首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The lactose permease of Escherichia coli was expressed in two fragments (split permease), each with a Cys residue, and cross-linking was studied. Split permease with a discontinuity in either loop II/III (N2C10permease) or loop VI/VII (N6C6permease) was used. Proximity of multiple pairs of Cys residues in helices I and XI or XII was examined by using three homobifunctional thiol-specific cross-linking reagents of different lengths and flexibilities (6 A, rigid; 10 A, rigid; 16 A, flexible) or iodine. Cys residues in the periplasmic half of helix I cross-link to Cys residues in the periplasmic half of helix XI. In contrast, no cross-linking is evident with paired Cys residues near the cytoplasmic ends of helices I and XI. Therefore, the periplasmic halves of helices I and XI are in close proximity, and the helices tilt away from each other towards the cytoplasmic face of the membrane. Cross-linking is also found with paired Cys residues near the middle of helices I and XII, but not with paired Cys residues near either end of the helices. Thus, helices I and XII are in close proximity only in the approximate middle of the membrane. Based on the findings, a modified helix packing model is proposed.  相似文献   

2.
Venkatesan P  Hu Y  Kaback HR 《Biochemistry》2000,39(35):10656-10661
Helix X in the lactose permease of Escherichia coli contains two residues that are irreplaceable with respect to active transport, His322 and Glu325, as well as Lys319, which is charge-paired with Asp240 in helix VII. Structural and dynamic features of transmembrane helix X are investigated here by site-directed thiol modification of 14 single-Cys replacement mutants with N-[(14)C]ethylmaleimide (NEM) in right-side-out membrane vesicles. Permease mutants with a Cys residue at position 326, 327, 329, 330, or 331 in the cytoplasmic half of the transmembrane domain are alkylated by NEM at 25 degrees C, a mutant with Cys at position 315 at the periplasmic surface is labeled in the presence of substrate exclusively, and mutants with Cys at positions 317, 318, 320, 321, 324, 328, 332, or 333 do not react with NEM under the conditions tested. Binding of substrate causes increased labeling of a Cys residue at position 315 and decreased labeling of Cys residues at positions 326, 327, and 329. Studies with methanethiosulfonate ethylsulfonate indicate that Cys residues at positions 326, 329, 330, and 331 in the cytoplasmic half are accessible to the aqueous phase from the periplasmic face of the membrane. Ligand binding results in clear attenuation of solvent accessibility of Cys at position 326 and a marginal increase in accessibility of Cys at position 327 to solvent. The findings indicate that the cytoplasmic half of helix X is more reactive/accessible to thiol reagents and more exposed to solvent than the periplasmic half. Furthermore, positions that reflect ligand-induced conformational changes are located on the same face of helix X as Lys319, His322, and Glu325.  相似文献   

3.
Venkatesan P  Kwaw I  Hu Y  Kaback HR 《Biochemistry》2000,39(35):10641-10648
Site-directed sulfhydryl modification in situ is employed to investigate structural and dynamic features of transmembrane helix VII and the beginning of the periplasmic loop between helices VII and VIII (loop VII/VIII). Essentially all of the Cys-replacement mutants in the periplasmic half of the helix and the portion of loop VII/VIII tested are labeled by N-[(14)C]ethylmaleimide (NEM). In contrast, with the exception of two mutants at the cytoplasmic end of helix VII, none of the mutants in the cytoplasmic half react with the alkylating agent. Labeling of most of the mutants is unaltered by ligand at 25 degrees C. However, at 4 degrees C, conformational changes induced by substrate binding become apparent. In the presence of ligand, permease mutants with a Cys residue at position 241, 242, 244, 245, 246, or 248 undergo a marked increase in labeling, while the reactivity of a Cys at position 238 is slightly decreased. Labeling of the remaining Cys-replacement mutants is unaffected by ligand. Studies with methanethiosulfonate ethylsulfonate (MTSES), a hydrophilic impermeant thiol reagent, show that most of the positions that react with NEM are accessible to MTSES; however, the two NEM-reactive mutants at the cytoplasmic end of helix VII and position 236 in the middle of the membrane-spanning domain are not. The findings demonstrate that positions in helix VII that reflect ligand-induced conformational changes are located in the periplasmic half and accessible to the aqueous phase from the periplasmic face of the membrane. In the following papers in this issue (Venkatesan, P., Lui, Z., Hu, Y., and Kaback H. R.; Venkatesan, P., Hu, Y., and Kaback H. R.), the approach is applied to helices II and X.  相似文献   

4.
Wang Q  Kaback HR 《Biochemistry》1999,38(10):3120-3126
Coexpression of lacY gene fragments encoding the first two transmembrane domains and the remaining 10 transmembrane domains complement in the membrane and catalyze active lactose transport [Wrubel, W., Stochaj, U., et al. (1990) J. Bacteriol. 172, 5374-5381]. Accordingly, a plasmid encoding contiguous, nonoverlapping permease fragments with a discontinuity in the cytoplasmic loop between helices II and III (loop II/III) was constructed (N2C10 permease). When Phe27 (helix I) is replaced with Cys, cross-linking is observed with two native Cys residues, Cys148 (helix V) and Cys355 (helix XI). Cross-linking of a Cys residue at position 27 to Cys148 occurs with N,N'-o-phenylenedimaleimide (o-PDM; rigid 6 A), with N,N'-p-phenylenedimaleimide (p-PDM; rigid 10 A), or with 1,6-bis(maleimido)hexane (BMH; flexible 16 A). On the other hand, with the Phe27-->Cys/Cys355 pair, cross-linking is observed with p-PDM or BMH but not o-PDM. In neither case is cross-linking observed with iodine. It is suggested that a Cys residue at position 27 is within 6-10 A from Cys148 and about 10 A from Cys355. The results provide evidence for proximity between helix I and helices V or XI in the tertiary structure of the permease. In addition, the findings are consistent with other results [Venkatesan, P., Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] indicating that Glu126 (helix IV) and Arg144 (helix V) are within the membrane, rather than at the membrane-water interface on the cytoplasmic face.  相似文献   

5.
Wu J  Hardy D  Kaback HR 《Biochemistry》1999,38(6):1715-1720
The N-terminal six transmenbrane helices (N6) and the C-terminal six transmembrane helices (C6) of the lactose permease, each containing a single-Cys residue, were coexpressed, and proximity was studied. Paired Cys residues in helices IV (positions 114, 116, 119, 122, 125, or 129) and VII (227, 231, 232, 234, 235, 238, 239, 242, 243, 245, or 246) or XI (350, 353, 354, 357, 361, or 364) were tested for cross-linking in the presence of two rigid homobifunctional thiol-specific cross-linkers, N,N'-o-phenylenedimaleimide (o-PDM; 6 A) and N,N'-p-phenylenedimaleimide (p-PDM; 10 A). Cys residues in the middle of helix IV (position 119 or 122) cross-link to Cys residues in the middle of helix VII (position 238, 239, 242, or 243). In contrast, no cross-linking is evident with paired Cys residues at either end of helix IV (position 114, 116, 125, or 129) or helix VII (position 227, 231, 232, 234, 235, 245, or 246). On the other hand, Cys residues in the cytoplasmic half of helix IV (position 125 or 129) cross-link with Cys residues in the cytoplasmic half of helix XI (position 350, 353, or 354), while paired Cys residues at the periplasmic ends of the two helices do not cross-link. The results indicate that helices IV and VII cross in a scissors-like manner with the cytoplasmic end of helix IV tilting toward helix XI.  相似文献   

6.
Zhang W  Hu Y  Kaback HR 《Biochemistry》2003,42(17):4904-4908
Site-directed sulfhydryl modification of transmembrane helix IX in the lactose permease of Escherichia coli was studied in right-side-out membrane vesicles with the thiol-specific reagents N-[(14)C]ethylmaleimide (NEM) and methanethiosulfonate ethylsulfonate (MTSES) which are permeant and impermeant, respectively. Out of approximately 20 mutants with a single Cys residue at each position in the helix, only five mutants label with NEM. (i) Cys residues at positions 291, 308, and 310 label at 25 degrees C, and binding of substrate has no effect. (ii) Cys residues at positions 295 and 298 label only in the presence of substrate. NEM labeling at 0 degrees C indicates that alkylation of Cys residues at positions 295 and 308 is dependent on the thermal motion of the protein. In contrast, temperature has little effect on labeling of Cys residues at positions 291, 298, and 310. Interestingly, pretreatment with MTSES blocks NEM labeling of all the mutants. The findings demonstrate that the face of helix IX on which Arg302 is located is involved in ligand-induced conformational changes and accessible to water from the periplasmic surface of the membrane. Since Arg302 facilitates deprotonation of Glu325 (helix X) during turnover [Sahin-Tóth, M., and Kaback, H. R. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 6068-6073], the findings are consistent with the idea that this face of helix IX may comprise part of the H(+) translocation pathway.  相似文献   

7.
B Persson  P D Roepe  L Patel  J Lee  H R Kaback 《Biochemistry》1992,31(37):8892-8897
Lys319, which is on the same face of putative helix X as His322 and Glu325 in the lactose permease of Escherichia coli, has been replaced with Leu by oligonucleotide-directed, site-specific mutagenesis. Although previous experiments suggested that the mutation does not alter permease activity, we report here that K319L permease is unable to catalyze active lactose accumulation or lactose efflux down a concentration gradient. The mutant does catalyze facilitated influx down a concentration gradient at a significant rate; however, the reaction occurs without concomitant H+ translocation. The mutant also catalyzes equilibrium exchange at about 50% of the wild-type rate, but it exhibits poor counterflow activity. Finally, flow dialysis and photoaffinity labeling experiments with p-nitrophenyl alpha-D-galactopyranoside indicate that K319L permease probably has a markedly decreased affinity for substrate. The alterations described are not due to diminished levels of the mutated protein in the membrane, since immunological studies reveal comparable amounts of permease in wild-type and K319L membranes. It is proposed that Lys319, like Arg302, His322, and Glu325, plays an important role in active lactose transport, as well as substrate recognition.  相似文献   

8.
Kwaw I  Zen KC  Hu Y  Kaback HR 《Biochemistry》2001,40(35):10491-10499
Helices IV and V in the lactose permease of Escherichia coli contain the major determinants for substrate binding [Glu126 (helix IV), Arg144 (helix V), and Cys148 (helix V)]. Structural and dynamic features of this region were studied by using site-directed sulfhydryl modification of 48 single-Cys replacement mutants with N-[(14)C]ethylmaleimide (NEM) in the absence or presence of ligand. In right-side-out membrane vesicles, Cys residues in the cytoplasmic halves of both helices react with NEM in the absence of ligand, while Cys residues in the periplasmic halves do not. Five Cys replacement mutants at the periplasmic end of helix V and one at the cytoplasmic end of helix V label only in the presence of ligand. Interestingly, in addition to native Cys148, a known binding-site residue, labeling of mutant Ala122 --> Cys, which is located in helix IV across from Cys148, is markedly attenuated by ligand. Furthermore, alkylation of the Ala122 --> Cys mutant blocks transport, and protection is afforded by substrate, indicating that Ala122 is also a component of the sugar binding site. Methanethiosulfonate ethylsulfonate, an impermeant thiol reagent shown clearly in this paper to be impermeant in E. coli spheroplasts, was used to identify substituted Cys side chains exposed to water and accessible from the periplasmic side. Most of the Cys mutants in the cytoplasmic halves of helices IV and V, as well as two residues in the intervening loop, are accessible to the aqueous phase from the periplasmic face of the membrane. The findings indicate that the cytoplasmic halves of helices IV and V are more reactive/accessible to thiol reagents and more exposed to solvent than the periplasmic half. Furthermore, positions that exhibit ligand-induced changes are located for the most part in the vicinity of the residues directly involved in substrate binding, as well as the cytoplasmic loop between helices IV and V.  相似文献   

9.
lac permease mutated at each of the 8 cysteinyl residues in the molecule was solubilized from the membrane, purified, and reconstituted into proteoliposomes. The transport activity of proteoliposomes reconstituted with each mutant permease relative to the wild-type is virtually identical with that reported for intact cells and/or right-side-out membrane vesicles. Moreover, a double mutant containing Ser in place of both Cys148 and Cys154 exhibits significant ability to catalyze active lactose transport. The results provide strong confirmation for the contention that cysteinyl residues in lac permease do not play an important role in the transport mechanism. The effect of sulfhydryl oxidant 5-hydroxy-2-methyl-1,4-naphthoquinone on lactose transport in proteoliposomes reconstituted with wild-type or mutant permeases was also investigated, and the results indicate that inactivation is probably due to formation of a covalent adduct with Cys148 and/or Cys154 rather than disulfide formation. Thus, it seems unlikely that sulfhydryl-disulfide interconversion functions to regulate permease activity.  相似文献   

10.
Venkatesan P  Liu Z  Hu Y  Kaback HR 《Biochemistry》2000,39(35):10649-10655
Cys-scanning mutagenesis of helix II in the lactose permease of Escherichia coli [Frillingos, S., Sun, J. et al. (1997) Biochemistry 36, 269-273] indicates that one face contains positions where Cys replacement or Cys replacement followed by treatment with N-ethylmaleimide (NEM) significantly inactivates the protein. In this study, site-directed sulfhydryl modification is utilized in situ to study this face of helix II. [(14)C]NEM labeling of 13 single-Cys mutants, including the nine NEM-sensitive Cys replacements, in right-side-out membrane vesicles is examined. Permease mutants with a single-Cys residue in place of Gly46, Phe49, Gln60, Ser67, or Leu70 are alkylated by NEM at 25 degrees C in 10 min, and mutants with Cys in place of Thr45 and Ser53 are labeled only in the presence of ligand, while mutants with Cys in place of Ile52, Ser56, Leu57, Leu62, Phe63, or Leu65 do not react. Binding of substrate leads to a marked increase in labeling of Cys residues at positions 45, 49, or 53 in the periplasmic half of helix II and a slight decrease in labeling of Cys residues at positions 60 or 67 in the cytoplasmic half. Labeling studies with methanethiosulfonate ethylsulfonate (MTSES) show that positions 45 and 53 are accessible to solvent in the presence of ligand only, while positions 46, 49, 67, and 70 are accessible to solvent in the absence or presence of ligand. Position 60 is also exposed to solvent, and substrate binding causes a decrease in solvent accessibility. The findings demonstrate that the NEM-sensitive face of helix II participates in ligand-induced conformational changes. Remarkably, this membrane-spanning face is accessible to the aqueous phase from the periplasmic side of the membrane. In the following paper in this issue [Venkatesan, P., Hu, Y., and Kaback, H. R. (2000) Biochemistry 39, 10656-10661], the approach is applied to helix X.  相似文献   

11.
A chimeric protein consisting of lactose permease with cytochrome b562 in the middle cytoplasmic loop and six His residues at the C terminus (LacY/L6cytb562/417H6 or "red permease") was overexpressed in Escherichia coli and isolated by nickel affinity chromatography after solubilization with dodecyl-beta,d-maltopyranoside. Red permease was then reconstituted in the presence of phospholipids, yielding densely packed vesicles and well-ordered two-dimensional (2D) crystals as shown by electron microscopy of negatively stained specimens. Single-particle analysis of 16 383 protein particles in densely packed vesicles reveals a 5.4-nm-long trapeziform protein of 4.1 to 5.1 nm width, with a central stain-filled indentation. Depending on reconstitution conditions, trigonal and rectangular crystallographic packing arrangements of these elongated particles assembled into trimers are observed. The best ordered 2D crystals exhibit a rectangular unit cell, of dimensions a = 9.9 nm, b = 17.4 nm, that houses two trimeric complexes. Projection maps calculated to a resolution of 2 nm show that these crystals consist of two layers.  相似文献   

12.
Topography of lactose permease from Escherichia coli   总被引:16,自引:0,他引:16  
The topography of lactose permease, in native membrane vesicles and after reconstitution of the purified protein into proteoliposomes, has been investigated by labeling the membrane-embedded portions of the protein using photoactivatable, hydrophobic reagents and by labeling the exposed portions of the protein with water-soluble, electrophilic reagents. Some sites of modification have been localized in fragments of the protein produced by chemical and enzymatic cleavage. These define a number of hydrophilic loops and membrane-spanning regions and give some substance to topographic models of the permease. The N-terminal third of the molecule was labeled by three photoactivatable reagents (3-(trifluoromethyl)-3-m-iodophenyldiazirine and the phospholipid analogues 2-(aceto-(4-benzoylphenylether]-1-palmitoylphosphatidylcholine) and 2-(4-azido-2-nitrophenylaminoacetyl)-1-palmitoylphosphatidylcholin e) as well as the water soluble, electrophilic reagents. The C-terminal part of the molecule is labeled by the diazirine and, to a lesser extent, by the phospholipid analogues. It apparently has more nucleophilic groups accessible to water-soluble reagents than the N-terminal domain, in which the density of apparently unreactive ionizable residues proved to be unexpectedly high. The apparent lack of reactivity of some of these residues may be explained either by their being buried in the protein moiety within the membrane domain, or by their close association with other ionizable residues on the surface of the protein.  相似文献   

13.
Deletion of putative transmembrane helix III from the lactose permease of Escherichia coli results in complete loss of transport activity. Similarly, replacement of this region en bloc with 23 contiguous Ala, Leu, or Phe residues abolishes active lactose transport. The observations suggest that helix III may contain functionally important residues; therefore, this region was subjected to Cys-scanning mutagenesis. Using a functional mutant devoid of Cys residues (C-less permease) each residue from Tyr 75 to Leu 99 was individually replaced with Cys. Twenty-one of the 25 mutants accumulate lactose to > 70% of the steady-state exhibited by C-less permease, and an additional 3 mutants transport to lower, but significant levels (40-60% of C-less). Cys replacement for Leu 76 results in low transport activity (18% of C-less). However, when placed in the wild-type background, mutant Leu 76-->Cys exhibits highly significant rates of transport (55% of wild type) and steady-state levels of lactose accumulation (65% of wild type). Immunoblots reveal that the mutants are inserted into the membrane at concentrations comparable to wild type. Studies with N-ethylmaleimide show that mutant Gly 96-->Cys is rapidly inactivated, whereas the other single-Cys mutants are not altered significantly by the alkylating agent. Moreover, the rate of inactivation of Gly 96-->Cys permease is enhanced at least 2-fold in the presence of beta-galactopyranosyl 1-thio-beta, D-galactopyranoside. The observations demonstrate that although no residue per se appears to be essential, structural properties of helix III are important for active lactose transport.  相似文献   

14.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino-acid residue in putative transmembrane helices IX and X and the short intervening loop was systematically replaced with Cys (from Asn-290 to Lys-335). Thirty-four of 46 mutants accumulate lactose to high levels (70-100% or more of C-less), and an additional 7 mutants exhibit lower but highly significant lactose accumulation. As expected (see Kaback, H.R., 1992, Int. Rev. Cytol. 137A, 97-125), Cys substitution for Arg-302, His-322, or Glu-325 results in inactive permease molecules. Although Cys replacement for Lys-319 or Phe-334 also inactivates lactose accumulation, Lys-319 is not essential for active lactose transport (Sahin-Tóth, M., Dunten, R.L., Gonzalez, A., & Kaback, H.R., 1992, Proc. Natl. Acad. Sci. USA 89, 10547-10551), and replacement of Phe-334 with leucine yields permease with considerable activity. All single-Cys mutants except Gly-296 --> Cys are present in the membrane in amounts comparable to C-less permease, as judged by immunological techniques. In contrast, mutant Gly-296 --> Cys is hardly detectable when expressed at a relatively low rate from the lac promoter/operator but present in the membrane in stable form when expressed at a high rate from T7 promoter. Finally, studies with N-ethylmaleimide (NEM) show that only a few mutants are inactivated significantly. Remarkably, the rate of inactivation of Val-315 --> Cys permease is enhanced at least 10-fold in the presence of beta-galactopyranosyl 1-thio-beta-D-galactopyranoside (TDG) or an H+ electrochemical gradient (delta mu-H+). The results demonstrate that only three residues in this region of the permease -Arg-302, His-322, and Glu-325-are essential for active lactose transport. Furthermore, the enhanced reactivity of the Val-315 --> Cys mutant toward NEM in the presence of TDG or delta mu-H+ probably reflects a conformational alteration induced by either substrate binding or delta mu-H+.  相似文献   

15.
Cys-scanning mutagenesis of putative transmembrane helix VIII in the lactose permease of Escherichia coli (Frillingos S. Ujwal ML, Sun J, Kaback HR, 1997, Protein Sci 6:431-437) indicates that, although helix VIII contains only one irreplaceable residue (Glu 269), one face is important for active lactose transport. In this study, the rate of inactivation of each N-ethylmaleimide (NEM)-sensitive mutant is examined in the absence or presence of beta, D-galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG). Remarkably, the analogue affords protection against inactivation with mutants Val 264-->Cys, Gly 268-->Cys, and Asn 272-->Cys, and alkylation of these single-Cys mutants in right-side-out membrane vesicles with [14C]NEM is attenuated by TDG. In contrast, alkylation of Thr 265-->Cys, which borders the three residues that are protected by TDG, is enhanced markedly by the analogue. Furthermore, NEM-labeling in the presence of the impermeant thiol reagent methanethiosulfonate ethylsulfonate demonstrates that ligand enhances the accessibility of position 265 to solvent. Finally, no significant alteration in NEM reactivity is observed for mutant Gly 262-->Cys, Glu 269-->Cys, Ala 273-->Cys, Met 276-->Cys, Phe 277-->Cys, or Ala 279-->Cys. The findings indicate that a portion of one face of helix VIII (Val 264, Gly 268, and Asn 272), which is in close proximity to Cys 148 (helix V), interacts with substrate, whereas another position bordering these residues (Thr 265) is altered by a ligand-induced conformational change.  相似文献   

16.
Biochemical, luminescence and mass spectroscopy approaches indicate that Trp-151 (helix V) plays an important role in hydrophobic stacking with the galactopyranosyl ring of substrate and that Glu-269 (helix VIII) is essential for substrate affinity and specificity. The x-ray structure of the lactose permease (LacY) with bound substrate is consistent with these conclusions and suggests that a possible H-bond between Glu-269 and Trp-151 may play a critical role in the architecture of the binding site. We have now probed this relationship by exploiting the intrinsic luminescence of a single Trp-151 LacY with various replacements for Glu-269. Mutations at position 269 dramatically alter the environment of Trp-151 in a manner that correlates with binding affinity of LacY substrates. Furthermore, chemical modification of Trp-151 with N-bromosuccinimide indicates that Glu-269 forms an H-bond with the indole N. It is concluded that 1) an H-bond between the indole N and Glu-269 optimizes the formation of the substrate binding site in the inward facing conformation of LacY, and 2) the disposition of the residues implicated in sugar binding in different conformers suggests that sugar binding by LacY involves induced fit.  相似文献   

17.
Limited proteolysis of lactose permease from Escherichia coli   总被引:17,自引:0,他引:17  
Escherichia coli lactose permease (also referred to as lactose carrier) is an integral protein of the cytoplasmic membrane. Using lactose permease either radiolabeled biosynthetically in plasmid-bearing E. coli minicells or radioalkylated post-synthetically by chemical modification, we have determined sites on the membrane-bound protein accessible to proteolytic attack and we have characterized several high-molecular-mass products. The most prominent polypeptide obtained from lactose permease radiolabeled biosynthetically is observed after digestion with different proteases. The fragment produced by thermolysin was shown to contain the intact N-terminus and to extend into the region around amino acid residue 140 which, according to secondary structure models, is presumed to be less tightly folded than the rest of the molecule. Evidence is presented that the corresponding fragments obtained after digestion with several other proteases also originate from the N-terminal part of the protein. This N-terminal segment of the lactose carrier is resistant to proteolytic digestion even in the presence of non-ionic detergents and it may represent a tightly folded domain. Additional proteolytic cleavage sites located C-terminal of the Cys148 residue can be inferred.  相似文献   

18.
19.
Glu126 and Arg144 in helices IV and V, respectively, in the lactose permease of Escherichia coli, which play an indispensable role in substrate binding, are charge-paired and in close proximity [Venkatesan, P., Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807; Zhao, M., Zen, K.-C., et al. (1999) Biochemistry 38, 7407-7412]. Since hydropathy plots indicate that these residues are at the membrane-water interface at the cytoplasmic surface of the membrane, site-directed nitroxide scanning electron paramagnetic resonance (EPR) has been carried out on this region of the permease. Thirty-one single-Cys permease mutants were spin-labeled and examined by conventional and power saturation EPR. The motional freedom of the side chains, as well as accessibility to O(2) or potassium chromium oxalate (CrOx), indicates that the loop between helices IV and V (loop IV/V) is considerably smaller than predicted by hydropathy plots, extending only from about Val132 to Phe138 and that Glu126 and Arg144 are probably within the membrane. Although ligand binding has no effect on the mobility of the labeled side chains, a marked increase in CrOx and O(2) accessibility is observed at position 137, as well as significant changes in accessibility to CrOx on one face of helix V. It is concluded that ligand binding induces a conformational change in the vicinity of the binding site, resulting in increased accessibility of position 137 in loop IV/V to solvent.  相似文献   

20.
Lactose permease, the lacY gene product in Escherichia coli, is an integral membrane protein. Its induction was examined in secAts and secYts mutants by measuring o-nitrophenyl-beta-galactoside uptake activity. In contrast to the synthesis of the maltose binding protein, the malE gene product, which is dependent on the secA and secY gene products, lactose permease seemed to be produced and integrated functionally into membrane independently of SecA or SecY. Gene fusion of the lamB signal sequence to the N-terminal part of the lactose permease gene resulted in production of active fused permease in the E. coli membrane. The signal sequence did not seem to be processed, judging from its mobility on SDS polyacrylamide gel electrophoresis. E. coli cell growth was super-sensitive to induction of production of the fused permease with the signal sequence in contrast to induction of the normal lactose permease. These results are consistent with the above observation that production and integration of LacY protein into membrane is relatively independent of the SecY protein that may have a certain specificity for the signal sequence or, more generally, membrane translocation intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号