首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the chloroplast DNA (cpDNA) from plastids obtained from wild type maize (Zea mays L.) seedlings grown under different light conditions and from photosynthetic mutants grown under white light. The cpDNA was evaluated by real-time quantitative PCR, quantitative DNA fluorescence, and blot-hybridization following pulsed-field gel electrophoresis. The amount of DNA per plastid in light-grown seedlings declines greatly from stalk to leaf blade during proplastid-to-chloroplast development, and this decline is due to cpDNA degradation. In contrast, during proplastid-to-etioplast development in the dark, the cpDNA levels increase from the stalk to the blade. Our results suggest that DNA replication continues in the etioplasts of the upper regions of the stalk and in the leaves. The cpDNA level decreases rapidly, however, after dark-grown seedlings are transferred to light and the etioplasts develop into photosynthetically active chloroplasts. Light, therefore, triggers the degradation of DNA in maize chloroplasts. The cpDNA is retained in the leaf blade of seedlings grown under red, but not blue light. We suggest that light signaling pathways are involved in mediating cpDNA levels, and that red light promotes replication and inhibits degradation and blue light promotes degradation. For five of nine photosynthetic mutants, cpDNA levels in expanded leaves are higher than in wild type, indicating that nuclear genotype can affect the loss or retention of cpDNA.  相似文献   

2.
We used pulsed-field gel electrophoresis and restriction fragment mapping to analyze the structure of Medicago truncatula chloroplast DNA (cpDNA). We find most cpDNA in genome-sized linear molecules, head-to-tail genomic concatemers, and complex branched forms with ends at defined sites rather than at random sites as expected from broken circles. Our data suggest that cpDNA replication is initiated predominantly on linear DNA molecules with one of five possible ends serving as putative origins of replication. We also used 4',6-diamidino-2-phenylindole staining of isolated plastids to determine the DNA content per plastid for seedlings grown in the dark for 3 d and then transferred to light before being returned to the dark. The cpDNA content in cotyledons increased after 3 h of light, decreased with 9 h of light, and decreased sharply with 24 h of light. In addition, we used real-time quantitative polymerase chain reaction to determine cpDNA levels of cotyledons in dark- and light-grown (low white, high white, blue, and red light) seedlings, as well as in cotyledons and leaves from plants grown in a greenhouse. In white, blue, and red light, cpDNA increased initially and then declined, but cpDNA declined further in white and blue light while remaining constant in red light. The initial decline in cpDNA occurred more rapidly with increased white light intensity, but the final DNA level was similar to that in less intense light. The patterns of increase and then decrease in cpDNA level during development were similar for cotyledons and leaves. We conclude that the absence in M. truncatula of the prominent inverted repeat cpDNA sequence found in most plant species does not lead to unusual properties with respect to the structure of plastid DNA molecules, cpDNA replication, or the loss of cpDNA during light-stimulated chloroplast development.  相似文献   

3.
The percentage of mitochondrial DNA (mtDNA) present in total DNA isolated from pea tissues was determined using labeled mtDNA in reassociation kinetics reactions. Embryos contained the highest level of mtDNA, equal to 1.5% of total DNA. This value decreased in light- and dark-grown shoots and leaves, and roots. The lowest value found was in dark-grown shoots; their total DNA contained only 0.3% mtDNA. This may be a reflection of increased nuclear ploidy levels without concomitant mtDNA synthesis. It was possible to compare the mtDNA values directly with previous estimates of the amount of chloroplast DNA (ctDNA) per cell because the same preparations of total DNA were used for both analyses. The embryo contained 1.5% of both mtDNA and ctDNA; this equals 410 copies of mtDNA and 1200 copies of ctDNA per diploid cell. Whereas mtDNA levels decreased to 260 copies in leaf cells of pea, the number of copies of ctDNA increased to 10300. In addition, the levels of ctDNA in first leaves of dark-grown and light-transferred pea were determined, and it was found that leaves of plants maintained in the dark had the same percentage of ctDNA as those transferred to the light.Abbreviations ctDNA chloroplast DNA - mtDNA mitochondrial DNA  相似文献   

4.
DNA photolyases are enzymes which mediate the light-dependent repair (photoreactivation) of UV-induced damage products in DNA by direct reversal of base damage rather than via excision repair pathways. Arabidopsis thaliana contains two photolyases specific for photoreactivation of either cyclobutane pyrimidine dimers (CPDs) or pyrimidine (6-4)pyrimidones (6-4PPs), the two major UV-B-induced photoproducts in DNA. Reduced FADH and a reduced pterin were identified as cofactors of the native Arabidopsis CPD photolyase protein. This is the first report of the chromophore composition of any native class II CPD photolyase protein to our knowledge. CPD photolyase protein levels vary between tissues and with leaf age and are highest in flowers and leaves of 3-5-week-old Arabidopsis plants. White light or UV-B irradiation induces CPD photolyase expression in Arabidopsis tissues. This contrasts with the 6-4PP photolyase protein which is constitutively expressed and not regulated by either white or UV-B light. Arabidopsis CPD and 6-4PP photolyase enzymes can remove UV-B-induced photoproducts from DNA in planta even when plants are grown under enhanced levels of UV-B irradiation and at elevated temperatures although the rate of removal of CPDs is slower at high growth temperatures. These studies indicate that Arabidopsis possesses the photorepair capacity to respond effectively to increased UV-B-induced DNA damage under conditions predicted to be representative of increases in UV-B irradiation levels at the Earth's surface and global warming in the twenty-first century.  相似文献   

5.
The chloroplast (cp) DNA type and mitochondrial (mt) DNA composition of 17 somatic hybrids between a cytoplasmic albino tomato and monoploid potato (A7-hybrids) and 18 somatic hybrids between a nitrate reductase-deficient tomato and monoploid potato (C7-hybrids) were analyzed. Thirteen A7-hybrids and 9 C7-hybrids were triploids (with one potato genome); the other hybrids were tetraploid. As expected, all A7-hybrids contained potato cpDNA. Of the C7-hybrids 7 had tomato cpDNA, 10 had potato cpDNA and 1 hybrid contained both tomato and potato cpDNA. The mtDNA composition of the hybrids was analyzed by hybridization of Southern blots with four mtDNA-specific probes. The mtDNAs in the hybrids had segregated independently from the cpDNAs. Nuclear DNA composition (i.e. one or two potato genomes) did not influence the chloroplast type in the C7-hybrids, nor the mtDNA composition of A7- or C7-hybrids. From the cosegregation of specific mtDNA fragments we inferred that both tomato and potato mtDNAs probably have a coxII gene closely linked to 18S+5S rRNA genes. In tomato, atpA, and in potato, atp6 seems to be linked to these mtDNA genes.  相似文献   

6.
Summary Alfalfa protoclones were regenerated from the mesophyll protoplasts of two cloned source plants (parents), RS-K1 and RS-K2, initiated from Regen S seed. Because of the high frequency of karyotypic upset previously observed in these plants, chloroplast DNAs (cpDNA) from 23 protoclones and mitochondrial DNAs (mtDNA) from 20 protoclones were examined by restriction endonuclease analysis in order to assess recombination in their cytoplasmic genomes. Seven and four endonucleases were separately used for cpDNA and mtDNA analysis, respectively. Data were consistent with no, or a low frequency of, major sequence rearrangements in either the chloroplast or the mitochondrial genomes as a result of protocloning. However, two types of cpDNA were detected in the 23 protoclones, with only one protoclone possessing the cpDNA type of the cloned parental populations sampled. Possible explanations include a preferential selection during protocloning for one of two parental cpDNA types, an in planta sorting out of cpDNA types in the parental material or both.  相似文献   

7.
The mode of inheritance of chloroplast and mitochondrial DNA (mtDNA) in rye x triticale intergeneric hybrids has been studied with the use of specific PCR markers for loci 18S/5S and 3'rbcL in organelle DNA. In rye x triticale BC1, mtDNA copies of two types, paternal and maternal, have been found; in BC2 plants, only paternal mtDNA and chloroplast DNA (cpDNA) have been detected. Mechanisms determining the inheritance and/or differential amplification of organelles of a specific type are discussed.  相似文献   

8.
Nuclear DNA (ncDNA) synthesis in Chlamydomonas reinhardtii was measured by both 32P[or-thophosphoric acid] (32P) and [14C]adenine incorporation and found to be highly synchronous. Ca. 85% of incorporation was confined to the first 6 h of the dark period of a synchronized regime consisting of an alternating light-dark period of 12 h each. In contrast, no such synchronous incorporation pattern was found for chloroplast (cp) and mitochondrial (mt) DNAs in the same cell population. These two organellar DNAs also exhibited different 32P-incorporation patterns in the cell cycle. Considerable amounts of 32P were incorporated into cpDNA throughout the light-dark synchronous cycle under both mixo- and phototrophic growth conditions, although the second 6-h light period under phototrophy showed an increase not apparent under mixotrophy. This change in growth conditions did not affect 32P incorporation into mtDNA, which was found throughout the cell cycle, with a modest peak in the first 6-h of the dark period. The pattern of [3H]thymidine incorporation into cpDNA was also determined. Under synchronous phototrophic conditions, this pattern was quite different from that obtained with 32P. Most [3H]thymidine incorporation occurred during the light period of the synchronous cycle; this period had been shown previously by density transfer experiments to be the time of cpDNA duplication. Such preferential [3H]thymidine incorporation into cpDNA in the light period was not observed under mixotrophic synchronous growth conditions; in these, [3H]thymidine incorporation was detected throughout the cell cycle. This lack of coincidence between the patterns of 32P- and of [3H]thymidine incorporation into cpDNA during the synchronous cell cycle indicates that in addition to replication, the considerably reiterated organelle-DNA molecules may also regularly undergo an extensive repair process during each cell cycle.  相似文献   

9.
Monoclonal antibodies were used in an enzyme-linked immunosorbent assay (ELISA) to detect the induction and removal of cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA isolated from ultraviolet B (UV-B)-exposed primary wheat (Triticum aestivum L. cv. Chinese Spring) leaf tissue. The accumulation of lesions in the primary leaves of 6-d-old wheat seedlings was followed during the exposure of the leaf to an approximate dose of 3.6×10?1 W m?2 UV-B (Caldwell weighting). Significant increases in the levels of both CPDs and (6-4) photoproducts were detected in wheat leaves exposed to UV-B in the absence of other light However, only an increase in (6-4) photoproduct levels could be measured in wheat leaves exposed to the same UV-B source in the presence of supplemental white light. The removal of CPD antibody binding sites in the DNA after irradiation was rapid under conditions of high light intensity in contrast to the removal of (6-4) photoproduct antibody binding sites, which was significantly slower. The removal of CPDs appeared to be light dependent, this rate of removal decreasing with decreasing light fluences. The removal of (6-4) photoproducts also appeared light dependent, but to a lesser extent than the removal of CPDs, under the conditions studied here. Gene expression in the primary wheat leaf was measured and showed an up-regulation of chalcone synthase expression and a reduction in expression of chlorophyll a/b-binding protein (cab) in response to supplementary UV-B. No effect was seen on the expression of the other photosynthetic genes studied (the genes coding for the enzymes sedoheptu-lose 1,7-bisphosphatase and fructose 1,6-bisphosphatase). Measurement of the levels of DNA lesions in this same tissue showed that the observed changes in gene expression accompanied the appearance of UV-B induced lesions in the form of (6-4) photoproducts in the wheat leaf genome.  相似文献   

10.
A K Janoudi  K L Poff 《Plant physiology》1993,101(4):1175-1180
Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs.  相似文献   

11.
Inhibition of in vitro SV40 DNA replication by ultraviolet light   总被引:2,自引:0,他引:2  
G Gough  R D Wood 《Mutation research》1989,227(3):193-197
Ultraviolet light-induced DNA damage was found to inhibit SV40 origin-dependent DNA synthesis carried out by soluble human cell extracts. Replication of SV40-based plasmids was reduced to approx. 35% of that in unirradiated controls after irradiation with 50-100 J/m2 germicidal ultraviolet light, where an average of 3-6 pyrimidine dimer photoproducts were formed per plasmid circle. Inhibition of the DNA helicase activity of T antigen (required for initiation of replication in the in vitro system) was also investigated, and was only significant after much higher fluences, 1000-5000 J/m2. The data indicate that DNA damage by ultraviolet light inhibits DNA synthesis in cell-free extracts principally by affecting components of the replication complex other than the DNA helicase activity of T antigen. The soluble system could be used to biochemically investigate the possible bypass or tolerance of DNA damage during replication.  相似文献   

12.
Chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) were studied in 24 populations of Prunus spinosa sampled across Europe. The cpDNA and mtDNA fragments were amplified using universal primers and subsequently digested with restriction enzymes to obtain the polymorphisms. Combinations of all the polymorphisms resulted in 33 cpDNA haplotypes and two mtDNA haplotypes. Strict association between the cpDNA haplotypes and the mtDNA haplotypes was detected in most cases, indicating conjoint inheritance of the two genomes. The most frequent and abundant cpDNA haplotype (C20; frequency, 51 %) is always associated with the more frequent and abundant mtDNA haplotype (M1; frequency, 84 %). All but two of the cpDNA haplotypes associated with the less frequent mtDNA haplotype (M2) are private haplotypes. These private haplotypes are phylogenetically related but geographically unrelated. They form a separate cluster on the minimum-length spanning tree.  相似文献   

13.
We report a sensitive, SINE (Short Interspersed DNA Element)-mediated, PCR-based, DNA damage detection assay. Here, the SINE assay is used for detection of UVB-induced DNA damage and repair in cultured mouse cells and in vivo, in mouse skin. The unique feature of the SINE assay is its ability to support simultaneous amplification of multiple, random segments of genomic DNA. This can be accomplished due to the remarkable abundance, dispersion and conservation of SINEs in mammalian genomes. The most abundant SINEs in the mouse genome are the B1 elements, at a copy number of 50,000-80,000. Due to their strong sequence conservation, primers complementary to the B1 consensus sequence anneal to the majority of their targets in the genome. Consequently, long segments of genomic DNA located between pairs of B1 elements are efficiently amplified by PCR. Thus, in conjunction with the fact that many types of DNA adducts form blocks for thermostable polymerase, the B1 element anchored PCR makes a sensitive and versatile tool for assessing the overall integrity of the transcribed regions in mouse genome. We measured UVB-dose (0.1-3 kJ m-2) dependent formation of photoproducts in DNA from cultured cells, and after 20 h observed a substantial removal of damage at doses lower or equal to 0.6 kJ m-2. The sensitivity of detection of UVB-photoproducts formation and repair was compared to that of the conventional, single locus-targeting QPCR. Using the SINE assay we also have shown the distribution of UVB and UVC induced DNA adducts at a single nucleotide resolution within the B1 elements in mouse DNA. Lastly, we demonstrated that the sensitivity of the SINE assay is adequate for measurement of UVB-dose (1-6 kJ m-2) dependent formation and subsequent removal of photoproducts in vivo, in mouse skin.  相似文献   

14.
To examine the light-dependent repair of DNA photo-lesions,such as, cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyriinidonephotoproducts [(6-4)pho-toproducts], we incubated cucumber cotyledonsunder monochromatic light (325-500 nm) after they had been exposedto UV-B irradiation. Irradiation at wavelengths between 375and 425 nm was the most efficient for photo-repair of CPDs.The dependence on wavelength for the removal of (6-4)photoproductsdiffered from that for the photorepair of CPDs. The (6-4)photoproductswere most efficiently removed upon irradiation at 325 nm witha second peak at 400 to 425 nm. An immunological assay usingantibodies specific to Dewar photoproducts revealed that irradiationat 325 nm induced the photoisomerization of (6-4)photoproductsto Dewar photoproducts. Thus, the most efficient wavelengthfor the photorepair of (6-4)photoprod-ucts was between 400 and425 nm. It seems likely that processes similar to those involvedin photorepair of CPDs might be involved in the photorepairof (6-4)photoprod-ucts. (Received October 15, 1997; Accepted April 22, 1998)  相似文献   

15.
Mechanisms of Dealing with DNA Damage-Induced Replication Problems   总被引:1,自引:0,他引:1  
During every S phase, cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. Given the large size of mammalian genomes and the required precision of DNA replication, genome duplication requires highly fine-tuned corrective and quality control processes. A major threat to the accuracy and efficiency of DNA synthesis is the presence of DNA lesions, caused by both endogenous and exogenous damaging agents. Replicative DNA polymerases, which carry out the bulk of DNA synthesis, evolved to do their job extremely precisely and efficiently. However, they are unable to use damaged DNA as a template and, consequently, are stopped at most DNA lesions. Failure to restart such stalled replication forks can result in major chromosomal aberrations and lead to cell dysfunction or death. Therefore, a well-coordinated response to replication perturbation is essential for cell survival and fitness. Here we review how this response involves activating checkpoint signaling and the use of specialized pathways promoting replication restart. Checkpoint signaling adjusts cell cycle progression to the emergency situation and thus gives cells more time to deal with the damage. Replication restart is mediated by two pathways. Homologous recombination uses homologous DNA sequence to repair or bypass the lesion and is therefore mainly error free. Error-prone translesion synthesis employs specialized, low fidelity polymerases to bypass the damage.  相似文献   

16.
DNA damage can cause cell death unless it is either repaired or tolerated. The precise contributions of repair and tolerance mechanisms to cell survival have not been previously evaluated. Here we have analyzed the cell killing effect of the two major UV light-induced DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs), in nucleotide excision repair-deficient human cells by expressing photolyase(s) for light-dependent photorepair of either or both lesions. Immediate repair of the less abundant 6-4PPs enhances the survival rate to a similar extent as the immediate repair of CPDs, indicating that a single 6-4PP lesion is severalfold more toxic than a CPD in the cells. Because UV light-induced DNA damage is not repaired at all in nucleotide excision repair-deficient cells, proliferation of these cells after UV light irradiation must be achieved by tolerance of the damage at replication. We found that RNA interference designed to suppress polymerase zeta activity made the cells more sensitive to UV light. This increase in sensitivity was prevented by photorepair of 6-4PPs but not by photorepair of CPDs, indicating that polymerase zeta is involved in the tolerance of 6-4PPs in human cells.  相似文献   

17.
Both the chloroplast and mitochondrial genomes are used extensively in studies of plant population genetics and systematics. In the majority of angiosperms, the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) are each primarily transmitted maternally, but rare biparental transmission is possible. The extent to which the cpDNA and mtDNA are in linkage disequilibrium is argued to be dependent on the fidelity of co-transmission and the population structure. This study reports complete linkage disequilibrium between cpDNA and mtDNA haplotypes in 86 individuals from 17 populations of Silene vulgaris, a gynodioecious plant species. Phylogenetic analysis of cpDNA and mtDNA haplotypes within 14 individuals supports a hypothesis that the evolutionary histories of the chloroplasts and mitochondria are congruent within S. vulgaris, as might be expected if this association persists for long periods. This provides the first documentation of the evolutionary consequences of long-term associations between chloroplast and mitochondrial genomes within a species. Factors that contribute to the phylogenetic and linkage associations, as well as the potential for intergenomic hitchhiking resulting from selection on genes in one organellar genome are discussed.  相似文献   

18.
The recently developed environmental DNA (eDNA) analysis has been used to estimate the distribution of aquatic vertebrates by using mitochondrial DNA (mtDNA) as a genetic marker. However, mtDNA markers have certain drawbacks such as variable copy number and maternal inheritance. In this study, we investigated the potential of using nuclear DNA (ncDNA) as a more reliable genetic marker for eDNA analysis by using common carp (Cyprinus carpio). We measured the copy numbers of cytochrome b (CytB) gene region of mtDNA and internal transcribed spacer 1 (ITS1) region of ribosomal DNA of ncDNA in various carp tissues and then compared the detectability of these markers in eDNA samples. In the DNA extracted from the brain and gill tissues and intestinal contents, CytB was detected at 95.1 ± 10.7 (mean ± 1 standard error), 29.7 ± 1.59 and 24.0 ± 4.33 copies per cell, respectively, and ITS1 was detected at 1760 ± 343, 2880 ± 503 and 1910 ± 352 copies per cell, respectively. In the eDNA samples from mesocosm, pond and lake water, the copy numbers of ITS1 were about 160, 300 and 150 times higher than those of CytB, respectively. The minimum volume of pond water required for quantification was 33 and 100 mL for ITS1 and CytB, respectively. These results suggested that ITS1 is a more sensitive genetic marker for eDNA studies of C. carpio.  相似文献   

19.
20.
With the completion of the first gymnosperm mitochondrial genome (mtDNA) from Cycas taitungensis and the availability of more mtDNA taxa in the past 5 years, we have conducted a systematic analysis of DNA transfer from chloroplast genomes (cpDNAs) to mtDNAs (mtpts) in 11 plants, including 2 algae, 1 liverwort, 1 moss, 1 gymnosperm, 3 monocots, and 3 eudicots. By using shared gene order and boundaries between different mtpts as the criterion, the timing of cpDNA transfer during plant evolution was estimated from the phylogenetic tree reconstructed independently from concatenated protein-coding genes of 11 available mtDNAs. Several interesting findings emerged. First, frequent DNA transfer from cpDNA to mtDNA occurred at least as far back as the common ancestor of extant gymnosperms and angiosperms, about 300 MYA. The oldest mtpt is trnV(uac)-trnM(cau)-atpE-atpB-rbcL. Three other mtpts--psaA-psaB, rps19-trnH(gug)-rpl2-rpl23, and psbE-psbF--were dated to the common ancestor of extant angiosperms, at least 150 MYA. However, all protein-coding genes of mtpts have degenerated since their first transfer. Therefore, mtpts contribute nothing to the functioning of mtDNA but junk sequences. We discovered that the cpDNA transfers have occurred randomly at any positions of the cpDNAs. We provide strong evidence that the cp-derived tRNA-trnM(cau) is the only mtpt (1 out of 3 cp-derived tRNA shared by seed plants) truly transferred from cpDNA to mtDNA since the time of the common ancestor of extant gymnosperms and angiosperms. Our observations support the proposition of Richly and Leister (2004) that "primary insertions of organellar DNAs are large and then diverge and fragment over evolutionary time."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号