首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To further our understanding of the greater susceptibility of apical kernels in maize inflorescences to water stress, abscisic acid (ABA) catabolism activity was evaluated in developing kernels with chirally separated (+)-[(3)H]ABA. The predominant pathway of ABA catabolism was via 8'-hydroxylase to form phaseic acid, while conjugation to glucose was minor. In response to water deficit imposed on whole plants during kernel development, ABA accumulated to higher concentrations in apical than basal kernels, while both returned to control levels after rewatering. ABA catabolism activity per gram fresh weight increased about three-fold in response to water stress, but was about the same in apical and basal kernels on a fresh weight basis. ABA catabolism activity was three to four-fold higher in placenta than endosperm, and activity was higher in apical than basal kernels. In vitro incubation tests indicated that glucose did not affect ABA catabolism. We conclude that placenta tissue plays an important role in ABA catabolism, and together with ABA influx and compartmentation, determine the rate of ABA transport into endosperms.  相似文献   

2.
The maintenance of root elongation is an important adaptive response to low water potentials (psi(w)), but little is known about its regulation. An important component may be changes in root cell electrophysiology, which both signal and maintain growth maintenance processes. As a first test of this hypothesis, membrane potentials (E(m)) were measured within the cell elongation zone of maize (Zea mays L.) primary roots. Seedlings were grown in oxygenated solution culture, and low psi(w) was imposed by the gradual addition of polyethylene glycol. Cells hyperpolarized approximately 25 mV in response to low psi(w), and after 48 h resting potentials remained significantly hyperpolarized at psi(w) lower than -0.3 MPa compared with roots at high psi(w). Inhibitor experiments showed that the hyperpolarization was dependent on plasma membrane H(+)-ATPase activity. Previous work showed that accumulation of abscisic acid (ABA) is required for the maintenance of maize primary root elongation at low psi(w). To determine if the mechanism of action of ABA involves changes in root electrophysiology, E(m) measurements were made during long-term exposure to low psi(w). Steady-state resting E(m) were measured in regions in which maintenance of cell elongation was dependent on ABA accumulation (2-3 mm from the apex), or in which elongation was inhibited regardless of ABA status (6-8 mm from the apex). E(m) was substantially more negative in ABA-deficient roots specifically in the 2-3 mm region. The results suggest that set-points for ion homeostasis shifted in association with the maintenance of root cell elongation at low psi(w), and that ABA accumulation plays a role in regulating the ion transport processes involved in this response.  相似文献   

3.
Among other enzymes, peroxidases have been proposed to participate in the latest steps of lignin biosynthesis. In order to identify new proteins involved in such mechanism of lignification in maize, we have isolated three cDNAs coding for three different peroxidases, named ZmPox1, ZmPox2, and ZmPox3, respectively. Computational analyses of these three proteins correlate with features typically attributed to heme-containing plant peroxidases of approximately 300 amino acid residues. Although with different expression levels, ZmPox2 and ZmPox3 mRNAs are accumulated in the elongating region of young roots but not in the root tips. In addition, the ZmPox2 mRNA levels are up-regulated by wounding and ethylene treatments. However, ZmPox1 is also expressed in the root tip meristems, where lignification does not occur. Finally, in situ hybridisations indicate that ZmPox2 mRNA localises in vascular tissues and epidermis. Although ZmPox1 mRNA localises in the same regions as ZmPox2 mRNA in root tips, its mRNA is only detected in the epidermis but not in the vascular tissues of young roots, suggesting that the function of ZmPox1 is not correlated to lignification. In addition, although ZmPox3 mRNA is also detected in the regions where lignification occurs, the involvement of this peroxidase in such a mechanism remains to be further investigated due to its very low expression level. Therefore, based on its amino acid sequence and mRNA accumulation and localisation patterns, the involvement of ZmPox2 in the latest steps of lignification is discussed.  相似文献   

4.
Summary The development of a system inhibitory for IAA oxidase in lightgrown organs or plants (roots of Lens, seedlings of tobacco) is linked to the presence and the amount of chlorophyll. This correlation may be due to an increase in polyphenols which is dependant on the photosynthetic rate.  相似文献   

5.
Plant and Soil - The objective was to evaluate soluble sources of silicon (Si) applied through fertigation in mitigating water deficit in maize plants. Another objective was to determine the...  相似文献   

6.
When detached maize leaves were fed with an ABA solution viathe xylem, the relationship between the relative stomatal inhibitionand ABA concentrations was similar under different humidityconditions, but the relationship between such inhibition andABA flux was different according to changes of humidity. Tounderstand whether such stomatal behaviour was related to theway through which xylem-delivered ABA was metabolized, detachedleaves of maize and Commelina were fed with tritium-labelled(3H)-ABA at concentrations similar to that found in xylem ofdroughted plants and it was found that xylem-delivered ABA wasmetabolized rapidly in both species. The half-life of ABA metabolism,calculated from the time-related ABA disappearance curve, was42 and 64 min for maize and Commelina, respectively. The veryshort half-life suggests that there is a large capacity in leavesto metabolize xylem-delivered ABA and that metabolism is a majorfactor in the control of ABA accumulation in leaves. When ABAwas fed at different fluxes, either through changing the feedingconcentrations or through manipulating the rates of leaf transpiration(i.e. the volume flux), ABA was metabolized at rates that wereproportional to the amount that was delivered. The absoluterate of ABA metabolism was, therefore, linearly related to theamount of ABA that had arrived. It was found that xylem-deliveredABA reached the epidermis of Commelina, and was metabolizedat the same pattern as that in mesophyll tissues, i.e. at asimilar half-life and at rates constantly related to the amountthat was delivered. The role of the rapid ABA metabolism wasdiscussed in the context of stomatal control by either concentrationor flux of xylem-carried ABA. Key words: Abscisic acid, ABA metabolism, xylem-delivered ABA, maize, Commelina  相似文献   

7.
The ultrastructure of differentiating epidermal cells of maize root (within the distance of 1 and 2 mm from the root body apex) were studied under conditions of non-lethal and lethal osmotic stresses of nutrient medium containing polyethylene glycol 4000, as well as regeneration of their ultrastructure following rehydration. The structural response to water deficit of the cells investigated was dependent on both the stress duration and the stage of their ontogenic development. Following non-lethal stress, in younger cells investigated (1 mm), condensation of nuclear chromatin, decrease of polyribosomes and increased density of free ribosomes in cytoplasm, reduction of mitochondrial cristae and occurrence of intramitochondrial inclusions, less compact dictyosomes were observed. Pastid structure remained unchanged. Microtubules were lacking in treated cells. In the more differentiated cells (2 mm) protoplast retreat from cell walls was also observed as well as a general decrease of ribosomes and ER elements in parietal cytoplasm, an increased number of intramitochondrial inclusions and mitochondrial membrane fragmentation. In these cells, Golgi apparatus was also lacking. The ultrastructure regeneration of the more differentiated cells was less pronounced. Lethal osmotic stress would cause more severe structural damage in all the cell components investigated.  相似文献   

8.
Summary Structural components of meristematicZea mays primary root epidermal cells were observed after osmotic stress of the nutrient medium (12.5 atm.) and after rehydration. After non-lethal osmotic stress (24 hours), aggregation of nuclear chromatin, parallel ER arrangement, and reduction of mitochondrial cristae were found. Increased number of Golgi cisternae indicated vesicle production inhibition, and microtubules were absent in treated cells, although plastid structure remained unchanged. After lethal osmotic stress (48 hours), fragmentation of cytoplasmic membranes and a more severe structure damage of all cellular components occurred. Structure of the nucleus, mitochondria, Golgi apparatus and microtubules reappeared in the cells after rehydration. The only new feature of these cells was occurrence of smooth ER, which may indicate that the ER system has acquired a different function in regenerated cells.  相似文献   

9.
Microtubules play important roles in many physiological processes such as plant responses to drought stress. Abscisic acid (ABA) accumulates significantly in plants in response to drought conditions, which has been considered as a major response for plants to enhance drought tolerance. In this work, the focus was on the possible roles of microtubules in the induction of ABA biosynthesis in the roots of Zea mays when subjected to osmotic stress. The dynamic changes of microtubules in response to the stress were investigated by immunofluorescence staining, enzyme-linked immunosorbent assay, and a pharmacological approach. Disruption and stabilization of microtubules both significantly stimulated ABA accumulation in maize root cells, although this stimulation was markedly lower than that caused by osmotic stress. Cells in which the microtubule stability had been changed did not respond further to osmotic stress in terms of ABA biosynthesis. However, treatment with both a microtubule de-stabilizer and a stabilizer enhanced the sensitivity of cells to osmotic stress in terms of ABA accumulation. It is suggested that both osmotic stress and changes in microtubule dynamics would trigger maize root cells to biosynthesize ABA, and interactions between osmotic stress and microtubule dynamics would have an effect on ABA accumulation in root cells, although the exact mechanism is not clear at present.  相似文献   

10.
The intensity of the root-sourced abscisic acid (ABA) signal has long been thought to decrease along its long-distance transport pathway, and hence the shoot responses to the ABA signal would be expected to become less sensitive with the increase in plant height. It is reported here that there is a significant modification of the ABA signal intensity in its pathway to leaves in grapevine (Vitis riparia×Vitis labrusca), but in contrast to the expectation that the ABA signal intensity may decrease along its long-distance transport pathway, it was found that the root-sourced ABA signal is gradually intensified along a vine for as long as 3 m under both water-stressed and non-stressed conditions. Consistent with the alterations in ABA signal intensity, stomatal sensitivity to a root-sourced ABA signal was also gradually increased from the base to the apex. Leaf stomatal conductance near the apex was more severely inhibited than in the leaves at the base of the vine. It was observed that xylem pH was significantly increased from the base to the apex, and that artificially changing the xylem sap pH to be more alkaline by feeding with buffers increased the xylem ABA concentration. Our results suggest that the pH gradient along the stem may play a role in the modification and enhancement of ABA signal intensity such that the stomata at the top of canopy can be more sensitively regulated in response to soil drying.  相似文献   

11.
12.
13.
Water stress-induced ABA accumulation is a cellular signaling process from water stress perception to activation of genes encoding key enzymes of ABA biosynthesis, of which the water stress-signal perception by cells or triggering mechanism of the ABA accumulation is the center in the whole process of ABA related-stress signaling in plants. The cell biological mechanism for triggering of ABA accumulation under water stress was studied in leaves of Vicia faba. Mannitol at 890 mmol · kg-1 osmotic concentration induced an increase of more than 5 times in ABA concentration in detached leaf tissues, but the same concentration of mannitol only induced an increase of less than 40 % in ABA concentration in protoplasts. Like in detached leaf tissues, ABA concentration in isolated cells increased more than 10 times under the treatment of mannitol at 890 mmol · kg-1 concentration, suggesting that the interaction between plasmalemma and cell wall was essential to triggering of the water stress-induced ABA accumula  相似文献   

14.
Lian HL  Yu X  Lane D  Sun WN  Tang ZC  Su WA 《Cell research》2006,16(7):651-660
Aquaporins play a significant role in plant water relations. To further understand the aquaporin function in plants under water stress, the expression of a subgroup of aquaporins, plasma membrane intrinsic proteins (PIPs), was studied at both the protein and mRNA level in upland rice (Oryza sativa L. cv. Zhonghan 3) and lowland rice (Oryza sativa L. cv. Xiushui 63) when they were water stressed by treatment with 20% polyethylene glycol (PEG). Plants responded differently to 20% PEG treatment. Leaf water content of upland rice leaves was reduced rapidly. PIP protein level increased markedly in roots of both types, but only in leaves of upland rice after 10 h of PEG treatment. At the mRNA level, OsPIP1,2, OsPIP1,3, OsPIP2;1 and OsPIP2;5 in roots as well as OsPIP1,2 and OsPIP1;3 in leaves were significantly up-regulated in upland rice, whereas the corresponding genes remained unchanged or down-regulated in lowland rice. Meanwhile, we observed a significant increase in the endogenous abscisic acid (ABA) level in upland rice but not in lowland rice under water deficit. Treatment with 60 μM ABA enhanced the expression of OsPIP1;2, OsPIP2;5 and OsPIP2;6 in roots and OsPIP1;2, OsPIP2;4 and OsPIP2;6 in leaves of upland rice. The responsiveness of PIP genes to water stress and ABA were different, implying that the regulation of PIP genes involves both ABA-dependent and ABA-independent signaling oathways during water deficit.  相似文献   

15.
Seedlings of two barley genotypes (‘Maresi’ and wild form of Hordeum spontaneum) were treated with jasmonic acid (JA 5 μM and 15 μM) for 24 h, and then subjected to water stress (PEG 6000 solution of − 1.5 MPa). JA caused an increase in the content of ABA but not in that of proline and spermidine in the two studied genotypes. The effect of the treatment did not depend on the applied JA concentration. The pre-stress treatment with JA changed plant response to water deficit with regard to membrane injury. Treatment with a lower JA concentration (5 μM) caused a substantial reduction of the stress-induced membrane damage in the both genotypes. A higher JA concentration (15 μM) caused the reduction of membrane injury only in H. spontaneum and was ineffective in ‘Maresi’. JA had no influence on the leaf water status in water-stressed plants. A possible role of JA in leaf ABA accumulation and alleviation of cell membrane injury under water deficit is discussed. The work was partly supported by the Polish Committee For Scientific Research, grant No 5 PO6A 036 18  相似文献   

16.
Water stress-induced ABA accumulation is a cellular signaling process from water stress perception to activation of genes encoding key enzymes of ABA biosynthesis, of which the water stress-signal perception by cells or triggering mechanism of the ABA accumulation is the center in the whole process of ABA related-stress signaling in plants. The cell biological mechanism for triggering of ABA accumulation under water stress was studied in leaves ofVicia faba. Mannitol at 890 mmol ·kg-1 osmotic concentration induced an increase of more than 5 times in ABA concentration in detached leaf tissues, but the same concentration of mannitol only induced an increase of less than 40 % in ABA concentration in protoplasts. Like in detached leaf tissues, ABA concentration in isolated cells increased more than 10 times under the treatment of mannitol at 890 mmol · kg-1 concentration, suggesting that the interaction between plasmalemma and cell wall was essential to triggering of the water stress-induced ABA accumulation. Neither Ca2+-chelating agent EGTA nor Ca2+channel activator A23187 nor the two cytoskeleton inhibitors, colchicine and cytochalasin B, had any effect on water stress-induced ABA accumulation. Interestingly water stress-induced ABA accumulation was effectively inhibited by a non-plasmalemma-permeable sulfhydryl-modifier PCMBS (p-chloromercuriphenyl-sulfonic acid), suggesting that plasmalemma protein(s) may be involved in the triggering of water stress-induced ABA accumulation, and the protein may contain sulfhydryl group at its function domain.  相似文献   

17.
The regulative role of ABA in the rapid plant stomatal reactions in response to salinity was investigated. The influence of the short-term salinity on the overall ABA accumulation and its distribution within the mature leaf (revealed by immunohystochemical technique) and stomatal conductance of barley (Hordeum vulgare L.) were determined. Rapid bulk leaf ABA accumulation and increase in ABA immunolabeling in the mesophyl and guard cells of stomata were shown. The bulk ABA increasing in mature barley leaves coincided with stomatal closure induced by salt treatment indicating on the ABA contribution to the rapid stomatal closure.  相似文献   

18.
The proteome of the basal part of growing Zea mays leaves was analyzed from 4 to 14 d after stopping watering and in well watered controls. The relative quantity of 46 proteins was found to increase in leaves of plants submitted to water deficit. Different types of responses were observed, some proteins showing a constant increase during water deficit, while others showed stabilization after a first increase or a transient increase. Isoforms encoded by the same gene showed different responses. The response to water deficit showed genetic variation. Some increased proteins were induced specifically in one of the two studied genotypes (e.g. ASR1) while others were significantly induced in both genotypes but to a different level or with different kinetics. Analyses of relations between protein quantities, relative water content (RWC) and abscisic acid (ABA) concentration allowed us to show that the quantitative variation of some proteins (e.g. ABA45 and OSR40 proteins) was linked to differences in ABA accumulation between the genotypes. Other proteins showed genetic variations that were not related to differences in water status or ABA concentration (e.g. a cystatin). Data obtained from these experiments, together with data from other experiments, contribute to the characterization of maize proteome response to drought in different conditions and in different genotypes. This characterization allows the search for candidate proteins, i.e. for protein whose genetic variation of expression could be partly responsible for the variability of plant responses to drought.  相似文献   

19.
Four inbred maize lines differing in chilling tolerance were used to study changes in water status and abscisic acid (ABA) levels before, during and after a chilling period. Seedlings were raised in fertilized soil at 24/22°C (day/night), 70% relative humidity. and a 12-h photoperiod with 200 μmol m−2 s−1 from fluorescent tubes. At an age of 2 weeks the plants were conditioned at 14/12°C for 4 days and then chilled for 5 days at 5/3°C. The other conditions (relative humidity, quantum flux, photoperiod) were unchanged. After the chilling period the plants were transferred to the original conditions for recovery. The third leaves were used to study changes in leaf necrosis, ion efflux, transpiration, water status and ABA accumulation. Pronounced differences in chilling tolerance between the 4 lines as estimated by necrotic leaf areas, ion efflux and whole plant survival were observed. Conditioning significantly increased tolerance against chilling at 5/3°C in all genotypes. The genotypes with low chilling tolerance had lower water and osmotic potentials than the more tolerant genotypes during a chilling period at 5/3°C. These differences were related to higher transpiration rates and lower diffusive resistance values of the more susceptible lines. During chilling stress at 5/3°C ABA levels were quadrupled. Only a small rise was measurable during conditioning at 14/12°C. However, conditioning enhanced the rise of ABA during subsequent chilling. ABA accumulation in the two lines with a higher chilling tolerance was triggered at a higher leaf water potential and reached higher levels than in the less tolerant lines. We conclude that chilling tolerance in maize is related to the ability for fast and pronounced formation of ABA as a protective agent against chilling injury.  相似文献   

20.
Gibberellic acid improves water deficit tolerance in maize plants   总被引:1,自引:0,他引:1  
The combination effects of water stress and gibberellic acid (GA3) on physiological attributes and nutritional status of maize (Zea mays L. cv., DK 647 F1) were studied in a pot experiment. Maize plants were grown in the control (well watered WW) and water stress subjected to treated both water stress and two concentrations of gibberellic acid (GA3 25 mg L−1, 50 mg L−1). WS was imposed by maintaining the moisture level equivalent to 50 % pot capacity whereas the WW pots were maintained at full pot capacity. Water stress reduced the total dry weight, chlorophyll concentration, and leaf relative water content (RWC), but it increased proline accumulation and electrolyte leakage in maize plants and appears to affect shoots more than roots. Both concentrations of GA3 (25 and 50 mg L−1) largely enhanced the above physiological parameters to levels similar to control. WS reduced leaf Ca2+ and K+ concentrations, but exogenous application of GA3 increased those nutrient levels similar or close to control. Exogenous application of GA3 improved the water stress tolerance in maize plants by maintaining membrane permeability, enhancing chlorophyll concentration, leaf relative water content (LRWC) and some macro-nutrient concentrations in leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号