。毒液对两种血细胞的吞噬能力均有明显的抑制作用,但毒液处理对浆血细胞的吞噬作用影响较小。【结论】白蛾周氏啮小蜂毒液可以抑制美国白蛾蛹颗粒细胞和浆血细胞的包囊作用和吞噬作用,且随着毒液浓度的增加,两种血细胞的免疫作用显著下降。  相似文献   

5.
郦卫弟  时敏  陈学新 《昆虫学报》2007,50(7):662-666
采用光学和电子显微镜观察了颈双缘姬蜂Diadromus collaris(膜翅目: 姬蜂科)寄生后小菜蛾Plutella xylostella(鳞翅目:菜蛾科)蛹脂肪体形态、超微结构和脂肪细胞的变化。结果表明: 被寄生72 h后小菜蛾蛹脂肪体结构松散,细胞游离,细胞膜破裂;细胞内营养物质开始被动地消耗;细胞器数量减少,细胞核内染色质状态发生变化。这些现象说明寄生对寄主的脂肪体结构及脂肪细胞产生了明显的影响,这有利于为幼蜂的发育提供营养。  相似文献   

6.
何瑶  白素芬  李欣  蔡东章 《昆虫学报》2009,52(11):1183-1190
我们曾发现菜蛾盘绒茧蜂Cotesia vestalis和半闭弯尾姬蜂Diadegma semiclausum寄生严重阻碍小菜蛾Plutella xylostella幼虫的精子发生。本研究着重比较2种蜂寄生对小菜蛾精巢生长和精子束形成的影响, 以探明寄生因子对昆虫生殖调控的作用途径。 采取过寄生和假寄生方法, 对2种蜂各自寄生后的小菜蛾精巢生长体积, 精子发生和形成过程中生精细胞、精子束的显微形态变化进行了比较。 结果表明: 茧蜂和姬蜂寄生均明显降低小菜蛾精子束的数量, 严重阻碍了寄主幼虫的精子发生和精子形成. 姬蜂寄生造成小菜蛾精巢畸形, 而茧蜂则造成小菜蛾精子束畸形, 且茧蜂对小菜蛾精巢生长的抑制程度明显强于姬蜂。过寄生造成寄主寄生性去势程度加剧, 茧蜂和姬蜂过寄生后的小菜蛾精巢体积分别为0.005 mm3和0.008 mm3, 仅为各自只寄生1次后精巢体积的33.1%和36.3%。假寄生后, 发现只有寄生蜂母代物质存在的前提下, 对小菜蛾精巢生长的抑制程度基本模拟了正常寄生时的状态, 说明多分DNA病毒(polydnavirus, PDV)和毒液发挥了主要作用。 由此推断分属姬蜂属PDV和茧蜂属PDV的2类PDV功能基因对小菜蛾精巢生长发育的调控机制可能存在较大差异。  相似文献   

7.
本文观察了内寄生蜂黄眶离缘姬蜂Trathala flavo-orbitalis Cameron卵巢和毒液器官的形态及超微结构,为了解黄眶离缘姬蜂与其寄主之间的协同进化关系奠定基础。在光学显微镜下解剖雌性生殖系统,并结合透射电镜进行形态学及超微结构观察,结果表明黄眶离缘姬蜂毒液器官主要由一个薄壁的毒囊、两条接于毒囊顶端的毒腺、通向产卵器的毒液导管组成。毒腺由分泌细胞层和环腔的内膜构成,分泌细胞层中存在大量的端器,主要功能是分泌毒液。毒囊由肌肉鞘层、扁平细胞层以及内膜层组成,肌肉鞘内肌纤丝规则排列,扁平细胞层内的细胞器极其稀少,内膜呈波浪状均匀加厚。黄眶离缘姬蜂的一对卵巢分别由8条卵巢小管组成,开口于两条侧输卵管,在卵巢与侧输卵管相接处略微膨大形成卵巢萼区,萼区内存在大量类似姬蜂病毒的颗粒。黄眶离缘姬蜂的毒液器官属于II型毒液器官,是较高等的进化模式,其毒液器官的形态结构与雌蜂的产卵行为相关。在萼区内发现的类似姬蜂病毒的颗粒,对研究寄生蜂调控寄主的免疫和发育生理具有重要意义。  相似文献   

8.
通过对被腰带长体茧蜂Macrocentrus cingulum Brischke寄生的5龄亚洲玉米螟Ostrinia furnacalis Guenée幼虫体内不同组织中酚氧化酶活性的测定,采用体外注射腰带长体茧蜂雌性成蜂的萼液成分、毒液成分、萼液与毒液混合物的方法,研究了寄生蜂各种主要生理因子对寄主血清中酚氧化酶活性的影响。结果表明: 寄生蜂寄生可明显抑制寄主体内的酚氧化酶活性,减少黑色素产生;被寄生组FITC标记的血细胞阳性百分率低于未被寄生组,差异极显著( P<0.01);萼液成分可明显地抑制亚洲玉米螟幼虫血清中酚氧化酶的活性 (P<0.01);萼液与毒液混合物对酚氧化酶活性也有明显抑制作用(P<0.01)。研究认为寄生蜂产卵时注入的萼液、毒液可对寄主昆虫酚氧化酶活性产生明显的抑制作用,其中萼液是抑制寄主免疫能力的主要因素。  相似文献   

9.
张倩倩  王飞  方琦  叶恭银 《昆虫学报》2011,54(11):1264-1273
为探明蝶蛹金小蜂Pteromalus puparum毒液对其寄主菜粉蝶Pieris rapae蛹颗粒血细胞和浆血细胞的包囊与吞噬能力的影响, 本研究分别采用Na2-EDTA处理和尼龙毛法对菜粉蝶蛹颗粒血细胞与浆血细胞进行分离纯化; 再采用离体细胞培养方法, 研究了菜粉蝶蛹颗粒血细胞、 浆血细胞各自在包囊和吞噬反应中的作用, 以及蝶蛹金小蜂毒液对其所产生的影响。结果表明: 颗粒血细胞和浆血细胞均参与了包囊反应, 其中前者包囊作用明显, 后者作用微弱, 但两者同时存在时包囊作用最为明显; 血淋巴浆质对颗粒血细胞和浆血细胞包囊反应均无显著影响。毒液对颗粒血细胞和浆血细胞的包囊能力均存在显著的抑制作用, 且抑制作用具有明显的剂量效应特征。此外, 菜粉蝶蛹颗粒血细胞和浆血细胞均具吞噬能力, 其中前者吞噬能力显著强于后者; 毒液对颗粒血细胞与浆血细胞的吞噬能力亦均存在显著的抑制作用, 且该抑制作用亦具有显著的剂量效应特征。结果说明, 菜粉蝶蛹颗粒血细胞及浆血细胞均参与寄主的细胞免疫反应, 蝶蛹金小蜂毒液对其寄主颗粒血细胞和浆血细胞的包囊与吞噬能力均存在显著的抑制作用。  相似文献   

10.
黄腹潜蝇茧蜂寄生因子的特性及其对寄主的生理效应   总被引:2,自引:1,他引:1  
初步研究了黄腹潜蝇茧蜂Opius caricivorae Fischer寄生因子的特性及其对寄主美洲斑潜蝇Liriomyza sativae Blanchard幼虫的生理效应。黄腹潜蝇茧蜂携带的主要因子是毒液。毒液器官是由一个土黄色的锥形毒囊和7个透明的椭圆形的毒腺及导管构成的;毒液的电泳图谱显示约有12条蛋白带,其中绝大多数低于100 kD,含量最高的3条蛋白带为43.5、25.9和20.1 kD;杜氏腺约有15条左右蛋白质条带,其中有5条含量很高(121.4、77.0、51.5、42.7和36.5 kD)。通过透射电镜观察,在黄腹潜蝇茧蜂毒腺分泌细胞和卵巢表皮细胞中新发现存在一种类病毒颗粒,这些球状颗粒直径大约为50 nm。雌蜂经Co60辐射处理后再寄生(即假寄生)3龄寄主幼虫,被寄生后的寄主依然能正常化蛹,但不能羽化;7 h后寄生体壁开始出现红斑;脂肪体形态结构无显著变化;绝大多数的蜂卵没有被包囊。推测在正常寄生的情况下可能是毒液抑制了寄主的包囊作用,而新发现的类病毒颗粒是否参与了这一过程目前还不清楚。  相似文献   

11.
In this study, we examined cellular immune responses in the flesh fly, Sarcophaga bullata, when parasitized by the ectoparasitoid Nasonia vitripennis. In unparasitized, young pharate adults and third instar, wandering larvae of S. bullata, four main hemocyte types were identified by light microscopy: plasmatocytes, granular cells, oenocytoids, and pro-hemocytes. Parasitism of young pharate adults had a differential effect on host hemocytes; oenocytoids and pro-hemocytes appeared to be unaltered by parasitism, whereas adhesion and spreading behavior were completely inhibited in plasmatocytes and granular cells by 60 min after oviposition. The suppression of spreading behavior in granular cells lasted the duration of parasitism. Plasmatocytes were found to decline significantly during the first hour after parasitism and this drop was attributed to cell death. Melanization and clotting of host hemolymph did not occur in parasitized flies, or the onset of both events was retarded by several hours in comparison to unparasitized pharate adults. Hemocytes from envenomated flies were altered in nearly identical fashion to that observed for natural parasitism; the total number of circulating hemocytes declined sharply by 60 min post-envenomation, the number of plasmatocytes declined but not granular cells, and the ability of plasmatocytes and granular cells to spread when cultured in vitro was abolished within 1 h. As with parasitized hosts, the decrease in plasmatocytes was due to cell death, and inhibition of spreading lasted until the host died. Isolated crude venom also blocked adhesion and spreading of these hemocyte types in vitro. Thus, it appears that maternally derived venom disrupts host immune responses almost immediately following oviposition and the inhibition is permanent. The possibility that this ectoparasite disables host defenses to afford protection to feeding larvae and adult females is discussed.  相似文献   

12.
In contrast to the situation with egg-larval and larval endoparasitic wasps, little is known about the effects of pupal endoparasitoids and their secretions on the hemocytes of their insect hosts. This study focuses on the pupal endoparasitoid, Pteromalus puparum, and its host, the small white butterfly, Pieris rapae. Parasitism by P. puparum, resulted in a significant increase in the total number of host hemocytes up to day five after parasitization. From day one to day four after parasitization, the percentage of plasmatocytes significantly decreased, and the proportion of granular cells increased. Moreover, from 12 h to day three after parasitization, hemocyte mortality in parasitized pupae was noticeably higher. When P. rapae pupae were parasitized by adult females of P. puparum irradiated by gamma-ray (pseudoparasitization), it was clear that the treated wasps could induce similar hemocyte changes. However, such phenomena did not occur in punctured host pupae (mimic-parasitization). After treatment with P. puparum venom, both the percentages of spreading plasmatocytes and encapsulated Sephadex G-25 beads were lessened significantly in vitro. Electron microscopy analysis and visualization of hemocyte F-actin with phalloidin-FITC showed that hemocytes treated with venom had a rounded configuration and neither spread nor extended pseudopods, while there was no marked alteration of hemocyte cytoskeletons after venom treatment. The results suggested that venom of P. puparum could actively suppress the hemocyte immune response of its host, but not by destroying the host hemocyte cytoskeleton.  相似文献   

13.
Insect hemocytes play a major role in developmental processes where they disassociate and rebuild metamorphosing tissues while undergoing physiological changes themselves. We identified hemocyte changes from the last larval to the beginning of the pupal stage of the tobacco hornworm, Manduca sexta. Larval and pupal hemocytes behaved differently in a 40% Percoll density gradient. Larval granular cells were found in almost all density layers, pupal granular cells were abundant in high density layers; larval plasmatocytes occurred in dense layers, pupal plasmatocytes became enriched in less dense layers of the gradient. Using a panel of monoclonal antibodies generated against purified hemocytes, several different antibody binding patterns were identified. Quantitative differences in staining intensities were observed more often than qualitative changes, e.g. a loss or a gain of staining. Both phenomena were related to both plasmatocytes and granular cells. The distribution of the corresponding antigens in tissues was tested on cross sections of larvae and pupae as well as in Western blot analyses using organ homogenates. Several antibodies were specific for hemocytes only, among which two antibodies bound to molecules of the hematopoietic organ. Other antibodies had an additional reactivity to other tissues, mainly to the basal lamina.  相似文献   

14.
In parasitoid species devoid of polydnaviruses and virus‐like particles, venom appears to play a major role in suppression of host immunity. Venom from the pupal endoparasitoid Pimpla turionellae L. (Hymenoptera: Ichneumonidae) has previously been shown to contain a mixture of biologically active components, which display potent paralytic, cytotoxic, and cytolytic effects toward lepidopteran and dipteran hosts. The current study was undertaken to investigate if parasitism and/or envenomation by P. turionellae affects the frequency of apoptotic and necrotic hemocytes, hemocyte viability and mitotic indices in Galleria mellonella L. (Lepidoptera: Pyralidae) pupae and larvae. Our study indicates that parasitism and experimental envenomation of G. mellonella by P. turionellae resulted in markedly different effects on the ratio of apoptotic hemocytes circulating in hemolymph depending on the host developmental stages. The ratio of early and late apoptotic hemocytes increased in G. mellonella pupae and larvae upon parasitization and at high doses of venom when compared to untreated, null and Phosphate Buffered Saline (PBS) injected controls. In contrast, an increase in necrotic hemocytes was only observed in parasitized pupae at 24 h and no difference was observed in larvae. The lowest hemocyte viability values were observed with pupae as 69.87%, 69.80%, and 72.47% at 4, 8, and 24 h post‐parasitism. The ratio of mitotic hemocytes also decreased in pupae and larvae upon parasitization and at high doses of venom. Staining of hemocytes with annexin V‐FITC revealed green fluorescent ‘halos’ along the plasma membranes of venom treated cells within 15 min following exposure to venom. By 1 h post‐venom – treatment, the majority of hemocytes displayed binding of this probe, indicative of early stage apoptosis. These same hemocytes also displayed a loss of plasma membrane integrity at the same time points as evidenced by accumulation of propidium iodide in nuclei.  相似文献   

15.
Cotesia plutellae, a solitary endoparasitoid wasp, parasitizes the diamondback moth, Plutella xylostella, and induces host immunosuppression and lethality in the late larval stage. This study focused on changes of cellular immunity in the parasitized P. xylostella in terms of hemocyte composition and cellular functions. In third and fourth instar larvae of nonparasitized P. xylostella, granular cells represented the main hemocyte type (60-70%) and plasmatocytes were also present at around 15% among the total hemocytes. Following parasitization by C. plutellae, the relative proportions of these two major hemocytes changed very little, but the total hemocyte counts exhibited a significant reduction. Functionally, the granular cells played a significant role in phagocytosis based on a fluorescence assay using fluorecein isothiocyanate-labeled bacteria. The phagocytic activity of the granular cells occurred as early as 5 min after incubation with the bacteria, and increased during the first 40 min of incubation. The parasitism by C. plutellae significantly inhibited phagocytosis of the granular cells. Plasmatocytes also exhibited minor phagocytic activity. Moreover, plasmatocyte phagocytosis was not inhibited by parasitism. On the other hand, hemocyte-spreading behavior in response to pathogen infection was significant only for plasmatocytes, which exhibited a characteristic spindle shape upon infection. A significant spreading of the plasmatocytes was found as early as 5 min after pathogen incubation and their ratio increased during the first 40 min.An insect cytokine, plasmatocyte-spreading peptide 1 (PSP1) from Pseudoplusia includens, was highly active in inducing plasmatocyte-spreading behavior of P. xylostella in a dose-dependent manner. P. xylostella parasitized by C. plutella was significantly inhibited in plasmatocyte-spreading in response to an active dose of PSP1. An in vivo encapsulation assay showed that the parasitized P. xylostella could not effectively form the hemocyte capsules around injected agarose beads. This research demonstrates that the parasitism of C. plutellae adversely affects the total hemocyte populations in number and function, which would contribute to host immunosuppression.  相似文献   

16.
Crude venom and calyx fluid from Cotesia plutellae (Hymenoptera Braconidae) were assayed for biological activity toward hemocytes of Plutella xylostella (Lepidoptera Plutellidae). Venom from C. plutellae displayed high activity toward the spreading of plasmatocytes of P. xylostella early in the incubation period, and the inhibition was more severe as the concentration of venom increased. However, most inhibited hemocytes spread normally after being incubated for 4h. No effects were found toward granular cells from the host. Additionally, the venom from C. plutellae had some lethal effects on hemocytes of P. xylostella at high concentrations. In contrast, when incubated with different concentrations of calyx fluid, the spreading of some hemocytes was inhibited, some began to disintegrate, and some were badly damaged with only the nucleus left. After 4h, the majority of hemocytes died. The same results were observed when hemocytes were incubated in calyx fluid together with venom. These results show that calyx fluid from C. plutellae may play a major role in the suppression of the host immune system, whereas venom from C. plutellae has a limited effect on hemocytes and probably synergizes the effect of calyx fluid or polydnavirus.  相似文献   

17.
Hemocytes collected from larvae of Pseudoplusia includens (Lepidoptera: Noctuidae) were separated by centrifugation on Percoll cushions. The procedure resulted in 95% purity of plasmatocytes and greater than 99% purity of granular and spherule cells. Medium supplemented with chicken serum enhanced cell viability and promoted spreading of plasmatocytes. Cell-free plasma and medium preconditioned by plasmatocytes or granular cells stabilized cells in vitro and also accelerated spreading of plasmatocytes relative to medium supplemented with chicken serum. Oenocytoids were the only morphotype that exhibited endogenous phenoloxidase activity, while granular cells and plasmatocytes were the only cells that endocytosed fluorescent beads in vitro. Granular cells and plasmatocytes ingested fluorescently labelled beads, both in mixed populations of hemocytes and after separation. Plasmatocytes were the only morphotype that encapsulated large foreign targets in vitro following separation. Separated granular cells attached and spread on the surface of foreign targets but never formed a multilayered capsule.  相似文献   

18.
Plasmatocytes are a class of insect hemocytes important in the cellular defense response. In some species, they are phagocytic, protecting the insect from smaller pathogens. In many insects, they work in concert with other hemocytes (particularly other plasmatocytes and granular cells) to form nodules and to encapsulate foreign material. To perform these functions, plasmatocytes attach to, spread on, and surround suitable targets. Because of their importance, because we had previously observed that prolonged incubation of hemocytes in solutions containing the divalent cation chelator ethylenediaminetetraacetic acid (EDTA) inhibited plasmatocyte spreading, and because of the importance of divalent cations in many immune-related functions, we investigated the effect of calcium and magnesium on spreading of plasmatocytes from fifth instar Manduca sexta larvae. On glass slides, plasmatocytes spread more quickly and elongated in Grace's medium containing 5 mM calcium, compared to calcium-free medium. In the presence of calcium, plasmatocyte adhesion, spreading, and network formation were not visibly different in magnesium-free and magnesium-containing Grace's medium. Using immunomicroscopy with a monoclonal antibody specific for plasmatocytes, we measured the length and width of plasmatocytes incubated with several different concentrations of calcium. Plasmatocyte length positively correlated with calcium concentration to 5 mM (maximum concentration tested and approximately the hemolymph concentration). Mean plasmatocyte width was less in 0 and 5 mM calcium than in 0.05 or 0.5 mM calcium. On plastic, hemocytes survived longer than on glass (they survived beyond 24 h) and, in 5 mM calcium, formed an extensive network readily visible by phase-contrast microscopy. This network was never as extensive in the absence of calcium. Network formation in the absence of magnesium, but presence of calcium, resembled network formation in standard Grace's medium.  相似文献   

19.

Recognition of foreign targets by insect hemocytes is a crucial first step for insect immunity against invading multicellular organisms in the hemocoel. To understand the mechanism of recognition, we observed the hemocyte behavior of Galleria mellonella Linnaeus (Lepidoptera: Pyralidae) larvae against beads and the nonparasitic nematode Caenorhabditis elegans (Maupas) (Rhabditida: Rhabditidae) in the presence of plasma ex vivo using time-lapse microscopy. Both granular cells and plasmatocytes adhered to and spread on the surface of beads and nematodes. In addition, the spread plasmatocytes actively moved over the beads and nematodes. These results suggest that not only granular cells but also plasmatocytes can recognize foreign targets in the presence of insect plasma and that spread plasmatocytes can actively search for foreign targets. Hemocyte adhesion to beads and nematodes ex vivo was similar to that of the in vivo 1?h after injection. A divalent cation chelator inhibited the spreading and adhesion of plasmatocytes ex vivo, but it did not affect the adhesion of granular cells. The present method enables the analysis of acute hemocyte response against foreign targets in the presence of plasma.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号