首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse oocytes are reversibly inhibited from resuming meiotic maturation in vitro by cAMP phosphodiesterase inhibitors such as 3-isobutyl-1-methyl xanthine (IBMX) and cAMP analogs such as dibutyryl cAMP (dbcAMP). Oocytes cultured in IBMX-containing medium were transferred to and cultured in IBMX-free medium for various periods of time prior to their return to either IBMX- or dbcAMP-containing medium. Results from these experiments defined a period of time in which oocytes became committed to resuming meiosis. Forskolin, which elevated the intracellular oocyte cAMP concentration, transiently inhibited oocytes from resuming meiosis. Levels of cAMP were determined in oocytes incubated in medium that allows resumption of meiosis. The level of oocyte cAMP decreased significantly during the time in which oocytes become committed to resuming meiosis. This decrease in oocyte cAMP was not observed in oocytes inhibited from resuming meiosis by IBMX. In addition, cAMP levels were determined in preovulatory antral follicles, cumulus cell-oocyte complexes, and oocytes during gonadotropin-induced resumption of meiosis in vivo. A decrease in oocyte cAMP preceded resumption of meiosis as manifested by germinal vesicle breakdown (GVBD). This decrease apparently occurred before or during a period of time in which follicle and cumulus cell cAMP were increasing. Associated with commitment to resume meiosis was a characteristic set of changes in oocyte phosphoprotein metabolism that preceded GVBD. These changes are, to date, some of the first reported biochemical changes that precede GVBD. Results from these experiments are discussed in terms of a possible role cAMP may play in regulation of resumption of meiosis in mammals.  相似文献   

2.

Background  

The ovulatory surge of gonadotropins triggers oocyte maturation and rupture of the ovarian follicle. The resumption of nuclear maturation in the oocyte from the prophase stage is characterized by germinal vesicle breakdown (GVBD). It has previously been shown that specific inhibition of cAMP degradation by PDE3 prevents the resumption of oocyte meiosis. However, no report has characterized the activity of PDE3 in the porcine oocyte, or the implication of the cAMP-PDE3 pathway in the entire nuclear maturation process. In this study, PDE3 activity in the oocyte was assessed during in vitro maturation (IVM) and the possible roles of the cAMP-PDE3 pathway in the resumption and progression of meiosis were investigated in terms of different models of oocyte maturation.  相似文献   

3.
We report the results of experiments which support the hypothesis that, in mouse oocytes, a decrease in intraoocyte cyclic AMP (cAMP) initiates meiotic maturation; oocytes microinjected with cyclic nucleotide phosphodiesterase (PDE) underwent germinal vesicle breakdown (GVBD) in the presence of 3-isobutyl-1-methylxanthine (IBMX), which inhibited GVBD both in oocytes not injected with PDE and in oocytes injected with heat-inactivated PDE. Cyclic AMP-dependent protein kinase (PK) has been proposed to mediate maintenance of meiotic arrest by cAMP. In support of this hypothesis is the observation that 2'-deoxy cAMP, which does not activate PK, did not maintain meiotic arrest as did cAMP; this result was obtained both by microinjection of these compounds and by incubating oocytes in the presence of their membrane-permeable N6-monobutyryl derivatives. Furthermore, microinjection into oocytes of the heat-stable inhibitor of PK, PKI, induced GVBD in the presence of either dibutyryl cAMP (dbcAMP) or IBMX. Meiotic arrest was maintained in the absence of dbcAMP or IBMX, however, by microinjected catalytic subunit of PK, but not by catalytic subunit coinjected with PKI. In addition, specific changes in oocyte phosphoproteins that preceded resumption of meiosis were induced, in the presence of dbcAMP, by microinjected PKI; these changes were also tightly coupled with commitment of oocytes to resume meiosis. These results are discussed in terms of our model for regulation of meiotic arrest and maturation.  相似文献   

4.
Effects of beta-adrenoceptor antagonists propranolol and alprenolol in the oocyte maturation of the catfish (Clarias batrachus) were investigated under in vitro. Cyclic AMP (cAMP) levels were also measured in the control, propranolol and phosphodiesterase (PDE) inhibitor treated oocytes. When full-grown folliculated oocytes were cultured in vitro in the presence of different concentrations of propranolol or alprenolol, both the substances induced germinal vesicle breakdown (GVBD) in a dose-dependent manner. The maturational effect of alprenolol at the concentration of 1.0 mM was similar to that of the 1.5 mM dose of propranolol inducing more than 88% GVBD. In the time course study, when the oocytes were treated with 1.5 mM propranolol or with 1.0 mM alprenolol for various times, both the antagonists induced more than 80% GVBD after 4 h of incubations and this induction gradually increased with the increased duration of treatments. On the other hand, 1.5 mM propranolol treatment caused a significant decrease in oocyte cAMP which was maintained upto the duration of the study (36 h). When the oocytes were first stimulated by 1.5 mM propranolol or 1.0 mM alprenolol for 4 h and then treated with various doses of cAMP or PDE inhibitors (IBMX and theophylline), all these substances effectively blocked beta-adrenoceptor antagonist-induced GVBD. Both these PDE inhibitors promoted the accumulation of cAMP in the oocytes. These results provide the first example of an existence of a cAMP-mediated mechanism of action of beta-adrenoceptor antagonists in the induction of oocyte maturation in fish.  相似文献   

5.
Effects of β-adrenoceptor antagonists propranolol and alprenolol in the oocyte maturation of the catfish (Clarias batrachus) were investigated under in vitro. Cyclic AMP (cAMP) levels were also measured in the control, propranolol and phosphodiesterase (PDE) inhibitor treated oocytes. When full-grown folliculated oocytes were cultured in vitro in the presence of different concentrations of propranolol or alprenolol, both the substances induced germinal vesicle breakdown (GVBD) in a dose-dependent manner. The maturational effect of alprenolol at the concentration of 1.0 mM was similar to that of the 1.5 mM dose of propranolol inducing more than 88% GVBD. In the time course study, when the oocytes were treated with 1.5 mM propranolol or with 1.0 mM alprenolol for various times, both the antagonists induced more than 80% GVBD after 4 h of incubations and this induction gradually increased with the increased duration of treatments. On the other hand, 1.5 mM propranolol treatment caused a significant decrease in oocyte cAMP which was maintained upto the duration of the study (36 h). When the oocytes were first stimulated by 1.5 mM propranolol or 1.0 mM alprenolol for 4 h and then treated with various doses of cAMP or PDE inhibitors (IBMX and theophylline), all these substances effectively blocked β-adrenoceptor antagonist-induced GVBD. Both these PDE inhibitors promoted the accumulation of cAMP in the oocytes. These results provide the first example of an existence of a cAMP-mediated mechanism of action of β-adrenoceptor antagonists in the induction of oocyte maturation in fish.  相似文献   

6.
This study directly tested the hypothesis that the induction of oocyte maturation in the catfish Clarias batrachus is followed by a transient decrease in oocyte cyclic AMP (cAMP) level that is due to an increase in phosphodiesterase (PDE) activity. Further, the PDE inhibitor theophylline was used to investigate the possible role of PDE in the maturation-inducing action of 17alpha,20beta-dihydroxy-4-pregnen-3-one (17alpha,20beta-DP), the physiological maturation-inducing steroid of this catfish species. The results obtained from batches of oocytes taken from the same donor at the same time clearly show a close relationship between dose-dependent induction of germinal vesicle breakdown (GVBD) and PDE activity with a concomitant decrease in cAMP in the oocytes treated with different concentrations of 17alpha,20beta-DP. In contrast, theophylline prevents GVBD and inhibits PDE activity by promoting cAMP accumulation in oocytes. A time-dependent decrease in PDE activity and an increase in cAMP content with a marked inhibition of GVBD were recorded even in oocytes pre-stimulated with 1 microgram/ml 17alpha,20beta-DP for 6 h and then treated with 1 mM theophylline for various times. These results suggest that cAMP plays a key role in the regulation of oocyte maturation in C. batrachus which may be mediated by PDE activity.  相似文献   

7.
Protein phosphorylation mediated by cAMP-dependent protein kinase is instrumental in maintaining meiotic arrest of mouse oocytes. To assess whether protein phosphorylation mediated by calcium/phospholipid-dependent protein kinase (protein kinase C) might also inhibit the resumption of meiosis, we treated oocytes with activators of this enzyme. The active phorbol esters 12-O-tetra-decanoyl phorbol-13-acetate (TPA) and 4 beta-phorbol 12,13-didecanoate (4 beta-PDD) inhibited germinal vesicle breakdown (GVBD), as did a more natural activator of protein kinase, C, sn-1,2-dioctanoylglycerol (diC8). An inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD), did not inhibit GVBD. We then examined whether protein kinase C activators inhibit a step in the cAMP-modulated pathway that regulates resumption of meiosis. TPA did not inhibit the maturation-associated decrease in oocyte cAMP. Microinjected heat-stable protein inhibitor of cAMP-dependent protein kinase failed to induce GVBD in the presence of TPA. Both TPA and diC8 partially inhibited specific changes in oocyte phosphoprotein metabolism that are tightly correlated with resumption of meiosis; these agents also induced the apparent phosphorylation of specific oocyte proteins. These results suggest that protein kinase C activators may inhibit resumption of meiosis by acting distal to a decrease in cAMP-dependent protein kinase activity, but prior to changes in oocyte phosphoprotein metabolism that are presumably required for resumption of meiosis. Finally, we compared the effects of db-cAMP and protein kinase C activators on polar body emission following GVBD. TPA, 4 beta-PDD or diC8, but not 4 alpha-PDD or db-cAMP, inhibited polar body emission in a dose-dependent manner. The morphology and cytology of oocytes in which polar body emission was inhibited by TPA or 4 beta-PDD differed from that of oocytes treated with diC8. Thirty to 60% of the former were round in shape and exhibited a clump of chromosomes but no spindle; the remainder were distended in shape and exhibited a metaphase I spindle. All oocytes treated with diC8, however, were round, had dispersed chromosomes, and no spindle. These results suggest that, in contrast to resumption of meiosis, polar body emission is inhibited by activation of protein kinase C but not cAMP-dependent protein kinase.  相似文献   

8.
In the amphibian ovarian follicle, progesterone production is thought to induce maturation of the enclosed oocyte. Intracellular mechanisms regulating these events in the somatic and germ cells are incompletely understood. However, calcium appears to play a role in the production and action of progesterone. Experiments using calcium antagonists were carried out to delineate the role of extra- and intracellular calcium during in vitro stimulation of follicular steroidogenesis and oocyte maturation. Calcium-free medium, verapamil, and La3+ were used to block Ca2+ influx and inhibited follicular progesterone accumulation in response to frog pituitary homogenate (FPH) or exogenous cAMP + IBMX. Progesterone accumulation was not impaired under identical conditions when pregnenolone was added to cultured follicles. TMB-8, an inhibitor of intracellular Ca2+ mobilization, partially inhibited progesterone levels stimulated by FPH at low doses but not higher doses of the inhibitor. However, TMB-8 inhibited FPH-induced oocyte germinal vesicle breakdown (GVBD) in a dose-dependent manner, as well as maturation due to exogenous progesterone or La3+. Calmodulin antagonists, W-7, R24571, and trifluoperazine, were used to assess the involvement of calmodulin in the responses of these two cell types. All three antagonists inhibited progesterone accumulation induced by FPH with the apparent order of potency being R24571 greater than W-7 greater than TFP. W-7 inhibited cAMP-induced progesterone elevation, but had no effect on conversion of pregnenolone to progesterone. Of these three calmodulin antagonists, only R24571 exhibited a dramatic ability to inhibit GVBD induced by exogenous progesterone and was associated with morphologic alterations in the oocytes. These data suggest that Ca2+, acting through calmodulin at some specific step(s) distal to cAMP elevation and prior to pregnenolone formation, is involved in FPH-induced progesterone accumulation, apparently with the participation of both extracellular and intracellular pools of Ca2+. In the oocyte, mobilization of Ca2+ from intracellular stores appears to be of primary importance to maturation while extracellular Ca2+ is not. These data provide further evidence that Ca2+ mediates the hormonally provoked responses in both cell types in the intact follicle, but that the source of Ca2+ may differ. Using intact follicles it seems apparent that exploiting this difference with selective inhibitors provides a means for differential modulation and functional uncoupling of these cells with regard to steroidogenesis and steroid action.  相似文献   

9.
Changes in organelle topography and microtubule configuration have been studied during the resumption and progression of meiosis in cultured preovulatory rat oocytes. Germinal vesicle breakdown (GVBD) was reversibly inhibited by dibutyryl cAMP (DcAMP) or nocodazole, a microtubule-disrupting agent. The microtubule stabilizing agent taxol did not inhibit GVBD, but did impair further maturation. The migration of acidic organelles and chromatin in living oocytes was analyzed using the vital stains acridine orange and Hoechst 33258, respectively. Germinal vesicle stage oocytes undergo perinuclear aggregation of acidic organelles during GVBD and these organelles subsequently disperse into the cell cortex as the first meiotic spindle migrates to the oocyte periphery. DcAMP and nocodazole block the perinuclear aggregation of acidic organelles, whereas, in taxol-treated oocytes, organelle aggregation and GVBD occur but the dispersion of acidic organelles was arrested. Dose-response studies on the effects of nocodazole showed that GVBD was generally retarded and that a 50% inhibition of GVBD was achieved at concentrations in excess of 1.0 microM. Concentrations of taxol at 10 microM or above effectively inhibited both chromatin condensation and meiotic spindle formation. Indirect immunofluorescence microscopy with anti-tubulin antibodies revealed dissolution of microtubules with 1.0 microM nocodazole. Taxol had little effect on microtubule organization in germinal vesicle or chromatin condensation stage oocytes; however, when oocytes that had formed first meiotic spindles were treated with taxol, numerous microtubule asters appeared which were preferentially associated with the oocyte cortex. The changes in organelle topography, microtubule configuration, and drug sensitivity are discussed with respect to the regulation of cytoplasmic reorganization during the meiotic maturation of rat preovulatory oocytes.  相似文献   

10.
An increase in the percentage of germinal vesicle breakdown (GVBD) with a corresponding decrease in cAMP was found in the oocytes which were incubated for 36 hr with different concentrations of 17 alpha,20 beta-dihydroxy-4-pregnen-3-one (17 alpha,20 beta-DP). At its highest concentration (1 microgram/ml), 17 alpha,20 beta-DP induced 91.9 +/- 2.3% GVBD and decreased cAMP level to 0.8 +/- 0.1 pmol/oocyte from 2.9 +/- 0.2 pmol/oocyte (control). The two different known inhibitors of phosphodiesterase viz. 3-isobutyl-1-methyl-xanthine (IBMX) and theophylline inhibited GVBD in vitro and promoted the accumulation of cAMP in a dose-dependent manner irrespective of whether the oocytes were treated for a short duration (2 hr) or for a long duration (36 hr). Evaluation of time course response to 1 mM IBMX or 1 mM theophylline revealed that cAMP levels increased at all the time points when compared with their respective controls and blocked maturation. In contrast, 1 microgram/ml 17 alpha,20 beta-DP not only induced oocyte maturation but also caused an immediate decrease in cAMP within the first 2 hr (from 3.2 +/- 1.3 to 1.3 +/- 0.1 pmol/oocyte) of incubation which was maintained till the end of experiment (36 hr). Likewise, a significant inhibition of GVBD and accumulation of cAMP was recorded even in oocytes pre-stimulated with 1 microgram/ml 17 alpha,20 beta-DP for 6 hr and then treated with different concentrations of IBMX or theophylline. Taken together, these data strongly suggest that in C. batrachus a decrease of oocyte cAMP concentration is a prerequisite for the induction of oocyte maturation, and its increase is associated with the maintenance of meiotic arrest.  相似文献   

11.
Insulin-like growth factor-I (IGF-I) stimulated Xenopus laevis oocyte ribosomal S6 kinase activity 5- to 10-fold, with an apparent EC50 of 0.8 +/- 0.1 nM after 90 min of hormone treatment. IGF-I-stimulated enzyme activity was inhibited by treatment of oocytes with nonselective phosphodiesterase (PDE) inhibitors, with apparent IC50 values of 2 +/- 1 microM papaverine, 20 +/- 2 microM isobutylmethylxanthine, and 128 +/- 16 microM theophylline. Type III PDE inhibitors also inhibited IGF-I-stimulated S6 kinase activity with IC50 values of 9.7 +/- 0.3 microM Cl-930 and 84 +/- 23 microM imazodan (Cl-914). These drugs apparently affected an intracellular molecular event leading to activation of S6 kinase, since Cl-930 prevented IGF-I-stimulation of S6 kinase, but had no direct inhibitory effect when added to the S6 kinase enzyme assay mixture. While hormone-stimulated S6 kinase activity was inhibited by isobutylmethylxanthine (nonselective PDE inhibitor) and Cl-930 (PDE III inhibitor), Ro 20, 1724 and rolipram (PDE IV inhibitors) and dipyridamole (PDE V inhibitor) had no significant effect on activated enzyme levels. The time course for IGF-I stimulation of oocyte S6 kinase displayed a small early peak of activity approximately 0.15-0.4 time required for 50% of cell population to display white spots (GVBD50) and a second major increase in activity at 0.6-0.7 GVBD50 that was sustained until meiotic maturation was complete. The second wave of enzyme activation was inhibited by Cl-930, but the early increase was not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Specific changes in the two-dimensional gel electrophoretic pattern of mouse oocyte phosphoproteins precede germinal vesicle breakdown (GVBD). We report that changes in the relative abundance of phosphoamino acids occurred prior to GVBD. We also report data that further strengthen the close association of the changes in phosphoprotein patterns with resumption of meiosis. The calmodulin antagonist W7, which transiently inhibits GVBD, inhibited partially at least two of the maturation-associated phosphoprotein changes, the dephosphorylation of a 60,000 Mr phosphoprotein and the phosphorylation of a 36,000 Mr protein. In oocytes from juvenile mice that were incompetent to resume meiosis, neither these changes nor the phosphorylation of proteins of Mr 24,000 and 28,000 occurred; all these changes occurred, however, in oocytes from juvenile mice that were competent to resume meiosis. The microinjection of the heat-stable inhibitor of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKI), which induces GVBD in fully grown oocytes, did not induce GVBD in meiotically incompetent oocytes. Microinjected PKI did not induce the increased protein phosphorylations associated with maturation, but it did induce the dephosphorylation of the 60,000 Mr phosphoprotein. These results provide molecular markers for commitment to resume meiosis in GV-intact oocytes and indicate a potential basis for meiotic incompetence.  相似文献   

13.
Three phosphodiesterase (PDE) type III inhibitors were tested and found to inhibit Xenopus oocyte maturation induced by insulin with apparent IC50 values of 2.2 +/- 0.2 microM Cl-930, 25 +/- 3 microM imazodan (Cl-914), and 786 +/- 237 microM piroximone (MDL 19,205). The same rank order of potencies was observed for inhibition of insulin-like growth factor-I (IGF-I)-induced oocyte maturation, with IC50 values of 5.5 +/- 0.9 microM Cl-930, 54 +/- 4 microM imazodan, and 1190 +/- 395 microM piroximone. Oocyte maturation induced by microinjection of Ha p21ras was also inhibited by pretreatment of oocytes with Cl-930 or imazodan, with IC50 values of 4.3 +/- 1.2 and 59 +/- 4 microM, respectively. Progesterone-induced maturation was not affected by PDE III inhibitor action; and, neither type IV PDE inhibitors (Ro 20, 1724 or rolipram) nor dipyridamole (a type V PDE inhibitor) inhibited cell division induced by IGF-I or microinjected Ha p21ras. In addition, while insulin-stimulated oocyte PDE activity measured in vivo after microinjection of 200 microM [3H] cAMP was inhibited by nonselective and type III-specific drugs (with IC50 values of 4.2 +/- 1.8 microM Cl-930 and 26 +/- 6 microM imazodan), type IV and type V inhibitors did not inhibit hormone-stimulated enzyme activity. This pharmacological evidence demonstrates a necessary role for PDE III in insulin-, IGF-I-, and p21ras-induced meiotic cell division in Xenopus laevis oocytes.  相似文献   

14.
The transduction of the serotonin (5-HT) signal in Fundulus heteroclitusovarian follicles leading to the inhibition of oocyte meiosis reinitiation (oocyte maturation) in vitro induced by the naturally occurring maturation-inducing steroid 17α,20β-dihydroxy-4-pregnen-3-one (17,20βP) was investigated. Steroid-induced oocyte maturation was inhibited by 5-HT in a dose-dependent manner; maximum inhibition (90%) was observed with 10−4 M 5-HT. Groups of follicle-enclosed oocytes were cultured in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) and treated with increasing doses of 5-HT. Serotonin was found to slightly increase the levels of follicular 3′,5′-cyclic adenosine monophosphate (cAMP) in a dose-dependent manner; 10−4 M 5-HT induced approximately a 3-fold increase in cAMP with respect to the controls. The changes in cAMP were then evaluated in follicles treated with 17,20βP in IBMX-free culture media in the presence or absence of 10−4 M 5-HT. The exposure of follicles to 17,20βP alone produced a small and transient reduction in cAMP (40%) within 1–3 hr of steroid stimulation, and these early changes in cAMP appeared associated with a high incidence of germinal vesicle breakdown (80% GVBD) by 24 hr of incubation. Under these conditions, treatment of follicles with 5-HT also increased significantly the production of cAMP, and when 5-HT was combined with 17,20βP, the steroid-mediated reduction in cAMP was prevented and the levels of GVBD inhibited by 95%. Meiosis also was reinitiated with either the protein kinase A (PKA) inhibitor H8 or the protein kinase C (PKC) activator PMA, and the 5-HT inhibitory action on GVBD was found to be 100-fold reduced or completely ineffective, respectively. Preincubation of follicles with the PKC inhibitor GF109203x abolished PMA-induced GVBD in a dose-dependent manner, whereas this inhibitor had no effect on 17,20βP-triggered meiotic maturation, indicating that activation of PKC is apparently sufficient but not necessary to reinitiate meiosis. Taken together, these findings suggest that 5-HT may inhibit 17,20βP-induced meiotic reinitiation through the activation of a cAMP-PKA transduction pathway and that PKC possibly induces oocyte maturation by a different pathway than the steroid and thus is not affected by 5-HT. Mol. Reprod. Dev. 49:333–341, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Cherry JA  Pho V 《Chemical senses》2002,27(7):643-652
To characterize the potential role of cAMP in pheromone transduction, we have examined the occurrence of cyclic nucleotide phosphodiesterases (PDEs) in the mouse vomeronasal organ (VNO). We show that the cAMP-specific isoforms PDE4A and PDE4D are found preferentially in the apical and basal layers, respectively, of the VNO neuroepithelium and in the rostral (PDE4A) and caudal (PDE4D) portions of the accessory olfactory bulb glomerular layer. Assays for cAMP hydrolysis showed that PDE activity in VNO homogenates was about half that measured in the cerebral cortex and olfactory epithelium, and the proportion of total activity inhibited by rolipram, a PDE4-specific inhibitor, was approximately 40%. Activity in the VNO was enhanced 60% by Ca(2+) and calmodulin (CaM), implicating the presence of Ca(2+)/CaM-dependent PDE1. Zaprinast, which is known to inhibit PDE1C isoforms, completely suppressed Ca(2+)/CaM-stimulated activity and, together, zaprinast and rolipram inhibited cAMP hydrolysis by approximately 70%. Our results suggest that PDE1 and PDE4 isoforms are the primary source of cAMP degradation in the VNO.  相似文献   

16.
Mitogen-activated protein (MAP) kinase, protein kinase C (PKC), cAMP, and okadaic acid (OA)-sensitive protein phosphatases (PPs) have been suggested to be involved in oocyte meiotic resumption. However, whether these protein kinases and phosphatases act by independent pathways or interact with each other in regulating meiosis resumption is unknown. In the present study, we aimed to determine the regulation of meiosis resumption and MAP kinase phosphorylation by PKC, cAMP, and OA-sensitive PPs in rat oocytes using an in vitro oocyte maturation system and Western blot analysis. We found that ERK1 and ERK2 isoforms of MAP kinases existed in a dephosphorylated (inactive) form in germinal vesicle breakdown (GVBD)-incompetent and GVBD-competent germinal vesicle intact (GVI) oocytes as well as GVBD oocytes at equivalent levels. These results indicate that MAP kinases are not responsible for the initiation of normal meiotic resumption in rat oocytes. However, when GVBD-incompetent and GVBD-competent oocytes were incubated in vitro for 5 h, MAP kinases were phosphorylated (activated) in GVBD-competent oocytes, but not in meiotic-incompetent oocytes, suggesting that oocytes acquire the ability to phosphorylate MAP kinase during acquisition of meiotic competence. We also found that both meiosis resumption and MAP kinase phosphorylation were inhibited by PKC activation or cAMP elevation. Moreover, these inhibitory effects were overcome by OA, which inhibited PP1/PP2A activities. These results suggest that both cAMP elevation and PKC activation inhibit meiosis resumption and MAP kinase phosphorylation at a step prior to OA-sensitive protein phosphatases. In addition, inhibitory effects of cAMP elevation on meiotic resumption and MAP kinase phosphorylation were not reversed by calphostin C-induced PKC inactivation, indicating that cAMP inhibits both meiotic resumption and MAP kinase activation in a PKC-independent manner.  相似文献   

17.
The potential action of purines, such as hypoxanthine and adenosine, in meiotic arrest was examined using denuded mouse oocytes. The spontaneous meiotic maturation of denuded oocytes was significantly inhibited by hypoxanthine and/or adenosine in a dose-dependent manner. Germinal vesicle breakdown (GVBD) was inhibited even at a low concentration (1 nM) of hypoxanthine, when hypoxanthine was microinjected into the cytoplasm of denuded oocytes. This inhibitory action was potentiated by co-injection with allopurinol, a metabolic blocker of hypoxanthine that can block a metabolic pathway to uric acid. By contrast, a microinjection of adenosine was no longer effective in inhibiting GVBD. Inhibitory action of purines in meiotic maturation was correlated with sustaining intracellular cAMP levels. GVBD was resumed by econazole, one of the nitroimidazole derivatives which act as inhibitors of catalytic subunit of adenylate cyclase. This compound was effective in counteracting the effect of adenosine, but not the action of 3-isobutyl-1-methylxanthine (IBMX) on GVBD, indicating that adenosine is probably exerted at the level of oocyte plasmalemma. These data suggest that the inhibitory action of hypoxanthine and adenosine in oocyte meiotic maturation may be involved in the regulation of cAMP metabolism in a differential manner.  相似文献   

18.
Calcium-dependent signaling pathways are thought to be involved in the regulation of mammalian oocyte meiotic maturation. However, the molecular linkages between the calcium signal and the processes driving meiotic maturation are not clearly defined. The present study was conducted to test the hypothesis that the multi-functional calcium/calmodulin-dependent protein kinase II (CaM KII) functions as one of these key linkers. Mouse oocytes were treated with a pharmacological CaM KII inhibitor, KN-93, or a peptide CaM KII inhibitor, myristoylated AIP, and assessed for the progression of meiosis. Two systems for in vitro oocyte maturation were used: (1) spontaneous gonadotropin-independent maturation and (2) follicle-stimulating hormone (FSH)-induced reversal of hypoxanthine-mediated meiotic arrest. FSH-induced, but not spontaneous germinal vesicle breakdown (GVB) was dose-dependently inhibited by both myristoylated AIP and KN-93, but not its inactive analog, KN-92. However, emission of the first polar body (PB1) was inhibited by myristoylated AIP and KN-93 in both oocyte maturation systems. Oocytes that failed to produce PB1 exhibited normal-appearing metaphase I chromosome congression and spindles indicating that CaM KII inhibitors blocked the metaphase I to anaphase I transition. Similar results were obtained when the oocytes were treated with a calmodulin antagonist, W-7, and matured spontaneously. These results suggest that CaM KII, and hence the calcium signaling pathway, is potentially involved in regulating the meiotic maturation of mouse oocytes. This kinase both participates in gonadotropin-induced resumption of meiosis, as well as promoting the metaphase I to anaphase I transition. Further evidence is therefore, provided of the critical role of calcium-dependent pathways in mammalian oocyte maturation.  相似文献   

19.
Calmodulin (CaM) antagonists, trifluoperazine (TFP) or calmidazolium (R24571), dose-dependently inhibited cAMP and folic acid (FA) chemotaxis in Dictyostelium. Developing, starved, and refed cells were compared to determine if certain CaM-binding proteins (CaMBPs) and CaM-dependent phosphorylation events could be identified as potential downstream effectors. Recombinant CaM ([35S]VU-1-CaM) gel overlays coupled with cell fractionation revealed at least three dozen Ca(2+)-dependent and around 12 Ca(2+)-independent CaMBPs in Dictyostelium. The CaMBPs associated with early development were also found in experimentally starved cells (cAMP chemotaxis), but were different for the CaMBP population linked to growth-phase cells (FA chemotaxis). Probing Western blots with phosphoserine antibodies revealed several phosphoprotein bands that displayed increases when cAMP-responsive cells were treated with TFP. In FA-responsive cells, several but distinct phosphoproteins decreased when treated with TFP. These data show that unique CaMBPs are present in growing, FA-chemosensitive cells vs. starved cAMP-chemoresponsive cells that may be important for mediating CaM-dependent events during chemotaxis.  相似文献   

20.
The maturation of brittle-star (Amphipholis kochii) oocytes, i.e., the reinitiation of meiosis accompanied by germinal vesicle breakdown (GVBD) and the acquisition of fertilizability, was induced by acid (pH 3.0) seawater containing 10 mM cAMP. Oocyte maturation was also induced by seawater of normal pH (pH 8.0) that contained either an inhibitor of cyclic nucleotide phosphodiesterase (25 mM theophylline, 25 mM caffeine) or an activator of adenylate cyclase (100 microM forskolin, 0.6 microM cholera toxin). Experiments in which the oocytes were treated with forskolin or theophylline for various periods of time demonstrated that there was a positive correlation between the oocyte cAMP level measured by radioimmunoassay and the extent of GVBD induced in each treatment: both increased as the treatment period became longer and about a threefold increase in cAMP level induced 50% GVBD. These results indicate that an increase in cAMP level initiates maturation of the brittle-star oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号