首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A peptide that strongly stimulates juvenile hormone (JH) biosynthesis in vitro by the corpora allata (CA) was purified from methanolic brain extracts of adult Spodoptera frugiperda. Using HPLC separation followed by Edman degradation and mass spectrometry, the peptide was identified as Manduca sexta allatotropin (Mas-AT). Treating the CA from adult S. frugiperda with synthetic Mas-AT (at 10(-6) M) caused an up to sevenfold increase in JH biosynthesis. The stimulation of JH synthesis was dose-dependent and reversible. Synthetic M. sexta allatostatin (Mas-AS) (10(-6) M) did not affect the spontaneous rate of JH secretion from CA of adult S. frugiperda, nor did any of the allatostatins of the Phe-Gly-Leu-amide peptide family tested. However, when CA had been activated by Mas-AT (10(-6) M), addition of synthetic Mas-AS (10(-6) M) reduced JH synthesis by about 70%. This allatostatic effect of Mas-AS on allatotropin-activated glands was also reversible. When CA were incubated in the presence of both Mas-AT (10(-6) M) and various concentrations of Mas-AS (from 10(-8) to 10(-5) M), the stimulation of JH-biosynthesis observed was inhibited in a dose-dependent manner. The experiments demonstrate a novel mechanism of allatostatin action. In S. frugiperda JH synthesis was inhibited only in those glands which had previously been activated by an allatotropin.  相似文献   

2.
In the sphinghid moth Manduca sexta, two allatoactive neuropeptides appear to be responsible for regulating juvenile hormone (JH) production by the corpora allata (CA). These peptides (M. sexta allatostatin, Mas-AS, and M. sexta allatotropin, Mas-AT) respectively inhibit and stimulate in vitro JH biosynthesis by CA in this insect. However, although Mas-AS inhibits CA in both larval and adult insects, Mas-AT is active only in adult M. sexta. The situation in other lepidopteran species is less clear-cut and, although both peptides have been detected (usually by immunologic and/or molecular techniques) in several other moths (including noctuids), their function as regulators of JH production remains uncertain. In the tomato moth Lacanobia oleracea (Lepidoptera: Noctuidae), we have previously demonstrated the occurrence of Mas-AS and/or Mas-AT in extracts of CA, brain and other organs, and have shown that both peptides are present in larval and adult forms. However, in L. oleracea, although Mas-AS inhibits larval and adult CA in vitro, it does so only at relatively high concentrations, and to a maximum of only approximately 70%. By contrast, Mas-AT (which is also present in larval and adult L. oleracea) stimulates larval and adult CA, but is substantially more potent ( approximately 100 fold) than the allatostatin. In this paper we present the results of paired, concurrent measurements (using ELISA) of levels of Mas-AS and Mas-AT in brains, CA and hemolymph (plasma and hemocytes) of L. oleracea at times when there are marked changes in JH titers. We also present data on the in vitro rates of JH biosynthesis by isolated CA, and on hemolymph JH esterase activity measured at the same critical developmental times, and discuss all of these data in relation to the putative allatoregulatory roles of the M. sexta allatotropic and allatostatic neuropeptides in L. oleracea.  相似文献   

3.
The major juvenile hormone (JH) homolog synthesized in vitro by the adult female Medfly (Ceratitis capitata) corpus allatum (CA) is JHB(3), with JH-III the minor homolog. Methyl-incorporation in vitro in post-eclosion virgin females is age-dependent. Basal activity occurs during the first four days post-eclosion and increases significantly thereafter, peaking at five days. Biosynthetic maturation of the mated female CA is delayed by one day and reduced considerably. The delayed response may be due to direct cerebral or neural inhibition. Synthetic Drosophila melanogaster sex peptide depresses JH biosynthesis by the Medfly female CA in vitro. Male-derived accessory gland peptides of the Medfly are transferred to the female during mating and a Medfly SP-analog may be responsible for down-regulation of JH synthesis by the CA in mated Medfly females. Mevinolin, an inhibitor of the mevalonate pathway, significantly reduces the biosynthesis of JHB(3), while farnesoic acid, a proximate precursor of JHIII, significantly stimulates the biosynthesis of both JHB(3) and JHIII in vitro.  相似文献   

4.
At eclosion, the ovaries of female Corn earworm Heliothis zea do not contain mature eggs. Virgin-unfed females produced approximately 400 mature eggs in 8 days; mating or feeding doubled this number, and mating plus feeding more than tripled it. Females allatectomized or decapitated at day O matured few eggs. Egg production was restored by implantation of active corpora allata (CA) or by treatment with the juvenile hormone (JH) analogue methoprene at day 0. 20-Hydroxyecdysone, on the other hand, had no effect. Females in which the CA had been denervated or in which the median neurosecretory cells of the brain had been ablated at day O produced fewer eggs than sham-operated animals. These results indicate that egg maturation is controlled by JH and that continuous input from the brain is required for sustained CA activity for maintaining a high rates of egg maturation.The rate of JH biosynthesis by CA in vitro was determined with a radiochemical assay. The major hormones produced were JH-II and JH-III with small quantities of JH-I. The rates of JH synthesis were similar in all experimental groups which may indicate that the in vitro rate of JH synthesis does not reflect the actual state of CA activity in the female.  相似文献   

5.
Abstract. Juvenile Hormone III (JH-III) production by corpora allata (CA) of sexually mature female locusts (Locusta migratoria migratorioides (R. & F.)) was maintained in vitro for up to 30 days in an agar-solidified medium. Hormone production was measured periodically with a short-term radiochemical assay. Low-activity CA increased their activity significantly after 24–48 h incubation in the long-term medium, but high-activity glands did not. Variations in activity were considerable among glands tested on the same day and among measurements from the same gland on different days. Farnesoic acid-stimulated rates of JH-III production were always higher than the basal rates, suggesting that the CA were not maximally activated. However, freshly excised low-activity CA, whose hormone production increased in the long-term conditions, showed similar farnesoic acid-stimulated rates of JH-III production to those of freshly excised high-activity glands, suggesting that at the time of excision of the corpora allata rate-limiting step(s) preceding farnesoic acid biosynthesis were inhibited or refractory to stimulation in vivo.  相似文献   

6.
Gas chromatographic-mass spectral analysis of extracts obtained from in vitro culture of isolated retrocerebral complexes obtained from adult females of the moth Heliothis virescens resulted in identification of methyl farnesoate as well as juvenile hormone III (JH III) but not JH III acid. Inhibition of JH biosynthesis by incubation of tissue in synthetic Manduca sexta allatostatin (Manse-AST, pGlu-Val-Arg-Phe-Arg-Gln-Cys-Tyr-Phe-Asn-Pro-Ile-Ser-Cys-Phe-COOH) reduced production of these chemicals to negligible levels. However, incubation of tissue in the presence of Manse-AST plus farnesol resulted in production of significant amounts of both methyl farnesoate and JH III. Tissue incubated in the presence of Manse-AST plus methyl farnesoate produced only JH III. The results indicated that methyl farnesoate is naturally produced by the corpora allata of adult females of Heliothis virescens. However, tissue incubated in the presence of Manse-AST plus JH III acid also produced JH III in amounts equivalent to that produced by tissue incubated with methyl farnesoate. Thus, both methyl farnesoate and JH III acid could serve as a precursor for biosynthesis of JH III.  相似文献   

7.
Juvenile hormone (JH) biosynthesis and the effects of synthetic Manduca sexta allatostatin (Mas-AS) and M. sexta allatotropin (Mas-AT) were investigated in isolated corpora allata (CA) of Vth stadium larvae of the tomato moth, Lacanobia oleracea. Reversed-phase high-performance liquid chromatography (RP-HPLC) of JH extracted from CA shows that larvae produce predominantly JH II and its corresponding acid. It appears that the acid homologue is a result of JH esterase activity in the CA (and other tissues) rather than the lack of JH acid methyltransferase. Mean rates of synthesis (100-200fmol/pr/h) were inhibited ca. 70% by Mas-AS and stimulated in a dose-dependent manner up to three times by Mas-AT. However, Mas-AS had no significant effect on Mas-AT-stimulated rates of JH biosynthesis. Using RP-HPLC and an enzyme-linked immunosorbent assay (ELISA) to Mas-AT, a peak of Mas-AT-like immunoreactivity was detected in larval L. oleracea brain homogenates. Co-elution of this immunoreactive peak with synthetic Mas-AT suggests that this neuropeptide is also present in L. oleracea.  相似文献   

8.
Abstract. The regulation of Juvenile Hormone (JH) HI biosynthesis and release by the corpora allata (CA) was studied in final instar male and female larvae of the earwig, Euborellia annulipes , using a radiochemical assay in vitro. In males, maximal biosyntiiesis of JH IH occurred on day 1, then declined to virtually undetectable levels for the following 12 days of the stadium, and finally increased on days 14–16. In females, peaks of biosynthesis were detected on days 0–1 and on day 12. A further investigation of the 12-day-old larvae demonstrated mat in nonmoulting males and females, JH UJ biosynthesis was undetectable. However, for males and females undergoing ecdysis, the biosynthesis of JH III was detected and quantified.
The addition of 60 μM farnesoic acid to the incubation medium significantly increased the production of JH III by CA taken from females from day 8 until the end of the stadium. Glands from 12-day old females that had initiated ecdysis were stimulated by farnesoic acid. By contrast, we could detect no stimulation of production of JH III by farnesoic acid in CA taken from males, even very late in the stadium. CA from newly emerged adult males and females were more active than those of larvae, and were greatly stimulated by farnesoic acid. CA from females immediately after emergence were stimulated significantly more by farnesoic acid man were glands from newly emerged males. These results suggest fundamental differences in the synmetic activity of CA for males and females in this insect.  相似文献   

9.
10.
Sex peptide (SP) and Ductus ejaculatorius peptide (Dup) 99B are synthesized in the retrogonadal complex of adult male Drosophila melanogaster, and are transferred in the male seminal fluid to the female genital tract during mating. They have been sequenced and shown to exhibit a high degree of homology in the C-terminal region. Both affect subsequent mating and oviposition by female D. melanogaster. SP also increases in vitro juvenile hormone (JH) biosynthesis in excised corpora allata (CA) of D. melanogaster and Helicoverpa armigera. We herein report that the partial C-terminal peptides SP(8-36) and SP(21-36) of D. melanogaster, and the truncated N-terminal SP(6-20) do not stimulate JH biosynthesis in vitro in CA of both species. Both of these C-terminal peptides reduce JH-III biosynthesis significantly. Dup99B, with no appreciable homology to SP in the N-terminal region, similarly lacks an effect on JH production by H. armigera CA. In contrast, the N-terminal peptides - SP(1-11) and SP(1-22) - do significantly activate JH biosynthesis of both species in vitro. We conclude that the first five N-terminal amino acid residues at the least, are essential for allatal stimulation in these disparate insect species. We have previously shown that the full-length SP(1-36) depresses pheromone biosynthesis in H. armigera in vivo and in vitro. We now show that full-length Dup99B and the C-terminal partial sequence SP(8-36) at low concentrations strongly depress (in the range of 90% inhibition) PBAN-stimulated pheromone biosynthesis of H. armigera. In addition, the N-terminal peptide SP(1-22), the shorter N-terminal peptide SP(1-11) and the truncated N-terminal SP(6-20) strongly inhibit pheromone biosynthesis at higher concentrations.  相似文献   

11.
We report on juvenile hormone (JH) biosynthesis from long‐chain intermediates by specific reproductive tissues and the corpora allata (CA) prepared from adult longhorned beetles, Apriona germari. The testes, male accessory glands (MAGs), ovaries, and CA contained the long‐chain intermediates in the JH biosynthetic pathway, farnesoic acid (FA), methyl farnesoate (MF), and JH III. The testes and ovaries, but not CA, produced radioactive JH III after the addition of 3H‐methionine and, separately, unlabeled methionine, to the incubation medium. We inferred that endogenous FA is methylated to MF in the testes and ovaries. Addition of farnesol led to increased amounts of FA in the testes, MAGs, ovaries, and CA, indicating oxidation of farnesol to FA. Addition of FA to incubation medium yielded increased JH III, again indicating methylation of FA to MF in the testes, MAGs, ovaries, but not CA. Addition of MF to incubation medium also led to JH III, from which we inferred the epoxidation of MF to JH III. JH biosynthesis from farnesol in the testes, MAGs, and ovaries of A. germari proceeds via oxidation to FA, methylation to MF, and epoxidation to JH III. This is a well‐known pathway to JH III, described here for the first time in reproductive tissues of longhorned beetles. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
1-Citronellyl-5-phenyl imidazole (1,5-CPI), 1-citronellyl-4-phenyl imidazole (1,4-CPI) and 1-citronellyl-2-phenyl imidazole (1,2-CPI) were tested as inhibitors of JH-III biosynthesis in vitro. 1,5-CPI was found to be most active followed by 1,2-CPI. The least active isomer was 1,4-CPI. Inhibition of JH biosynthesis by 1,5-CPI resulted in no significant accumulation of the epoxidation substrate methyl farnesoate, and piperonyl butoxide, a known microsomal epoxidase inhibitor, produced only a slight increase in methyl farnesoate. Topical application of fluoromevalonolactone resulted in reduced biosynthetic capability of subsequently excised corpora allata.  相似文献   

13.
《Insect Biochemistry》1987,17(7):1115-1118
The effects of the juvenile hormone (JH) analogue fenoxycarb (ethyl[2-(4-phenoxyphenoxy)-ethyl]carbamate) on the activity of corpora allata (CA) from adult female Periplaneta americana have been investigated. The in vitro biosynthesis of JH III by isolated CA was inhibited by about 85% in the presence of a high concentration (1 × 10−4 M) of fenoxycarb. However, at lower concentrations (1 × 10−6 M and 1 × 10−8 M) no inhibition of JH biosynthesis was apparent. Topical treatment of adult female cockroaches with fenoxycarb (100 μg/insect) did not reduce the subsequent rate of JH III biosynthesis by CA in vitro. By contrast, the same treatment markedly reduced the titre of endogenous JH III in intact cockroaches. These results suggest that CA activity in adult female P. americana may be controlled by negative feedback, and that this system of control is dependent on the maintenance of contact between the CA and nervous or humoral factors in the intact insect. Alternatively, it is possible that treatment with fenoxycarb increases the rate at which endogenous JH is metabolized.  相似文献   

14.
Stay B  Zhang JR  Tobe SS 《Peptides》2002,23(11):1981-1990
Corpora allata (CA) of embryos of Diploptera punctata have been previously shown to produce JH III. We have re-examined sesquiterpenoid biosynthesis throughout embryonic development and have found that early embryos produce both methyl farnesoate (MF) and JH III; as development proceeds, less MF and more JH is produced. The cockroach allatostatin peptide Dippu-allatostatin (AST) 7 inhibits sesquiterpenoid production by CA of mid to late embryos whereas it exerts a dose-dependent stimulatory effect in early embryos. This stimulatory effect is particularly apparent on MF biosynthesis. CA become innervated by allatostatin-containing nerves in early embryos (35% development). Shortly thereafter, the allatostatin-containing innervation of the CA appears complete.  相似文献   

15.
Peptidergic innervation of the corpus cardiacum/corpus allatum (CC/CA) retrocerebral complex, and neurosecretory areas of the brain of the lepidopterans Lacanobia oleracea, Heliothis virescens and Manduca sexta was studied by immunocytochemistry linked to confocal laser scanning microscopy. The patterns of immunostaining resulting from the simultaneous application of fluorochrome-conjugated antibodies against Manduca sexta allatostatin (Mas-AS), M. sexta allatotropin (Mas-AT), and a representative of the –Y/FXFGL-NH2 superfamily of allatostatins was correlated with the physiological effects of these putative allatoregulatory peptides on juvenile hormone (JH) biosynthesis by the corpora allata. Whereas the two types of allatostatin immunoreactivity are present in both larval and adult CA of the three species, allatotropin immunoreactivity occurs only in the adult gland. The conclusion that withdrawal of the stimulatory effect of allatotropin is unlikely to be involved in the downregulation of CA activity prior to the onset of metamorphosis, but that an inhibitory influence of at least Mas-AS is important, is borne out in physiological experiments on JH biosynthesis in M. sexta larvae (Mas-AS inhibitory, Mas-AT without effect). Immunoreactivity to the Y/FXFGL-NH2 allatostatins is present in both larval and adult CA and CC, frequently co-localised with Mas-AS. The function of this peptide family in the retrocerebral complex remains enigmatic since experiments on JH biosynthesis, either when the peptide is administered alone, or together with Mas-AS, show no effect on JH biosynthesis.Financial support was provided by The Wellcome Trust (063367/Z/00) (to A.T.) and by the Pesticide Safety Directorate of the Department for Environment, Food and Rural Affairs (to N.A. and R.J.W.)  相似文献   

16.
We investigated the effect of fifteen 1,5-disubstituted imidazoles (1,5-dis) on juvenile hormone III (JH III) and methyl farnesoate (MF) biosynthesis by the corpora allata (CA) of the mosquito Aedes aegypti in vitro. Four compounds (TH-35, TH-83, TH-62 and TH-28) significantly decreased JH biosynthesis in the CA dissected from 3-day old sugar-fed females. The decrease of JH synthesis was not always associated with increased MF. TH-30 and TH-83 increased MF levels, while TH-85 and TH-61 significantly decreased MF levels. Five compounds (TH-26, TH-60, TH-83, TH-35 and TH-30) significantly inhibited JH biosynthesis in the CA dissected from females 15 h after a blood meal. Four 1,5-dis (TH-30, TH-26, TH-28 and TH-66) caused MF increases in CA from blood-fed females. 1,5-Disubstituted imidazoles had higher inhibitory activity on JH synthesis when substituted at position 5 by a 3-benzyloxyphenyl group and at position 1 by a benzyl group (such as TH-35). Inhibition of JH and MF biosynthesis by TH-35 was age-dependent and influenced by nutritional status; inhibition differed when evaluated in the CA dissected from sugar-fed females at different days after emergence and in the CA dissected from females at different hours after a blood meal. Inhibition was always higher when the CA was more active. The addition of TH-35 significantly reduced the stimulatory effect of Aedes-allatotropin and farnesoic acid on JH synthesis. This is the first report of an inhibitory effect of 1,5-disubstituted imidazoles on JH synthesis in Diptera.  相似文献   

17.
It now appears that arthropods produce and release a wider variety of juvenile hormones (JH) and related compounds than previously thought. For instance, in the adult crayfish, Procambarus clarkii, the mandibular organs, the homologous structure to insect corpora allata (CA), release both farnesoic acid (FA) and methyl farnesoate (MF), the immediate precursors of JH III, but not JH III itself. In larvae of the cockroach Diploptera punctata, JH III production ceases during the last half of the 4th stadium, but the CA continue to produce and release FA throughout this period. The embryos of the same species also release JH III and a product that coelutes with MF on HPLC. In adult blowfly, Calliphora vomitoria, the CA release JH III bisepoxide and possibly the 6,7-epoxide, in addition to JH III. In the lepidopteran species Pseudaletia unipuncta, male CA produce and release JH acids I, II, and III as well as a product which we have tentatively identified as homo-(and/or) dihomo-FA. In the females, CA produce and release the three common JH homologues and a product that we believe is the esterified version of the male compound, homo/dihomo-MF. Although the release of JH precursors from their sites of synthesis might result in their conversion to the active hormone in peripheral tissues, there is only limited evidence for such a process. Studies on biological activities of these compounds and on the developmental changes in biosynthesis and its regulation should provide information necessary for the defining of these compounds as hormones or otherwise and should improve our understanding of the evolution of the JH biosynthetic pathway in the phylum Arthropoda.  相似文献   

18.
Studies were undertaken to determine whether adult males of Heliothis virescens transfer juvenile hormone (JH) to females during copulation, and an in vitro radiochemical assay was used to determine whether mating causes an allatotropic effect, i.e., stimulation of JH biosynthesis by corpora allata (CA). In vitro, CA from 3-day-old mated females synthesized and released approximately 2.5 times total JH as that of CA from comparably aged virgin females. Of the homologues, JH II exhibited significant increase in mated females; JH I also increased but not significantly. JH III remained similar to that of virgin females. This is the first demonstration of an allatotropic effect of mating in moths. In contrast to the female, CA of virgin males did not produce any JH, but accessory sex glands (ASG) in 3-day-old males synthesized small amounts of JH. Immediately after adult emergence, male ASG contained approximately 1.5 ng JH I and II, which increased by 12 h after emergence and remained at this high level up to 54 h after emergence. JH III was barely detected in ASG. JH in ASG of mated male immediately after uncoupling was depleted almost completely, and 24 h later recovered to levels comparable to that of 54-h-old virgin male. Virgin female bursa copulatrix did not contain any JH, but mated female bursa, immediately after uncoupling, had JH at levels comparable to that observed in virgin male ASG. By 6 h after uncoupling, JH levels decreased dramatically in mated female bursa. These data suggest the transfer of JH to females by the male. Arch. Insect Biochem. Physiol. 38:100–107, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
《Insect Biochemistry》1987,17(1):179-187
The role of calcium in the modulation of juvenile hormone (JH) biosynthesis and release by the corpora allata (CA) of Diploptera punctata was examined using an in vitro radiochemical assay. JH production showed a dose dependence on extracellular calcium in the incubation medium. Rates of JH release were maximal between calcium concentrations of 3–5 mM and were almost totally inhibited in its absence. Upon return to medium containing 5 mM calcium, CA exhibited a rapid increase in JH release, although rates of release remained slightly below normal.Blockers of voltage-dependent calcium channels (verapamil, nifedipine), at physiological doses, were able to modulate JH production whereas non-specific calcium channel blockers such as lanthanum effectively inhibited JH release. The calcium ionophore A23187 caused a rapid and irreversible decline in JH release. The calcium dose-response for A23187 showed 50% inhibition of JH release at about 1 mM calcium and maximal inhibition (93%) at 6 mM calcium. Treatment with lanthanum or A23187 did not result in an accumulation within the CA of either JH or methyl farnesoate and accordingly, these compounds appeared to reduce overall JH biosynthesis rather than inhibiting release. Inhibition of JH release by A23187 was dramatically attenuated by coincubation with cobalt, although cobalt alone was found to stimulate JH release significantly. Intracellular calcium levels thus appear to be important in the regulation of JH biosynthesis and release.  相似文献   

20.
Five neuropeptides with known allatotropic or allatostatic activity in other insect species were examined for their effects on honey bee corpora allata. Using an in vitro radiochemical assay, we assessed the ability of these peptides to affect the biosynthesis of juvenile hormone III and its immediate precursor methyl farnesoate, as well as their effects on the conversion of methyl farnesoate into juvenile hormone. None of the allatostatins tested affected JH biosynthesis during the last larval instar of honey bee workers. Manduca sexta allatotropin, however, stimulated JH biosynthesis in a stage-specific and dose-dependent manner. Analysis of intraglandular contents of juvenile hormone and its precursor revealed that the allatotropin significantly increased JH precursor but did not overcome the stage-specific block in the terminal step of JH biosynthesis that is typical for early fifth-instar worker larvae. Studies also indicated that the allatotropic effect was reversible at the level of methyl farnesoate production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号