首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee BJ  Barch M  Castner EW  Völker J  Breslauer KJ 《Biochemistry》2007,46(38):10756-10766
The triplet repeat sequence (CAG)n and related triplet repeats are associated with dynamic DNA mutations implicated in a number of debilitating human diseases. To gain insight into the dynamics of the (CAG)n repeat, we have substituted a single 2-aminopurine (2AP) fluorescent base for adenine at select positions within the 18 base looped domain of a (GC)3(CAG)6(GC)3 hairpin oligonucleotide. Using temperature-dependent steady-state fluorescence measurements in combination with time correlated photon counting spectroscopy, we show the conformation and dynamics of the C2APG domains to be strongly dependent on the position of the probe in the looped region. In other words, rather than being a uniform, single stranded loop, the (CAG)6 triplet repeat looped domain exhibits order and dynamics that are position dependent. The 2AP fluorescence dynamics within the C2APG repeat are well described by a 4 component exponential decay model, with lifetimes ranging from 5 ps to 4 ns. Differences in global DNA conformation (duplex, hairpin, single strand), as well as the local position of the probe within the loop of a given hairpin, predominantly are reflected in the relative amplitude rather than the lifetime of the probe. The time dependent 2AP anisotropy in the hairpin (CAG)n loops is sensitive to the position of the fluorescent base, with the fluorescence depolarization of a centrally located 2AP probe within the loop proceeding significantly more slowly than 2AP positioned at the 5'- or 3'-end of the repeat sequence near the loop-stem junction. These results are consistent with segmental motions of the CAG repeat, while also suggesting that the 2AP probe is significantly stacked, possibly even hydrogen bonded, within the partially structured CAG looped domain. Our results characterize the position-dependent and conformation-dependent dynamics and order within (CAG)n triplet repeat DNAs, properties of relevance to the biological mechanisms by which such domains can lead to disease states.  相似文献   

2.
Conformational properties of microsatellite DNA regions are the probable reason of their expansions in genomes which lead to serious genetic diseases in some cases. Using CD spectroscopy, UV absorption spectroscopy and polyacrylamide gel electrophoresis, we study in this paper conformational properties of (CGA)(4) and compare them with those of (CAG)(4) - a related repeat, connected with Huntington's disease. We show that (CGA)(4) can adopt several distinct conformations in solution. Around neutral pH it forms a parallel-stranded homoduplex containing C(+).C, G.G, and A.A base pairs. Under the same conditions (CAG)(4) forms a hairpin. At slightly alkaline pH values and low ionic strength, (CGA)(4) also folded into a hairpin which transformed into a bimolecular anti-parallel homoduplex at increasing salt concentrations. The duplex easily isomerized into left-handed Z-DNA, implying that the mismatched adenines between G.C pairs facilitate rather than hinder the B-Z transition. No similar changes took place with (CAG)(4). Thus, the conformational repertoire of (CGA)(4) includes parallel, anti-parallel, right-handed, and left-handed homoduplexes. In contrast, (CAG)(4) invariably adopts only a single conformation, namely the very stable hairpin.  相似文献   

3.
An unusual left end (M-end) has been identified on bacteriophage T7 DNA isolated from T7-infected cells. This end has a "hairpin" structure and is formed at a short inverted repeat sequence centered around nucleotide 39,587 of T7, 190 base-pairs to the left of the site where a mature left end is formed on the T7 concatemer. We do not detect the companion right end that would be formed if the M-end is produced by a double-stranded cut on the T7 concatemer. This suggests that the hairpin left end may be generated from a single-stranded cut in the DNA that is used to prime rightward DNA synthesis. The formation of M-end does not require the products of T7 genes 10, 18 or 19, proteins that are essential for the formation of mature T7 ends. During infection with a T7 gene 3 (endonuclease) mutant, phage DNA synthesis is reduced and the concatemers are not processed into unit length DNA molecules, but both M-end and the mature right end are formed on the concatemer DNA. These two ends are also found associated with the large, rapidly sedimenting concatemers formed during a normal T7 infection while the mature left end is present only on unit length T7 DNA molecules. We propose that DNA replication primed from the hairpin end produced by a nick in the inverted repeat sequence provides a mechanism to duplicate the terminal repeat before DNA packaging. Packaging is initiated with the formation of a mature right end on the branched concatemer and, as the phage head is filled, the T7 gene 3 endonuclease may be required to trim the replication forks from the DNA. Concatemer processing is completed by the removal of the 190 base-pair hairpin end to produce the mature left end.  相似文献   

4.
汉坦病毒是引起肾综合征出血热(HFRS)和汉坦病毒型肺炎综合征(HPS)的主要病原体.其基因组由三节段的单股负链RNA组成,即S、M与L基因片段.汉坦病毒基因组的一个重要特点是每个基因片段的两个末端都有一段长18个核苷酸的高度保守的反向重复序列,互补可形成双链发夹结构,并且这一特点为不同型病毒所共有.为了研究该基因组末端保守的反向重复序列的功能,首先构建了汉坦病毒中国疫苗株Z10(汉滩型)及Z37(汉城型)的核蛋白原核表达载体,并在大肠杆菌中高效表达.经NI-NAT亲和柱和HiPrep16/10 DEAE离子交换柱液相色谱(FPLC)二步提纯,获得高纯度的重组核蛋白,并分别以胰蛋白酶消化后,用Western blotting进行区分和鉴定.以T4 DNA激酶同位素标记一对人工合成互补的18个核苷酸反向重复序列,制备双链探针.然后将该探针与纯化的Z10、Z37株的核蛋白NP进行非变性凝胶电泳迁移改变实验(EMSA)后发现,重组的Z10、Z37株的核蛋白NP,在体外均可特异地结合其基因组末端反向重复序列形成的双链探针.该结果表明,汉坦病毒基因组末端的反向重复序列是核蛋白重要结合位点,这对理解汉坦病毒核蛋白功能以及病毒复制过程中病毒粒子的包装机制有重要的意义.  相似文献   

5.
S H Yoo 《Biochemistry》1992,31(26):6134-6140
Chromogranin A (CGA), the most abundant protein in bovine adrenal chromaffin granules, is a high-capacity, low-affinity Ca(2+)-binding protein found in most neuroendocrine cells, and binds calmodulin (CaM) in a Ca(2+)-dependent manner. The binding of chromogranin A to calmodulin was determined by measuring the intrinsic tryptophan fluorescence of chromogranin A in the presence and absence of Ca2+. Binding was specifically Ca(2+)-dependent; neither Mg2+ nor Mn2+ could substitute for Ca2+. Chelation of Ca2+ by EGTA completely eliminated the chromogranin A-calmodulin interaction. CaM binding was demonstrated by a synthetic CGA peptide representing residues 40-65. When the CGA peptide and CaM were mixed in the presence of 15 mM CaCl2, the intrinsic tryptophan fluorescence emission underwent a substantial blue-shift, shifting from 350 to 330 nm. Like the intact CGA, the peptide-CaM binding was specifically Ca(2+)-dependent, and neither Mg2+ nor Mn2+ could induce the binding. Calmodulin bound both to CGA and to the synthetic CGA peptide with a stoichiometry of one to one. The dissociation constants (Kd) determined by fluorometric titration were 13 nM for the peptide-CaM binding and 17 nM for intact CGA-CaM binding. The Kd values are comparable to those (approximately 10(-9) M) of other CaM-binding proteins and peptides, demonstrating a tight binding of CaM by CGA. The CaM-binding CGA residues 40-65 are 100% conserved among all the sequenced CGAs in contrast to 50-60% conservation found in the entire sequence, implying essential roles of this region.  相似文献   

6.
Unusual expansion of trinucleotide repeats has been identified as a common mechanism of hereditary neurodegenerative diseases. Although the actual mechanism of repeat expansion remains uncertain, trinucleotide repeat instability may be related to the increased stability of an alternative DNA hairpin structure formed in the repeat sequences. Here we report that a synthetic ligand naphthyridine carbamate dimer (NCD) selectively bound to and stabilized an intra-stranded hairpin structure in CGG repeat sequences. The NCD-CGG hairpin complex was a stable structure that efficiently interfered with DNA replication by Taq DNA polymerase. Considering the sequence preference of NCD, the use of NCD would be valuable to investigate the genetic instabilities of CGG/CCG repeat sequences in human genomes.  相似文献   

7.

Introduction

Placental protein 13 (PP13), a placenta specific protein, is reduced in the first trimester of pregnancy in women who subsequently develop preeclampsia. A naturally occurring PP13 deletion of thymidine at position 221 (DelT221 or truncated variant) is associated with increased frequency of severe preeclampsia. In this study we compared the full length (wildtype) PP13 and the truncated variant.

Methods

Full length PP13 or its DelT221 variant were cloned, expressed and purified from E-Coli. Both variants were administrated into pregnant rats at day 8 of pregnancy for slow release (>5 days) through osmotic pumps and rat blood pressure was measured. Animals were sacrificed at day 15 or day 21 and their utero-placental vasculature was examined.

Results

The DelT221 variant (11 kDA) lacked exon 4 and a part of exon 3, and is short of 2 amino acids involved in the carbohydrate (CRD) binding of the wildtype (18 kDA). Unlike the wildtype PP13, purification of DelT221 variant required special refolding. PP13 specific poly- clonal antibodies recognized both PP13 and DelT221 but PP13 specific monoclonal antibodies recognized only the wildtype, indicating the loss of major epitopes. Wildtype PP13 mRNA and its respective proteins were both lower in PE patients compared to normal pregnancies. The DelT221 mutant was not found in a large Caucasian cohort. Pregnant rats exposed to wildtype or DelT221 PP13 variants had significantly lower blood pressure compared to control. The wildtype but not the DelT221 mutant caused extensive vein expansion.

Conclusion

This study revealed the importance of PP13 in regulating blood pressure and expanding the utero-placental vasculature in pregnant rats. PP13 mutant lacking amino acids of the PP13 CRD domain fails to cause vein expansion but did reduce blood pressure. The study provides a basis for replenishing patients at risk for preeclampsia by the full length but not the truncated PP13.  相似文献   

8.
A palindromic hairpin duplex containing the inverted terminal repeat sequence of adeno-associated virus type 2 (AAV) DNA was used as a substrate in gel retardation assays to detect putative proteins that specifically interact with the AAV hairpin DNA structures. Nuclear proteins were detected in extracts prepared from human KB cells coinfected with AAV and adenovirus type 2 that interacted with the hairpin duplex but not in nuclear extracts prepared from uninfected, AAV-infected, or adenovirus type 2-infected KB cells. The binding was specific for the hairpin duplex, since no binding occurred with a double-stranded DNA duplex with the identical nucleotide sequence. Furthermore, in competition experiments, the binding could be reduced with increasing concentrations of the hairpin duplex but not with the double-stranded duplex DNA with the identical nucleotide sequence. S1 nuclease assays revealed that the binding was sensitive to digestion with the enzyme, whereas the protein-bound hairpin duplex was resistant to digestion with S1 nuclease. The nucleotide sequence involved in the protein binding was localized within the inverted terminal repeat of the AAV genome by methylation interference assays. These nuclear proteins may be likely candidates for the pivotal enzyme nickase required for replication or resolution (or both) of single-stranded palindromic hairpin termini of the AAV genome.  相似文献   

9.
AT-rich palindromes mediate the constitutional t(11;22) translocation   总被引:12,自引:0,他引:12       下载免费PDF全文
The constitutional t(11;22) translocation is the only known recurrent non-Robertsonian translocation in humans. Offspring are susceptible to der(22) syndrome, a severe congenital anomaly disorder caused by 3&rcolon;1 meiotic nondisjunction events. We previously localized the t(11;22) translocation breakpoint to a region on 22q11 within a low-copy repeat termed "LCR22" and within an AT-rich repeat on 11q23. The LCR22s are implicated in mediating different rearrangements on 22q11, leading to velocardiofacial syndrome/DiGeorge syndrome and cat-eye syndrome by homologous recombination mechanisms. The LCR22s contain AT-rich repetitive sequences, suggesting that such repeats may mediate the t(11;22) translocation. To determine the molecular basis of the translocation, we cloned and sequenced the t(11;22) breakpoint in the derivative 11 and 22 chromosomes in 13 unrelated carriers, including two de novo cases and der(22) syndrome offspring. We found that, in all cases examined, the reciprocal exchange occurred between similar AT-rich repeats on both chromosomes 11q23 and 22q11. To understand the mechanism, we examined the sequence of the breakpoint intervals in the derivative chromosomes and compared this with the deduced normal chromosomal sequence. A palindromic AT-rich sequence with a near-perfect hairpin could form, by intrastrand base-pairing, on the parental chromosomes. The sequence of the breakpoint junction in both derivatives indicates that the exchange events occurred at the center of symmetry of the palindromes, and this resulted in small, overlapping staggered deletions in this region among the different carriers. On the basis of previous studies performed in diverse organisms, we hypothesize that double-strand breaks may occur in the center of the palindrome, the tip of the putative hairpin, leading to illegitimate recombination events between similar AT-rich sequences on chromosomes 11 and 22, resulting in deletions and loss of the palindrome, which then could stabilize the DNA structure.  相似文献   

10.
Lam SL  Wu F  Yang H  Chi LM 《Nucleic acids research》2011,39(14):6260-6268
CCTG tetranucleotide repeat expansion is associated with a hereditary neurological disease called myotonic dystrophy type 2 (DM2). The underlying reasons that lead to genetic instability and thus repeat expansion during DNA replication remains elusive. Here, we have shown CCTG repeats have a high propensity to form metastable hairpin and dumbbell structures using high-resolution nuclear magnetic resonance (NMR) spectroscopy. When the repeat length is equal to three, a hairpin with a two-residue CT loop is formed. In addition to the hairpin, a dumbbell structure with two CT-loops is formed when the repeat length is equal to four. Nuclear Overhauser effect (NOE) and chemical shift data reveal both the hairpin and dumbbell structures contain a flexible stem comprising a C-bulge and a T·T mismatch. With the aid of single-site mutation samples, NMR results show these peculiar structures undergo dynamic conformational exchange. In addition to the intrinsic flexibility in the stem region of these structures, the exchange process also serves as an origin of genetic instability that leads to repeat expansion during DNA replication. The structural features provide important drug target information for developing therapeutics to inhibit the expansion process and thus the onset of DM2.  相似文献   

11.
A long-range repeat family of more than 50 kb repeat size is clustered in Chromosomes (Chr) 1 of Mus musculus and M. spretus. In M. musculus this long-range repeat family shows considerable variation of copy-number frequency and contains coding regions for at least two genes. In an intron of a gene, which is part of the repeat, a B2 small interspersed repetitive element (SINE) is inserted at identical positions. The B2 element is present in all copies of the long-range repeat family; it was presumably a component of the ancestral single-copy precursor sequence that gave rise by amplification to the repeat family. Copies of the long-range repeat family vary with respect to the number of TAAA tandem repeats in the A-rich 3 end region of the B2 element. As inferred from polymerase chain reaction (PCR) data, presence and frequency of repeat number variants in the (TAAA)n block are strain and species specific. The B2 element and its flanking regions were sequenced from two copies of the long-range repeat family. Sequence divergence between the two copies (only non-CG base substitutions and deletions/insertions) was determined to be 2.6%. Based on the drift rate in human Alu elements and a correction for the higher drift rates in rodents, and estimate for the divergence time of 1.7 million years was calculated. Since the long-range repeat family is present in M. musculus and M. spretus, it must have evolved by amplification before the separation of the two species about 1–4 million years ago.  相似文献   

12.
The etiology of a large class of inherited neurological diseases is founded on hairpin structures adopted by repeated DNA sequences, and this folding is determined by base sequence and DNA context. Using single substitutions of adenine with 2-aminopurine, we show that intrastrand folding in repeated CAG trinucleotides is also determined by the number of repeats. This isomeric analogue has a fluorescence quantum yield that varies strongly with solvent exposure, thereby distinguishing particular DNA motifs. Prior studies demonstrated that (CAG)(8) alone favors a stem-loop hairpin, yet the same sequence adopts an open loop conformation in a three-way junction. This comparison suggests that repeat folding is disrupted by base pairing in the duplex arms and by purine-purine mismatches in the repeat stem. However, these perturbations are overcome in longer CAG repeats, as demonstrated by studies of isolated and integrated forms of (CAG)(15). The oligonucleotide alone forms a symmetrically folded hairpin with looplike properties exhibited by the relatively high emission intensities from a modification in the central eighth repeat and with stemlike properties evident from the relatively low emission intensities from peripheral modifications. Significantly, these hairpin properties are retained when (CAG)(15) is integrated into a duplex. Intrastrand folding by (CAG)(15) in the three-way junction contrasts with the open loop adopted by (CAG)(8) in the analogous context. This distinction suggests that cooperative interactions in longer repeat tracts overwhelm perturbations to reassert the natural folding propensity. Given that anomalously long repeats are the genetic basis of a large class of inherited neurological diseases, studies with (CAG)-based three-way junctions suggest that their secondary structure is a key factor in the length-dependent manifestation and progression of such diseases.  相似文献   

13.
The antioxidant activity of several plant catechol derivatives was tested in buffer, plasma, and human erythrocytes. In buffer, chlorogenic acid (CGA), caffeic acid (CA), and dihydrocaffeic acid (DCA) reduced ferric iron equally well in the ferric reducing antioxidant power (FRAP) assay. Low concentrations of the polyphenols enhanced the ability of plasma to reduce ferric iron by about 10%. In plasma, lipid hydroperoxide and F2-isoprostane formation induced by a water-soluble free radical initiator were reduced by CGA at concentrations as low as 20 M. During incubation at 37°C, human erythrocytes took up DCA, but not CGA, and intracellular DCA enhanced the ability of erythrocytes to reduce extracellular ferricyanide. When intact erythrocytes were exposed to oxidant stress generated by liposomes containing small amounts of lipid hydroperoxides, extracellular CGA at a concentration of 5 M decreased both lipid peroxidation in the liposomes, and spared -tocopherol in erythrocyte membranes. These results suggest that the catechol structure of these compounds convey the antioxidant effect in plasma and in erythrocytes.  相似文献   

14.
The terminal hairpin sequences of the linear double-stranded DNA genome of the leporipoxvirus Shope fibroma virus (SFV) has been cloned in Saccharomyces cerevisiae and in recombination-deficient Escherichia coli as a palindromic insert within circular plasmid vectors. This sequence configuration is equivalent to the inverted repeat structure detected as a telomeric replicative intermediate during poxvirus replication in vivo. Previously, it has been shown that when circular plasmids containing this palindromic insert were transfected into SFV-infected cells, efficient replication and resolution generated linear minichromosomes with bona fide viral hairpin termini (A. M. DeLange, M. Reddy, D. Scraba, C. Upton, and G. McFadden, J. Virol. 59:249-259, 1986). To localize the minimal target DNA sequence required for efficient resolution, a series of staggered unidirectional deletions were constructed at both ends of the inverted repeat. Analyses of the resolution efficiencies of the various clones indicate that up to 240 base pairs (bp) centered at the symmetry axis were required for maximal resolution to minichromosomes. To investigate the role of the AT-rich central axis sequences, which in SFV include 8 nonpalindromic bp, a unique AflII site at the symmetry axis was exploited. Bidirectional deletions extending from this AflII site and insertions of synthetic oligonucleotides into one of the deletion derivatives were constructed and tested in vivo. The efficiency with which these plasmids resolved to linear minichromosomes with hairpin termini has enabled us to define the minimal target DNA sequence as two inverted copies of an identical DNA sequence between 58 and 76 bp in length. The nonpalindromic nucleotides, which, after resolution, constitute the extrahelical residues characteristic of native poxviral telomeres, were not required for resolution. The close resemblance of the SFV core target sequence to the analogous region from the orthopoxvirus vaccinia virus is consistent with a conserved mechanism for poxviral telomere resolution.  相似文献   

15.
Jung YC  Xu D  Chung YS  Côté JC 《Plasmid》2001,45(2):114-121
An insertion sequence was isolated from an autoagglutinable strain of Bacillus thuringiensis. Analysis of its DNA sequence revealed high homology to the IS231 family. The name IS231M is proposed for this new insertion sequence. IS231M is 1652 bp long and is delimited by two imperfect 20-bp inverted repeat sequences with two mismatches, which are flanked by two perfect 11-bp direct repeats (DRs). The region upstream of the open reading frame, presumed to be able to form a stable hairpin structure, is particularly well conserved in IS231M. Based on primary nucleotide sequences, IS231M is most homologous to IS231F and IS231G and most distant from IS231V and IS231W. However, as opposed to the single transposase A ORF found in IS231A, -B, -C, -D, -F, and -G, IS231M has two overlapping open reading frames, ORF1 and ORF2, that could code for polypeptides of 334 and 143 amino acids, respectively. Whether IS231M is a functional transposable element remains to be determined.  相似文献   

16.
Evidence for transposition of dispersed repetitive DNA families in yeast.   总被引:149,自引:0,他引:149  
J R Cameron  E Y Loh  R W Davis 《Cell》1979,16(4):739-751
Dispersed repetitive DNA sequences from yeast (Saccharomyces cerevisiae) nuclear DNA have been isolated as molecular hybrids in lambdagt. Related S. cerevisiae strains show marked alterations in the size of the restriction fragments containing these repetitive DNAs. "Ty1" is one such family of repeated sequences in yeast and consists of a 5.6 kilobase (kb) sequence including a noninverted 0.25 kb sequence of another repetitious family, "delta", on each end. There are about 35 copies of Ty1 and at least 100 copies of delta (not always associated with Ty1) in the haploid genome. A few Ty1 elements are tandem and/or circular, but most are disperse and show (along with delta) some sequence divergence between repeat units. Sequence alterations involving Ty1 elements have been found during the continual propagation of a single yeast clone over the course of a month. One region with a large number of delta sequences (SUP4) also shows a high frequency of sequence alterations when different strains are compared. One of the differences between two such strains involves the presence or absence of a Ty1 element. The novel joint is at one inverted pair of delta sequences.  相似文献   

17.
Chromogranin A (CGA) is a major secretory protein present in the soluble matrix of chromaffin granules of neuroendocrine cells and tumours, such as phaeochromocytomas. CGA has several functions, some of which may be involved in the distinct phenotypic differences of phaeochromocytomas in patients with von Hippel-Lindau (VHL) syndrome compared to multiple endocrine neoplasia type 2 (MEN 2). In this study, we therefore compared tumour and plasma levels of CGA in patients with phaeochromocytoma associated with the two syndromes. We show that phaeochromocytomas from MEN 2 patients express substantially more CGA than tumours from VHL patients at both the mRNA (3-fold greater) and protein (20-fold) level. We further show that relative to increases in plasma catecholamines, patients with phaeochromocytomas associated with MEN 2 have higher plasma concentrations of CGA than those with tumours in VHL syndrome. These data supplement other observations that phaeochromocytomas in VHL compared to MEN 2 patients express lower amounts of catecholamines and other chromaffin granule cargo, such as chromogranin B and neuropeptide Y. Possibly the differences in tumour CGA expression may contribute to differences in secretory vesicle formation and secretion in the two types of tumours. Alternatively the differences in expression in CGA and other secretory constituents may reflect downregulation of the entire regulated secretory pathway in VHL compared to MEN 2 tumours.  相似文献   

18.
Trinucleotide repeats associated with human disease.   总被引:16,自引:4,他引:12       下载免费PDF全文
M Mitas 《Nucleic acids research》1997,25(12):2245-2254
Triplet repeat expansion diseases (TREDs) are characterized by the coincidence of disease manifestation with amplification of d(CAG. CTG), d(CGG.CCG) or d(GAA.TTC) repeats contained within specific genes. Amplification of triplet repeats continues in offspring of affected individuals, which generally results in progressive severity of the disease and/or an earlier age of onset, phenomena clinically referred to as 'anticipation'. Recent biophysical and biochemical studies reveal that five of the six [d(CGG)n, d(CCG)n, (CAG)n, d(CTG)n and d(GAA)n] complementary sequences that are associated with human disease form stable hairpin structures. Although the triplet repeat sequences d(GAC)n and d(GTC)n also form hairpins, repeats of the double-stranded forms of these sequences are conspicuously absent from DNA sequence databases and are not anticipated to be associated with human disease. With the exception of d(GAG)n and d(GTG)n, the remaining triplet repeat sequences are unlikely to form hairpin structures at physiological salt and temperature. The details of hairpin structures containing trinucleotide repeats are summarized and discussed with respect to potential mechanisms of triplet repeat expansion and d(CGG.CCG) n methylation/demethylation.  相似文献   

19.
Trinucleotide repeat expansions are the mutational cause of at least 15 genetic diseases. In vitro, single-stranded triplet repeat DNA forms highly stable hairpins, depending on repeat sequence, and a strong correlation exists between hairpin-forming ability and the risk of expansion in vivo. Hairpins are viewed, therefore, as likely mutagenic precursors to expansions. If a helicase unwinds the hairpin, it would be less likely to expand. Previous work indicated that yeast Srs2 DNA helicase selectively blocks expansions in vivo (Bhattacharyya, S., and Lahue, R. S. (2004) Mol. Cell. Biol. 24, 7324-7330). For example, srs2 mutants, including an ATPase-defective point mutant, exhibit substantially higher expansion rates than wild type controls. In contrast, mutation of another helicase gene, SGS1, had little effect on expansion rates. These findings prompted the idea that Srs2 might selectively unwind triplet repeat hairpins. In this study, DNA helicase assays were performed with purified Srs2, Sgs1, and Escherichia coli UvrD (DNA helicase II). Srs2 shows substantially faster unwinding than Sgs1 or UvrD on partial duplex substrates containing (CTG) x (CTG) sequences, provided that Srs2 encounters the triplet repeat DNA immediately on entering the duplex. Srs2 was also faster at unwinding (CAG) x (CAG)- and (CCG) x (CCG)-containing substrates and an intramolecular (CTG) x (CTG) hairpin. In contrast, all three enzymes unwind about equally well control substrates with either Watson-Crick base pairs or mismatched substrates with non-CNG repeats. Overall, the selective unwinding activity of Srs2 on triplet repeat hairpin DNA helps explain the genetic evidence that Srs2, not the RecQ homolog Sgs1, is a preferred helicase for preventing expansions.  相似文献   

20.
Millimolar concentrations of chlorogenic acid (CGA) showed higher cytotoxic activity against human oral squamous cell carcinoma (HSC-2) and salivary gland tumor (HSG) cell lines, as compared with that against human gingival fibroblast (HGF). The cytotoxic activity of CGA was significantly reduced by catalase or CoCl2, but not affected by FeCl3 or CuCl2. ESR spectroscopy showed that higher (millimolar) concentrations of CGA produced radicals under alkaline conditions, acting as a prooxidant, whereas lower concentrations of CGA scavenged superoxide and hydroxyl radical. CGA produced large DNA fragments (as identified by slightly faster migrating band of DNA on agarose gel electrophoresis) and nuclear condensation (as demonstrated by Hoechst (No. 33258) staining) in tumor cell lines. Activation of caspase was demonstrated by staining with M30 monoclonal antibody, which reacts with degradation products of cytokeratin 18. Contact with CGA for at least 6 h was necessary for irreversible cytotoxicity induction. Pretreatment of the cells with caspase 3 inhibitor partially inhibited the cytotoxic action of CGA. These date suggest that CGA induces cytotoxicity in oral tumor cell lines, possibly by hydrogen peroxide-mediated oxidation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号