首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The activity of the lysosomal dipeptidyl aminopeptidase II (DAP II) was measured by quantitative histochemical methods in the S1/S2 segments of the proximal tubule using freeze dried and celloidin mounted cryostat sections (FDC sections) of rat kidney. The methodological studies show that there is a linear relationship between the amount of reaction product and reaction time for the first 5 min, as well as section thickness between 4 and 10 m. Maximal DAP II activities were demonstrated at pH 5.5. The K m of DAP II was about 2.3 mM. — In addition to the methodological studies, DAP II activity was also measured in the proximal tubule (S1/S2 segments) of experimental animals (sham-operated and castrated male and female rats). Sham-operated females showed significantly higher DAP II activities than males. DAP II activity increased significantly in castrated males so that there were no significant differences between castrated males, sham-operated and castrated females. The quantitative histochemical results are largely in agreement with biochemical data published earlier.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)Dedicated to Prof. Dr. T.H. Schiebler, Chairman of the Institute of Anatomy of the University of Würzburg, on the occasion of his 60th birthday  相似文献   

2.
Cytoskeletal proteins of the rat kidney proximal tubule brush border   总被引:3,自引:0,他引:3  
Cytoskeletal components backing the brush border of the rat kidney proximal tubule cell were identified and compared with those of the well characterized intestinal brush border by immuneoverlay and immunocytochemistry. Antibodies reactive against the intestinal microvillus core components, villin and fimbrin, as well as against the terminal web components, spectrin (fodrin) and myosin, were used. Proteins of similar molecular weight to these intestinal brush border cytoskeletal components were identified in isolated kidney brush borders by immuneoverlay. Spectrin, a major component of the terminal web region of both cell types, was more concentrated in the kidney brush border relative to both actin and myosin. By immunofluorescence, villin and fimbrin were localized in the microvilli, and spectrin and myosin were localized to the terminal web region of the brush border. In addition, spectrin was found along the basolateral membranes of the proximal tubule cell, and myosin was detected in a punctate staining pattern throughout its cytoplasm. By immunoelectron microscopy using immunogold labeling procedures, fimbrin and villin were localized in the terminal web as well as in microvilli, and spectrin and myosin were localized to fibrils in the terminal web. A key difference between the epithelia of the two organs is the extensive network of clathrin coated pits found in the terminal web region of the kidney but not the intestinal brush border. The clathrin-rich terminal web region of the kidney, like the intestinal brush border, proved to be quite stable and resistant to disruption by non-ionic detergents and harsh mechanical treatment.  相似文献   

3.
Summary Morphological examination of kidney biopsies from patients with glomerulonephritis and hematuria has revealed the presence of erythrocytes within epithelial cells of the proximal tubule. This observation suggested that the proximal tubule might be capable of phagocytizing morphologically intact erythrocytes. To examine this possibility small quantities of heparinized autologous blood were injected into surface convolutions of proximal tubules of the rat kidney using standard micropuncture techniques. At time intervals ranging from 10 min to 120 h after injection, the kidneys were preserved for light and transmission electron microscopy by drip-fixation with a half-strength Karnovsky's glutaraldehyde-formaldehyde fixative.During the initial 6 h there was a flattening of the brush border and accumulation of electron-dense material representing hemoglobin in apical vacuoles and in lysosome-like structures. From 6 to 15 h after micropuncture, there was progressive loss of the brush border and the simultaneous formation of pseudopodia-like evaginations that extended from the apical plasma membrane and surrounded the individual erythrocytes. By 18 and 24 h, erythrocytes were observed in the proximal tubule cells. At later time intervals, edema, lymphocytic infiltration, and fibrosis were observed in the interstitium. In addition, crystalline structures were present in the lumen and the cells of both proximal and distal tubules. These findings suggest that in addition to their well-established ability to pinocytize hemoglobin and other proteins, the cells of the proximal tubule are capable of phagocytizing morphologically intact autologous erythrocytes. It is possible that phagocytosis by the proximal tubule cells may play a role in the disposal of erythrocytes from the tubular fluid in hematuric conditions.  相似文献   

4.
5.
The present study deals with the dose- and time-dependent uptake of cytochrome c (CYT c) in the proximal tubule of the rat kidney, and shows that there are segment and sex differences in the reabsorption of CYT c. Rats of both sexes were intravenously injected with different doses of CYT c (0.75-9.0 mg per 100 g body weight), and the kidneys were investigated by light and electron microscopy at different times (3 min, 10 min, and 2 h) after the injection. After 3 and 10 min, CYT c was demonstrated in apical vacuoles of different sizes and in some lysosomes of the S1 and S2 segments, whereas after 2 h, CYT c was found only in lysosomes of all three segments of the proximal tubule. At these times, the S1 segment contained more CYT c than the S2 and S3 segments. However, 2 h after the injection of 6 or 9 mg CYT c, the differences between the S1 and S2 segments disappeared almost completely, due to a strong lysosomal accumulation of CYT c in the S2 segment. At all studied times and CYT-c doses, the S3 segment contained less CYT c than the S1 and S2 segments. On the whole, different levels of CYT-c reabsorption were found in the different segments of the proximal tubule, which was saturable with increasing CYT-c doses, i.e. firstly in the proximal and then in the distal parts of the proximal tubule. Two hours after the injection of CYT c, a difference between males and females was observed, with the lysosomes of the S1 and S2 segments of females containing more CYT c than those of males. Thus, more CYT c was reabsorbed in the proximal tubule of females than in that of males.  相似文献   

6.
7.
We summarize the results of study of the properties of two models of transimmortalized proximal tubule epithelial cells derived from the kidneys of transgenic mice harboring the SV40 large T and little t antigens/L-pyruvate kinase hybrid gene. The two cell lines, reffered to as PKSV-PCT and PKSV-PR cells, maintained for long-term passages the main biochemical and functional properties from the convoluted and terminal parts of the proximal tubule, respectively from which they were derived. In PKSV-PCT cells, gentamicin induced lysosomal alkalinization, decreased the cellular N-acetyl--D-glucuronidase, and stimulated its secretion in a dose-dependent manner. The results indicate that these models of mouse proximal cultured cells could be suitable models for the study of the cellular action of drugs.Abbreviations MDR multidrug resistance - NAG N-acetyl--D-glucuronidase - PGP P-glycoprotein  相似文献   

8.
Normal rat kidney proximal tubule cells in primary and multiple subcultures   总被引:5,自引:0,他引:5  
Summary Anin vitro model to establish primary and subcultures of rat kidney proximal tubule (RPT) cells is described. After excising the kidneys and separating the cortex, the cortical tissue is digested with the enzyme DNAse-collagenase (Type I) resulting in a high yield of viable RPT Cells. The isolated RPT cells are then seeded onto rat tail collagen-coated surfaces and grown to confluency in a serum-free, hormonally defined medium. The cell yield can be increased by transfering the conditioned medium on Day 1 to more rat tail collagen-coated surfaces. RPT cell attachment and morphology was better on rat tail collagen-coated surfaces than on bovine collagen Type I coated surfaces. The culture medium was a 1∶1 mixture of Ham’s F-12 and Dulbecco’s modified Eagle’s medium supplemented with bovine serum albumin, insulin, transferrin, selenium, hydrocortisone, triiodothyronine, epidermal growth factor, and glutamine. The RPT cells became confluent in 7–10 d, at which point they could be subcultured by trypsinizing and growth in the same medium. In some studies, 10 ng/ml cholera toxin was added to the culture medium. We could passage the RPT cells up to 14 times in the presence of cholera toxin. The cells were investigated for activity of several markers. The cells were histochemically positive for alkaline phosphatase and γ-glutamyl transpeptidase activity and synthesized the intermediate filament pankeratin. The RPT cells displayed apically directed sodium-dependent active glucose transport in culture. Hence, the RPT cells retain structural and functional characteristics of transporting renal epithelia in culture. This rat cell culture model will be a valuable tool for substrate uptake and nephrotoxicity studies.  相似文献   

9.
10.
Isolated rat kidney proximal tubule brush border membrane vesicles exhibit an increase in diacylglycerol levels (20- to 30-fold) and a concomitant decrease in phosphatidylinositol when incubated with [3H]arachidonate-labeled lipids, Ca2+, and deoxycholate. Levels of free arachidonate, triglyceride, and noninositol phospholipids are not altered. These results suggest phosphatidylinositol phosphodiesterase activity is associated with rat proximal tubule brush border membrane. Presence of both deoxycholate and certain divalent cations was necessary to demonstrate enzyme activity. Optimum pH ranged from 7.0 to 8.5. Ca2+, Mg2+, and Mn2+ stimulated diglyceride production while Ba2+, Zn2+, Hg2+, and K+ were ineffective. HgCl2 inhibited Ca2+-stimulated phosphatidylinositol phosphodiesterase. Mg2+ and deoxycholate-dependent enzyme activity was shown to be phosphatidylinositol specific. Sodium lauryl sulfate, tetradecyltrimethylammonium bromide, and Triton X-100 did not activate phosphatidylinositol phosphodiesterase in the presence of Ca2+. In combination with deoxycholate, diglyceride formation was not affected by sodium lauryl sulfate, partially inhibited by Triton X-100, and completely abolished by tetradecyltrimethylammonium bromide. Diglyceride kinase activity was not found associated with brush border membrane phosphatidylinositol phosphodiesterase. ATP (1-5 mM) inhibited Ca2+- or Mg2+-stimulated, deoxycholate-dependent phosphatidylinositol hydrolysis by chelating the required divalent cation.  相似文献   

11.
Changes in the intermediate filament composition of rat kidney proximal tubule cells in culture have been investigated. The data suggest that differentiated tubular epithelial cells do not express vimentin, but vimentin expression is induced when the cells begin to proliferate in culture. The cultured cells are positive for both cytokeratins and vimentin by immunofluorescence microscopy. The data support the concept that the intermediate filament composition of proximal tubule epithelial cells can be altered during proliferation induced by nephrotoxic chemicals or by neoplastic transformation.  相似文献   

12.
Summary Following perfusion fixation of the rat kidney with glutaraldehyde the proximal tubule cells display small apical vacuoles, large apical vacuoles, and apical vacuoles in which a part of the limiting membrane is invaginated into the vacuole. These invaginated apical vacuoles occur more frequently in proximal convoluted tubules than in proximal straight tubules. One tubular cell may contain apical vacuoles of different sizes and stages of invagination, ranging from larger vacuoles with a wide lumen and a small area of invaginated membrane to smaller elements with no apparent lumen and a large area of invaginated membrane. Invaginated apical vacuoles lie either singly in the cytoplasm or close to the membranes of other apical vacuoles, but never in contact with the cell membrane or the membranes of lysosomes, endoplasmic reticulum, Golgi apparatus, mitochondria and peroxisomes.These findings suggest that the invaginated apical vacuoles are not fixation artifacts, but rather develop in living state in cells of the proximal tubule from spherical endocytotic elements.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

13.
Conductive properties of the proximal tubule in Necturus kidney   总被引:1,自引:0,他引:1       下载免费PDF全文
The electrical properties of the proximal tubule of the in vivo Necturus kidney were investigated by injecting current (as rectangular waves) into the lumen or into the epithelium of single tubules and by studying the resulting changes of transepithelial (VL) and/or cell membrane potential (VC) at various distances from the source. In some experiments paired measurements of VL and VC were performed at two abscissas x and x'. The luminal length constant of about 1,030 micrometer was shown to provide a good estimate of the transepithelial resistance, specific resistance (RTE = 420 omega.cm2) and/or per unit length (rTE = 1.3 x 10(4) omega.cm). The apparent intraepithelial length constant was subject to distortions arising from concomitant current spread in the lumen. The resistances of luminal membrane (rL), basolateral membrane (rB), and shunt pathway (rS) were estimated by two independent methods at 3.5 x 10(4), 1.2 x 10(4), and 1.7 x 10(4) omega.cm, respectively. The corresponding specific resistances were close to 1,200, 600, and 600 omega.cm2. There are two main conclusions of this study. (a) The resistances of cell membranes and shunt pathway are of the same order of magnitude. The figure of the shunt resistance is at variance with the notion that the proximal tubule of Necturus is a leaky epithelium. (b) A rigorous assessment of the conductive properties of concentric cylindrical double cables (such as renal tubules) requires that electrical interactions arising from one cable to another be taken into account. Appropriate equations were developed to deal with this problem.  相似文献   

14.
Purification and properties of rat brain dipeptidyl aminopeptidase   总被引:2,自引:0,他引:2  
Dipeptidyl aminopeptidase, which hydrolyzes the 7-(Gly-Pro)-4-methylcoumarinamide, has been purified from the brains of 3 week-old rats. It was purified about 2,600-fold by column chromatography on CM-cellulose, hydroxyapatite and Gly-Pro AH-Sepharose. This enzyme hydrolyzed Lys-Ala-beta-naphthylamide well with an optimum pH of 5.5. It was inhibited by diisopropyl fluorophosphate, phenyl-methanesulfonyl fluoride, some cations, and puromycin, but was not inhibited by p-chloromercuribenzoate, N-ethylmaleimide, dithiothreitol, EDTA, iodoacetic acid, and bacitracin, indicating that rat brain dipeptidyl aminopeptidase is a serine protease. This enzyme showed a molecular weight of 220,000 by gel filtration and of 51,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The properties of purified rat brain dipeptidyl aminopeptidase were similar to those of bovine pituitary dipeptidyl peptidase II, but the molecular weight and substrate specificity of these enzymes were different.  相似文献   

15.
Summary To assess the mechanism(s) by which intraluminal chloride concentration is raised above equilibrium values, intracellular Cl activity ( i Cl ) was studied in the proximal tubule ofNecturus kidney. Paired measurements of cell membrane PD (V BL) and Cl-selective electrode PD (V BL Cl ) were performed in single tubules, during reversible shifts of peritubular or luminal fluid composition. Steadystate i Cl was estimated at 14.6±0.6 mmol/liter, a figure substantially higher than that predicted for passive distribution. To determine the site of the uphill Cl transport into the cell, an inhibitor of anion transport (SITS) was added to the perfusion fluid. Introduction of SITS in peritubular perfusate decreased i Cl , whereas addition of the drug in luminal fluid slightly increased i Cl ; both results are consistent with basolateral membrane uphill Cl transport from interstitium to the cell. TMA+ for Na+ substitutions in either luminal or peritubular perfusate had no effect on i Cl . Removal of bicarbonate from peritubular fluid, at constant pH (a situation increasing HCO 3 outflux), resulted in an increase of i Cl , presumably related to enhanced Cl cell influx: we infer that Cl is exchanged against HCO 3 at the basolateral membrane. The following mechanism is suggested to account for the rise in luminal Cl concentration above equilibrium values: intracellular CO2 hydration gives rise to cell HCO 3 concentrations above equilibrium. The passive exit of HCO 3 at the basolateral membrane energizes an uphill entry of Cl into the cell. The resulting increase of i Cl , above equilibrium, generates downhill Cl diffusion from cell to lumen. As a result, luminal Cl concentration also increases.C.N.R.S. Greco 24. Part of this work was presented at the 12th annual meeting of the American Society of Nephrology, Boston, Mass. (Edelman et al., 1979).  相似文献   

16.
We have shown previously (R.P.J. Oude Elferink, E.M. Brouwer-Kelder, I. Surya, A. Strijland, M. Kroos, A.J.J. Reuser, J.M. Tager, Eur. J. Biochem. 139, 489-495 (1984)) that human urine contains considerable amounts of a precursor form of lysosomal alpha-glucosidase (about 50% of the total alpha-glucosidase activity present). We have now purified alpha-glucosidase from human kidney. Only about 5 to 10% of the total lysosomal alpha-glucosidase present in kidney comprises the precursor form of the enzyme. By means of immunocytochemistry using monoclonal antibodies, the precursor of alpha-glucosidase was detected in the brush border of the proximal tubule cells. Taking into account the amount of precursor alpha-glucosidase excreted daily into the urine and the amount present in the kidneys, we conclude that extensive secretion of precursor alpha-glucosidase occurs from the brush border of the proximal tubules.  相似文献   

17.
18.
19.
20.
Diabetic nephropathy is a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved in the early changes of the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. This review focuses on the proximal tubule in the early diabetic kidney, particularly on its exposure and response to high glucose levels, albuminuria, and other factors in the diabetic glomerular filtrate, the hyperreabsorption of glucose, the unique molecular signature of the tubular growth phenotype, including aspects of senescence, and the resulting cellular and functional consequences. The latter includes the local release of proinflammatory chemokines and changes in proximal tubular salt and fluid reabsorption, which form the basis for the strong tubular control of glomerular filtration in the early diabetic kidney, including glomerular hyperfiltration and odd responses like the salt paradox. Importantly, these early proximal tubular changes can set the stage for oxidative stress, inflammation, hypoxia, and tubulointerstitial fibrosis, and thereby for the progression of diabetic renal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号