首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the natural environment, hibernating sciurids generally remain dormant during winter and enter numerous deep torpor bouts from the time of first immergence in fall until emergence in spring. In contrast, black-tailed prairie dogs (Cynomys ludovicianus) remain active throughout winter but periodically enter short and shallow bouts of torpor. While investigating body temperature (T(b)) patterns of black-tailed prairie dogs from six separate colonies in northern Colorado, we observed one population that displayed torpor patterns resembling those commonly seen in hibernators. Five individuals in this population experienced multiple torpor bouts in immediate succession that increased in length and depth as winter progressed, whereas 16 prairie dogs in five neighboring colonies remained euthermic for the majority of winter and entered shallow bouts of torpor infrequently. Our results suggest that these differences in torpor patterns did not result from differences in the physiological indicators that we measured because the prairie dogs monitored had similar body masses and concentrations of stored lipids across seasons. Likewise, our results did not support the idea that differences in overwinter T(b) patterns between prairie dogs in colonies with differing torpor patterns resulted from genetic differences between populations; genetic analyses of prairie dog colonies revealed high genetic similarity between the populations and implied that individuals regularly disperse between colonies. Local environmental conditions probably played a role in the unusual T(b) patterns experienced by prairie dogs in the colony where hibernation-like patterns were observed; this population received significantly less rainfall than neighboring colonies during the summer growing seasons before, during, and after the year of the winter in which they hibernated. Our study provides a rare example of extreme plasticity in thermoregulatory behaviors of free-ranging prairie dogs and provides evidence contrary to models that propose a clear delineation between homeothermy, facultative torpor, and hibernation.  相似文献   

2.
Laboratory experiments have demonstrated that the amount of polyunsaturated fatty acids (PUFAs) in the diet before hibernation influences patterns of mammalian torpor. The hibernation ability of ground squirrels is greatest (longest torpor bouts, greatest number of animals entering torpor) when the PUFA content of their fall diets is 33-74 mg/g, under laboratory conditions. The extent to which natural fall diets both (a) vary in PUFA content and (b) influence the torpor patterns of free-ranging populations of hibernating mammals is unknown, however. We conducted a 3-yr study on the diet PUFA contents and subsequent hibernation patterns of free-ranging arctic ground squirrels (Spermophilus parryii) in the Brooks Range of Alaska. We found that the PUFA contents of fall diets varied more than threefold among individuals. Our study also revealed that arctic ground squirrels that consumed a moderate-PUFA (33-74 mg/g) diet had (a) longer torpor bouts, (b) fewer arousals from torpor, (c) shorter arousal periods, (d) more days in torpor, and (e) greater probability of persisting in the population than those that consumed a high-PUFA (>74 mg/g) diet during the fall. No animals were demonstrated to have consumed a diet representing low-PUFA (<33 mg/g) values. Our study is therefore the first to demonstrate that estimated dietary PUFA levels of a free-ranging hibernator influence subsequent torpor patterns.  相似文献   

3.
1.
Arrest temperatures and Q10 values for extensor digitorum longus (EDL), soleus, trabecula, and jejunum muscle twitch strength, contraction time, and 0.5 relaxation time were calculated for a deep torpor hibernator, white-tailed prairie dog (WTPD) (Cynomys leucurus), a shallow torpor hibernator, black-tailed prairie dog (BTPD) (Cynomys ludovicianus), and a non-hibernator, lab rat (Rattus norvegicus) to test the hypothesis that tissue temperature tolerances limit the depth of expressed torpor.  相似文献   

4.
White-tailed prairie dogs (Cynomys leucurus) are spontaneous hibernators that enter torpor each fall, whereas black-tailed prairie dogs (C. ludovicianus) hibernate facultatively only when food- or water-stressed during the winter. The body masses of both species greatly increase during the fall feeding period, with most of this gain in the form of depot fat. Body fat is utilized during winter fasting and/or hibernation. We measured the activities of fatty acid synthase (FAS), ATP-citrate lyase (ACL), malic enzyme (ME), glucose-6-phosphate dehydrogenase (G6PDH), and hormone-sensitive lipase (HSL) in the tissues of both C.leucurus (hibernating and euthermic) and C. ludovicianus (euthermic only) under controlled conditions. The activities of FAS, ACL, and G6PDH in the liver all decreased during hibernation. The activities of ME and G6PDH in white adipose tissue (WAT) were also reduced during hibernation. Euthermic C. leucurus and euthermic C. ludovicianus differed only in brown adipose (BAT) ACL and WAT G6PDH activities. No significant differences in HSL activities were found between these two species or between euthermic and hibernating animals. These results suggest that this seasonal body fat cycle is due, at least in part, to seasonal variations in the activities of FAS, ME, ACL, and G6PDH that affect the rate of fatty acid synthesis. This study also demonstrates that spontaneous hibernators do not have a greater capacity to synthesize fatty acids during the fall than facultative hibernators, as previously suggested.  相似文献   

5.
Mechanisms that influence body temperature patterns in black-tailed prairie dogs are not well understood. Previous research on both free-ranging and laboratory populations of black-tailed prairie dogs (Cynomys ludovicianus) has suggested that reductions in ambient temperature and food and water deprivation are the primary factors that stimulate torpor in this species. In other species, however, torpor has been shown to be influenced by a multitude of factors, including innate circadian and circannual timing mechanisms, energy status, and reproductive behaviors. Our objective was to clarify the influence of weather, sex, and intrinsic timing mechanisms on the body temperature patterns of free-ranging black-tailed prairie dogs. We monitored body temperatures of eight adult (>1 yr) prairie dogs from November 1999 to June 2000. Prairie dogs showed distinct daily and seasonal body temperature patterns, which reflected changes in ambient temperatures that occurred during these periods. These patterns of daily and seasonal heterothermy suggest that body temperature patterns of black-tailed prairie dogs may be driven by an innate timing mechanism. All prairie dogs entered torpor intermittently throughout winter and spring. Torpor bouts appeared to be influenced by precipitation and reductions in ambient temperature. Our results also suggest that reproductive behaviors and circadian timing may influence torpor in this species.  相似文献   

6.
The white-tailed prairie dog is an obligate hibernator that enters a heterothermic phase when maintained in the cold with low intensity light and ad libitum food and water. The black-tailed prairie dog (a facultative hibernator) will not hibernate under similar conditions. It has been suggested that the black tailed prairie dog remains active during the winter because it can conserve water more effectively due to a more efficient kidney. The present study revealed no significant differences between the species in renal morphology: relative medullary thickness, nephron heterogeneity, renal vasculature, or fornix dimensions, all of which are structures associated with the urinary concentrating mechanism. In addition, there was no difference in number of nephrons between the two species. The black-tailed prairie dog does produce a more concentrated urine when food and water deprived. However, this difference was not observed when the animals were salt loaded. The water-deprivation and salt-loading experiments suggest that the higher urine osmolality produced by the back-tailed prairie dog during fasting is a result of a higher urea load due to a greater protein catabolism and not because of a differential capacity to concentrate urine.Abbreviations C cortex - GFR glomerular filtration rate - H height - IS inner stripe - IZ inner zone of medulla - L length - OS outer stripe - PE polythylene - RMT relative medullary thickness - T a ambient temperature - W width  相似文献   

7.
Heterothermic mammals increase the proportion of polyunsaturated fatty acids (PUFA) in their body fats prior to entering torpor. Because PUFA have low melting points, it is thought that they play an important role in maintaining the fluidity of depot fats and membrane phospholipids at low body temperatures. However, PUFA are more prone to autoxidation when exposed to reactive oxygen species (ROS) during torpor and during the periodic arousals that characterize hibernation. A lack of PUFA or an excess of PUFA may constrain the use of torpor by heterothermic mammals. We performed a mixed model meta-analysis of 17 controlled-feeding studies to test the effect of dietary PUFA on the depth and expression of torpor by daily heterotherms and hibernators. We also reviewed the literature on the PUFA content of the diet and depot fats of heterothermic mammals to address two principal topics: (1) Do low dietary levels of PUFA reduce the expression of torpor under laboratory conditions and, if so, are free-ranging animals constrained by a lack of PUFA? (2) Do high dietary levels of PUFA result in a reduction in the use, depth, and duration of torpor and, if so, do free-ranging animals seek to optimize rather than maximize PUFA intake? Low-PUFA diets consistently increase the lower setpoint for body temperature and minimum metabolic rate for both hibernators and daily heterotherms. Above the lower setpoint, low-PUFA diets usually increase body temperature and metabolic rate and decrease the duration of torpor bouts and this effect is similar for hibernators and daily heterotherms. Free-ranging rodent hibernators have dietary PUFA intakes that are far higher than those of the low-PUFA diets offered in controlled-feeding experiments, so these hibernators may never experience the constraints associated with a lack of PUFA. Diets of free-ranging insectivorous bats and echidnas have PUFA levels that are less than half as high as those offered in experimental low-PUFA diets, yet they exhibit deep and extended bouts of torpor. We argue that alternate mechanisms exist for maintaining the fluidity of body fats and that high-PUFA intake may not be a prerequisite for deep and extended bouts of torpor. Four studies indicate that animals that were fed high-PUFA diets are reluctant to enter torpor and show shallower and shorter torpor bouts. Although authors attribute this response to autoxidation, these animals did not have a higher PUFA content in their depot fats than animals where PUFA was shown to enhance torpor. We suggest that these contradictory results indicate inter-specific or inter-individual variation in the ability to control ROS and limit autoxidation of PUFA. High dietary levels of PUFA will constrain the expression of torpor only when the oxidative challenge exceeds the capacity of the antioxidant defence system. Studies of diet selection indicate that insectivorous species with low dietary PUFA levels seek to maximize PUFA intake. However, herbivorous species that have access to plants and plant parts of high-PUFA content do not appear to maximize PUFA intake. These data suggest that animals attempt to optimize rather than maximize PUFA intake. The effect of PUFA should be viewed in the light of a cost-benefit trade-off, where the benefit of high-PUFA intake is an easier access to low body temperatures and the cost is increased risk of autoxidation.  相似文献   

8.
Hibernation and daily torpor are physiological strategies to cope with energetic challenges that occur in many mammalian and avian taxa, but no reliable information exists about daily torpor or hibernation for any xenarthran. Our objective was to determine whether the pichi (Zaedyus pichiy), a small armadillo (Xenarthra, Dasypodidae) that inhabits arid and semi-arid habitats in central and southern Argentina and Chile, enters shallow daily torpor or prolonged deep hibernation during winter when environmental temperature and food availability are low. We studied body temperature changes during winter in semi-captive pichis by means of temperature dataloggers implanted subcutaneously. All individuals entered hibernation, characterized by torpor events of 75+/-20 h during which the subcutaneous temperature (T(sc)) decreased to 14.6+/-2.1 degrees C. These events were interrupted by periods of euthermia of 44+/-38 h with a T(sc) of 29.1+/-0.7 degrees C. After the hibernation season, daily torpor bouts of 4 to 6 h occurred irregularly, with T(sc) dropping to as low as 24.5 degrees C. We conclude that the pichi is a true hibernator and can enter daily torpor outside of the hibernation season.  相似文献   

9.
Polyunsaturated fatty acids (PUFAs) can have strong effects on hibernation and daily torpor in mammals. High dietary PUFA contents were found to increase proneness for torpor, decrease body temperatures, prolong torpor bout duration, and attenuate hibernation mass loss. The mechanism by which PUFAs enhance torpor and hibernation is unknown, however. On the basis of a review of the literature, and on reexamining our own data on alpine marmots, we propose that effects on hibernation are not due to PUFAs in general, but to shifts in the ratio of n-6 PUFAs to n-3 PUFAs in membrane phospholipids. Specifically, high ratios of n-6 to n-3 PUFAs increase the activity of the Ca2+-Mg2+ pump in the sarcoplasmic reticulum of the heart (SERCA) and counteract Q10 effects on SERCA activity at low tissue temperatures. Therefore, high n-6 to n-3 PUFA ratios in cardiac myocyte membranes appear to protect the hibernating heart from arrhythmia, which in hypothermic nonhibernators is caused by massive increases in cytosolic Ca2+. The resulting reduced risk of cardiac arrest during hypothermia may explain why increased dietary uptake of n-6 PUFAs, but not of n-3 PUFAs, can strongly enhance the propensity for hibernation, and allows heterotherms to reach lower body temperatures, with associated increased energy savings. Therefore, at least for herbivorous hibernators, such as marmots, linoleic acid (C18:2 n-6)--the dietary source of all n-6 PUFAs--appears to represent a crucial and limited resource in natural environments.  相似文献   

10.
Smith GA  Lomolino MV 《Oecologia》2004,138(4):592-602
We tested the hypothesis that black-tailed prairie dogs (Cynomys ludovicianus) influence avian community structure on the shortgrass prairie. We surveyed 36 prairie dog towns and 36 paired sites without prairie dogs during summer and fall of 1997, 1998, and 1999 in the Oklahoma Panhandle. Our surveys totaled 9,040 individual observations for 73 avian species. Significantly distinct avian communities were present on prairie dog towns when compared to sites within four different macrohabitats of the surrounding landscape: open rangeland, scrub/sandsage (Artemisia filifolia) habitats, Conservation Reserve Program (CRP) plots, and fallow crop fields. Relative densities of all bird species combined was higher on prairie dog towns versus paired sites in summer and fall. Mean species richness of birds was significantly higher on prairie dog towns than paired sites during summer, but there were no significant differences in fall. Open rangeland had the highest mean species richness in fall. Assemblages of avian communities differed significantly between prairie dog towns and the four macrohabitat types during summer. Burrowing owls (Athene cunicularia), killdeer (Charadrius vociferous), horned larks (Eremophila alpestris), and meadowlarks (Sturnella spp.) were positively and significantly associated with prairie dog towns during summer, while horned larks and ferruginous hawks (Buteo regalis) were significantly associated with prairie dog towns during fall. Even in their current remnant state, black-tailed prairie dogs continue to play a significant role in the assembly of ecological communities across the Great Plains. Conservation of prairie dogs goes well beyond a single species, and is an important strategy for the preservation of the prairie ecosystem as a whole.  相似文献   

11.
12.
Glycerol-3-phosphate dehydrogenase (G3PDH; E.C.1.1.1.8) was purified from liver and skeletal muscle of black-tailed prairie dogs (Cynomys ludivicianus), a hibernating species. Native and subunit molecular masses of the dimeric enzyme were 77 and 40 kD, respectively, and both tissues contained a single isozyme with a pI of 6.4. Kinetic parameters of purified G3PDH from prairie dog liver and muscle were characterized at 22 and 5 °C and compared with rabbit muscle G3PDH. Substrate affinities for hibernator muscle G3PDH were stable (NAD) or increased significantly (Km G3P and DHAP decreased) at low temperature whereas Km NAD and DHAP of rabbit G3PDH increased. Prairie dog G3PDH showed greater conservation of Km G3P over a wide temperature range as well as greater thermal stability and resistance to chemical denaturation by guanidine hydrochloride than the rabbit enzyme. In addition, using the protein sequence of the hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and bioinformatics tools, the deduced protein structure of G3PDH was compared between heterothermic and homeothermic mammals. Structural and functional characteristics of G3PDH from the hibernating species would support enzyme function over a wide range of core body temperatures over cycles of torpor and arousal.  相似文献   

13.
We investigated the effect of parasympathetic antagonism on the patterns of heart rate during torpor in the western pygmy possum Cercatetus concinnus (Marsupialia: Burramyidae). This is the first study to examine the influence of the autonomic nervous system on cardiac function in a metatherian hibernator. During torpor, antagonism of the parasympathetic nervous system eliminated the ventilatory tachycardia, variability in instantaneous heart rate, and increased the overall heart rate. These findings are consistent with previous studies on other mammalian heterotherms, which have shown that the parasympathetic nervous system is responsible for these patterns in heart rate. During extended bouts of torpor (2 to 3 days) the ventilatory tachycardia persisted throughout each bout, which indicates that the parasympathetic nervous system remained functional during that time. It has been suggested that the progressive removal of autonomic tone is characteristic of deep steady-state hibernation. There is no evidence to suggest that such a state was going to be reached in the possums in this study. To date there is little evidence that clearly demonstrates a physiological basis for the distinction between shallow, daily torpor and deep hibernation.  相似文献   

14.
Plague is the primary cause for the rangewide decline in prairie dog (Cynomys spp.) distribution and abundance, yet our knowledge of plague dynamics in prairie dog populations is limited. Our understanding of the effects of plague on the most widespread species, the black-tailed prairie dog (C. ludovicianus), is particularly weak. During a study on the population biology of black-tailed prairie dogs in Wyoming, USA, plague was detected in a colony under intensive monitoring, providing a unique opportunity to quantify various consequences of plague. The epizootic reduced juvenile abundance by 96% and adult abundance by 95%. Of the survivors, eight of nine adults and one of eight juveniles developed antibodies to Yersinia pestis. Demographic groups appeared equally susceptible to infection, and age structure was unaffected. Survivors occupied three small coteries and exhibited improved body condition, but increased flea infestation compared to a neighboring, uninfected colony. Black-tailed prairie dogs are capable of surviving a plague epizootic and reorganizing into apparently functional coteries. Surviving prairie dogs may be critical in the repopulation of plague-decimated colonies and, ultimately, the evolution of plague resistance.  相似文献   

15.
Elemental hyperaccumulation in plants is hypothesized to represent a plant defense mechanism. The objective of this study was to determine whether selenium (Se) hyperaccumulation offers plants long-term protection from the black-tailed prairie dog (Cynomys ludovicianus). Prairie dogs are a keystone species. The hyperaccumulator Stanleya pinnata (prince's plume) co-occurs with prairie dogs in seleniferous areas in the western United States. Stanleya pinnata plants pretreated with high or low Se concentrations were planted on two prairie dog towns with different levels of herbivory pressure, and herbivory of these plants was monitored over 2 years. Throughout this study, plants with elevated Se levels suffered less herbivory and survived better than plants with low leaf Se concentrations. This study indicates that the Se in hyperaccumulator S. pinnata protects the plant in its natural habitat from herbivory by the black-tailed prairie dog. The results from this study support the hypothesis that herbivory by prairie dogs or similar small mammals has been a contributing selection pressure for the evolution of plant Se hyperaccumulation in North America. This study is the first to test the ecological significance of hyperaccumulation over a long period in a hyperaccumulator's natural habitat.  相似文献   

16.
Hibernation is a natural adaptation that allows certain mammals to survive physiological extremes that are lethal to humans. Near freezing body temperatures, heart rates of 3–10 beats per minute, absence of food consumption, and depressed metabolism are characteristic of hibernation torpor bouts that are periodically interrupted by brief interbout arousals (IBAs). The molecular basis of torpor induction is unknown, however starved mice overexpressing the metabolic hormone fibroblast growth factor 21 (FGF21) promote fat utilization, reduce body temperature, and readily enter torpor–all hallmarks of mammalian hibernation. In this study we cloned FGF21 from the naturally hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and found that levels of FGF21 mRNA in liver and FGF21 protein in serum are elevated during hibernation torpor bouts and significantly elevated during IBAs compared to summer active animals. The effects of artificially elevating circulating FGF21 concentrations 50 to 100-fold via adenoviral-mediated overexpression were examined at three different times of the year. This is the first time that a transgenic approach has been used in a natural hibernator to examine mechanistic aspects of hibernation. Surgically implanted transmitters measured various metrics of the hibernation phenotype over a 7-day period including changes in motor activity, heart rate and core body temperature. In April fed-state animals, FGF21 overexpression decreased blood insulin and free fatty acid concentrations, effects similar to those seen in obese mice. However, elevated FGF21 concentrations did not cause torpor in these fed-state animals nor did they cause torpor or affect metabolic parameters in fasted-state animals in March/April, August or October. We conclude that FGF21 is strongly regulated during torpor and IBA but that its overexpression is not sufficient to cause torpor in naturally hibernating ground squirrels.  相似文献   

17.
Golden-mantled ground squirrels (Spermophilus lateralis) are herbivores that hibernate during winter. Although little is known about the nutritional/physiological constraints on hibernation, numerous studies have demonstrated that increasing the amount of linoleic acid (a polyunsaturated fatty acid) in the diet enhances hibernation. This is probably because high linoleic acid diets reduce the melting points of the depot fats produced for hibernation which makes them more metabolizable at low body temperatures. This suggests that a major limitation on hibernation may be obtaining enough linoleic acid in the diet for proper hibernation. In all previous studies, however, the amount of linoleic acid in the diets of free-ranging animals was either not considered, or the range of dietary linoleic acid contents in the experiments was less than that of natural diets. It is thus not known whether the amount of linoleic acid available to hibernators under natural conditions actually limits their torpor patterns. A series of laboratory feeding and hibernation experiments were conducted with S. lateralis and artificial diets with different linoleic acid contents that were either below or above the linoleic acid content of the natural diet. The results demonstrated that when dietary linoleic acid contents are either below or above natural levels, hibernation ability is greatly reduced. Hibernation ability was reduced when the squirrels were maintained on a high linoleic acid diet probably by the production of toxic lipid peroxides in brown adipose tissues. The results indicate that there is an optimal level of dietary linoleic acid for proper hibernation, and this is equal to that of the natural diet. The amount of linoleic acid available in the diet thus does not limit hibernation under normal natural conditions.Abbreviations BAT brown adipose tissue - bm body mass - FA fatty acid - PUFA polyunsaturated fatty acid - T a ambient temperature - T b body temperature - WAT white adipose tissue  相似文献   

18.
ABSTRACT In recent years, people have interpreted scientific information about the black-tailed prairie dog (Cynomys ludovicianus) in various, and sometimes conflicting, ways. Political complexity around the relationship among black-tailed prairie dogs, agricultural interests, and wildlife has increased in recent years, particularly when prairie dogs occur on publicly owned lands leased to private entities for livestock grazing. Some have proposed that estimates of prairie dog (Cynomys spp.) numbers from 1900 are inflated, that prairie dog grazing is not unique (other grazers have similar affects on vegetation), and that prairie dogs significantly reduce carrying capacity for livestock and wildlife. We address all these issues but concentrate on the degree of competition between prairie dogs and ungulates because this motivates most prairie dog control actions. We conclude that the available information does not justify holding distribution and numbers of prairie dogs at a level that is too low to perform their keystone ecological function. We further conclude that it is especially important that prairie dogs be sufficiently abundant on public lands to perform this function.  相似文献   

19.
We studied resource partitioning between sympatric populations of Columbian white-tailed (CWTD; Odocoileus virginianus leucurus) and black-tailed (BWTD) deer (O. odocoileus hemionus columbianus) in western Oregon to understand potential mechanisms of coexistence. We used horseback transects to describe spatial distributions, population overlap, and habitat use for both species, and we studied diets with microhistological analysis of fecal samples. Distribution patterns indicated that white-tailed and black-tailed deer maintained spatial separation during most seasons with spatial overlap ranging from 5%–40% seasonally. Coefficients of species association were negative, suggesting a pattern of mutual avoidance. White-tailed deer were more concentrated in the southern portions of the study area, which was characterized by lower elevations, more gradual slopes, and close proximity to streams. Black-tailed deer were more wide ranging and tended to occur in the northern portions of the study area, which had higher elevations and greater topographical variation. Habitat use of different vegetative assemblages was similar between white-tailed and black-tailed deer with overlap ranging from 89%–96% seasonally. White-tailed deer used nearly all habitats available on the study area except those associated with conifers. White-tailed deer used oak-hardwood savanna shrub, open grassland, oak-hardwood savanna, and riparian habitats the most. Black-tailed deer exhibited high use for open grassland and oak-hardwood savanna shrub habitats and lower use of all others. The 2 subspecies also exhibited strong seasonal similarities in diets with overlap ranging from 89% to 95%. White-tailed deer diets were dominated by forbs, shrubs, grasses, and other food sources (e.g., nuts and lichens). Columbian black-tailed deer diets were dominated mostly by forbs and other food sources. Seasonal diet diversity followed similar patterns for both species with the most diverse diets occurring in fall and the least diverse diets in spring. High overlap in habitat use and diets resulted in high trophic overlap (81–85%) between white-tailed and black-tailed deer; however, the low spatial overlap reduced the potential for exploitative competition but may have been indicative of inference competition between the species. Diverse habitat and forage opportunities were available on the study area due to heterogeneous landscape characteristics, which allowed ecological separation between white-tailed and black-tailed deer despite similarities in diets and habitat use. We make several recommendations for management of CWTD, a previously threatened species, based on the results of our study. © 2011 The Wildlife Society.  相似文献   

20.
Connectivity of populations influences the degree to which species maintain genetic diversity and persist despite local extinctions. Natural landscape features are known to influence connectivity, but global anthropogenic landscape change underscores the importance of quantifying how human-modified landscapes disrupt connectivity of natural populations. Grasslands of western North America have experienced extensive habitat alteration, fragmenting populations of species such as black-tailed prairie dogs (Cynomys ludovicianus). Population sizes and the geographic range of prairie dogs have been declining for over a century due to habitat loss, disease, and eradication efforts. In many places, prairie dogs have persisted in the face of emerging urban landscapes that carve habitat into smaller and smaller fragments separated by uninhabitable areas. In extreme cases, prairie dog colonies are completely bounded by urbanization. Connectivity is particularly important for prairie dogs because colonies suffer high probabilities of extirpation by plague, and dispersal permits recolonization. Here we explore connectivity of prairie dog populations using analyses of 11 microsatellite loci for 9 prairie dog colonies spanning the fragmented landscape of Boulder County, Colorado. Isolation-by-resistance modeling suggests that wetlands and high intensity urbanization limit movement of prairie dogs. However, prairie dogs appear to move moderately well through low intensity development (including roads) and freely through cropland and grassland. Additionally, there is a marked decline in gene flow between colonies with increasing geographic distance, indicating isolation by distance even in an altered landscape. Our results suggest that prairie dog colonies retain some connectivity despite fragmentation by urbanization and agricultural development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号