首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The settlement process of coral larvae following simultaneous mass-spawning remains poorly understood, particularly in terms of population and community parameters. Here, the larval settlement patterns of Acropora corals, which are the most diverse genera of scleractinian corals at the species (haplotype) level, were investigated within a single subtropical reef. Across a 4-year period (2007–2010), the mitochondrial and nuclear molecular markers of 1,073 larval settlers were analyzed. Of the 11 dominant haplotypes of recruited populations, nine exhibited non-random patterns of settlement distribution. This result suggests that the actual habitat segregation starts during the early swimming larval stages of their life history, rather than by natural selection after random settlement. In addition, the presence of a depth-related settlement pattern supports that species-specific vertical zonation of coral larvae may play a role in the establishment of habitat segregation. Moreover, in some species that showed a preference toward the shoreward area of the bay, the settlement pattern was consistent with that of the adult distribution. This result indicates that the gametes were not mixed between fore and back reefs in the period from fertilization to settlement during the mass-spawning event, even within a single small reef. Another compatible hypothesis of this pattern is that the larvae are able to recognize various types of environmental information, facilitating the selection of optimal micro-habitats. Overall, Acropora coral larvae that are produced from a simultaneous mass-spawning event may have adapted to complex reef topography by means of multi-step habitat selection at settlement, corresponding to different spatial scales.  相似文献   

2.
Identifying signatures of hybridization in molecular data and distinguishing them from other causes of phylogenetic incongruence is important for evaluating the evolutionary significance of hybridization in plants. Consensus networks and supernetworks provide a means for doing this. In this review, we explain these methodologies, discuss their potential and illustrate their application with examples from the Brassicaceae.  相似文献   

3.

Background  

Phylogenies, i.e., the evolutionary histories of groups of taxa, play a major role in representing the interrelationships among biological entities. Many software tools for reconstructing and evaluating such phylogenies have been proposed, almost all of which assume the underlying evolutionary history to be a tree. While trees give a satisfactory first-order approximation for many families of organisms, other families exhibit evolutionary mechanisms that cannot be represented by trees. Processes such as horizontal gene transfer (HGT), hybrid speciation, and interspecific recombination, collectively referred to as reticulate evolutionary events, result in networks, rather than trees, of relationships. Various software tools have been recently developed to analyze reticulate evolutionary relationships, which include SplitsTree4, LatTrans, EEEP, HorizStory, and T-REX.  相似文献   

4.
Corals display a wide range of complex life histories. The evolutionary consequences of factors such as clonality, indeterminate growth, asexual reproduction coupled with various (sexual) breeding systems, different levels of gene flow, and strongly overlapping generations have only just begun to be explored. We identify a series of problems and areas for new research that may be resolved b y the application of novel theoretical approaches (including nonequilibrium population genetic models and demographic models incorporating modular processes such as colony fission and polyp mortality), greater in situ experimentation, long-term monitoring of population dynamics and the use of new genetic techniques.  相似文献   

5.
An important missing piece in the puzzle of how plastids spread across the eukaryotic tree of life is a robust evolutionary framework for the host lineages. Four assemblages are known to harbour plastids derived from red algae and, according to the controversial chromalveolate hypothesis, these all share a common ancestry. Phylogenomic analyses have consistently shown that stramenopiles and alveolates are closely related, but haptophytes and cryptophytes remain contentious; they have been proposed to branch together with several heterotrophic groups in the newly erected Hacrobia. Here, we tested this question by producing a large expressed sequence tag dataset for the katablepharid Roombia truncata, one of the last hacrobian lineages for which genome-level data are unavailable, and combined this dataset with the recently completed genome of the cryptophyte Guillardia theta to build an alignment composed of 258 genes. Our analyses strongly support haptophytes as sister to the SAR group, possibly together with telonemids and centrohelids. We also confirmed the common origin of katablepharids and cryptophytes, but these lineages were not related to other hacrobians; instead, they branch with plants. Our study resolves the evolutionary position of haptophytes, an ecologically critical component of the oceans, and proposes a new hypothesis for the origin of cryptophytes.  相似文献   

6.

Background  

Gibbons or small apes inhabit tropical and subtropical rain forests in Southeast Asia and adjacent regions, and are, next to great apes, our closest living relatives. With up to 16 species, gibbons form the most diverse group of living hominoids, but the number of taxa, their phylogenetic relationships and their phylogeography is controversial. To further the discussion of these issues we analyzed the complete mitochondrial cytochrome b gene from 85 individuals representing all gibbon species, including most subspecies.  相似文献   

7.
Reassessing evolutionary relationships of scleractinian corals   总被引:3,自引:0,他引:3  
The widely accepted family tree of Scleractinia published by Wells, based on a combination of morphological coral taxonomy and the fossil record, has recently been revised by Veron. It is now possible to test the validity of some of the conclusions reached by these and other authors by the use of molecular techniques. This paper reviews the results to date. Studies of ribosomal DNA have shown that the Scleractinia are monophyletic, i.e. derived from the same ancestral taxon. Extensions of this same data set now indicate that the Poritidae and Dendrophylliidae, with their fossil antecedents, may each warrant separate suborder status. They further suggest (a) that the Suborder Faviina (faviids, mussids and their allies) should probably be retained as a monophyletic group and (b) that Wells' original account of the isolated position of the Pocilloporidae and Astrocoeniidae is correct. These conclusions all accord with Veron's family tree. However, the Fungiina, even after removal of the Poritidae, are unlikely to be a monophyletic group at suborder level. The molecular data further show that externally observable morphological characters used in the taxonomy of extant corals distinguish families more reliably than do internal micro-skeletal characters frequently used in coral palaeontology.  相似文献   

8.
Reproductive ecology of Caribbean reef corals   总被引:10,自引:0,他引:10  
The last decade has seen a resurgence of interest in the processes of sexual reproduction by scleractinian reef corals. Earlier investigations had focused fortuitously on brooding (planulating) species, which resulted in the general misconception that brooding was the main form of larval development of reef corals. More recent work on Indo-Pacific species has shown broadcast spawning and short annual reproductive periods to predominate. This report presents the reproductive patterns of eleven Caribbean coral species and attempts to explain the adaptive features and selective pressures that have led to the evolution of the four reproductive patterns described to date: (a) hermaphroditic broadcasters; (b) gonochoric broadcasters; (c) hermaphroditic broadcasters; (b) gonochoric brooders. Both (a) and (b) correlate with large colony size and short annual spawning periods; and (c) and (d) correlate with small colony size, multiple planulating cycles per year, and occupation of unstable habitats. Selection for outcrossing between long-lived individuals is proposed as the reason for gonochorism and for synchronous spawning of hermaphroditic broadcasters, and also for the large amount of sperm produced by hermaphroditic brooders. Selection for high rates of local recruitment is proposed as the force behind the evolution of brooding by species inhabiting unstable habitats and suffering high rates of adult mortality.  相似文献   

9.
Samples of 162 impala antelope (Aepyceros melampus) from throughout its distribution range in sub-Saharan Africa were surveyed using eight polymorphic microsatellite loci. Furthermore, 155 previously published mitochondrial DNA (mtDNA) sequences from the same localities were reanalyzed. Two subspecies of impala are presently recognized--the isolated black-faced impala (Aepyceros melampus petersi) in southwest Africa and the common impala (Aepyceros melampus melampus) abundant in southern and east Africa. All tests performed indicated significant genetic differentiation at the subspecific level. Furthermore, individual-based analyses split the common impala subspecies into two distinct genetic groups, conforming with regional geographic affiliation to southern or east Africa. This was supported by assignment tests, genetic distance measures, pairwise theta values, and analysis of molecular variance. We suggest that the presence of such previously unknown regional structuring within the subspecies reflects a pattern of colonization from a formerly large panmictic population in southern Africa toward east Africa. This scenario was supported by a progressive decline in population diversity indices toward east Africa and a significant increase in the quantity theta/(1 - theta). Both microsatellite and mtDNA data indicated a genetic distinctiveness of the Samburu population in Kenya.  相似文献   

10.
Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.  相似文献   

11.
Scleractinian corals have long been assumed to be a monophyletic group characterized by the possession of an aragonite skeleton. Analyses of skeletal morphology and molecular data have shown conflicting patterns of suborder and family relationships of scleractinian corals, because molecular data suggest that the scleractinian skeleton could have evolved as many as four times. Here we describe patterns of molecular evolution in a segment of the mitochondrial (mt) 12S ribosomal RNA gene from 28 species of scleractinian corals and use this gene to infer the evolutionary history of scleractinians. We show that the sequences obtained fall into two distinct clades, defined by PCR product length. Base composition among taxa did not differ significantly when the two clades were considered separately or as a single group. Overall, transition substitutions accumulated more quickly relative to transversion substitutions within both clades. Spatial patterns of substitutions along the 12S rRNA gene and likelihood ratio tests of divergence rates both indicate that the 12S rRNA gene of each clade evolved under different constraints. Phylogenetic analyses using mt 12S rRNA gene data do not support the current view of scleractinian phylogeny based upon skeletal morphology and fossil records. Rather, the two-clade hypothesis derived from the mt 16S ribosomal gene is supported.  相似文献   

12.
Understanding and resolving conflicts between phenotypic and genetic differentiation is central to evolutionary research. While phenotypically monomorphic species may exhibit deep genetic divergences, some morphologically distinct taxa lack notable genetic differentiation. Here we conduct a molecular investigation of an enigmatic shorebird with a convoluted taxonomic history, the White-faced Plover (Charadrius alexandrinus dealbatus), widely regarded as a subspecies of the Kentish Plover (C. alexandrinus). Described as distinct in 1863, its name was consistently misapplied in subsequent decades until taxonomic clarification ensued in 2008. Using a recently proposed test of species delimitation, we reconfirm the phenotypic distinctness of dealbatus. We then compare three mitochondrial and seven nuclear DNA markers among 278 samples of dealbatus and alexandrinus from across their breeding range and four other closely related plovers. We fail to find any population genetic differentiation between dealbatus and alexandrinus, whereas the other species are deeply diverged at the study loci. Kentish Plovers join a small but growing list of species for which low levels of genetic differentiation are accompanied by the presence of strong phenotypic divergence, suggesting that diagnostic phenotypic characters may be encoded by few genes that are difficult to detect. Alternatively, gene expression differences may be crucial in producing different phenotypes whereas neutral differentiation may be lagging behind.  相似文献   

13.
The reticulate history of Medicago (Fabaceae)   总被引:1,自引:0,他引:1  
The phylogenetic history of Medicago was examined for 60 accessions from 56 species using two nuclear genes (CNGC5 and beta-cop) and one mitochondrial region (rpS14-cob). The results of several analyses revealed that extensive robustly supported incongruence exists among the nuclear genes, the cause of which we seek to explain. After rejecting several processes, hybridization and lineage sorting of ancestral polymorphisms remained as the most likely factors promoting incongruence. Using coalescence simulations, we rejected lineage sorting alone as an explanation of the differences among gene trees. The results indicate that hybridization has been common and ongoing among lineages since the origin of Medicago. Coalescence provides a good framework to test the causes of incongruence commonly seen among gene trees but requires knowledge of effective population sizes and generation times. We estimated the effective population size at 240,000 individuals and assumed a generation time of 1 year in Medicago (many are annual plants). A sensitivity analysis showed that our conclusions remain unchanged using a larger effective population size and/or longer generation time.  相似文献   

14.
Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.  相似文献   

15.
16.
One of the most exciting challenges in human biology is the understanding of how our genome was constructed during evolution. Here we explore the evolutionary history of the low polymorphic human minisatellite MsH42 and its flanking sequences. We show that the evolutionary birth of MsH42 took place within an intron, early in primate lineage evolution, more than 40 MYA. Then, single base-pair changes and duplications/deletions of repeat blocks by mispairing were probably the main forces governing the generation of this minisatellite and its polymorphism throughout primate evolution. Moreover, we detected several phylogenetic footprints at both sides of MsH42. We believe that our findings will contribute to the understanding of low-variability minisatellite evolution.  相似文献   

17.
Setchellanthus caeruleus, which has disjunct populations in the north of the Chihuahuan Desert and in the Tehuacán-Cuicatlán valley, was selected to understand the evolutionary history of plants in this desert and its southerly relicts. This species constitutes the monotypic family Setchellanthaceae, which forms part of a group of plants that produce mustard-oil glucosides or glucosinolates. Molecular phylogenetic analyses based on DNA plastid sequences of plants of S. caeruleus from both areas, including representative taxa of the order Brassicales, were carried out to estimate the time of origin of the family (based on matK?+?rcbL) and divergence of populations (based on psbI-K, trnh-psbA, trnL-trnF). In addition, comparative ecological niche modelling was performed to detect if climate variables vary significantly in northern and southern populations. Analyses revealed that Setchellanthaceae is an ancient lineage that originated between 78 and 112 Mya during the mid-late Cretaceous—much earlier than the formation of the Chihuahuan Desert. The molecular data matrix displayed a few indel events as the only differences of plastid DNA sequences between northern and southern populations. It is suggested that due to climate changes in this desert in the Pliocene, populations of Setchellanthus remained in the Sierra de Jimulco and in Cuicatlán, in climatically stable locations. Ecological niche models of northern populations predict niches of southern populations and identity niche tests indicate that there are no differences in their ecological niches.  相似文献   

18.
One-third of the world''s reef-building corals are facing heightened extinction risk from climate change and other anthropogenic impacts. Previous studies have shown that such threats are not distributed randomly across the coral tree of life, and future extinctions have the potential to disproportionately reduce the phylogenetic diversity of this group on a global scale. However, the impact of such losses on a regional scale remains poorly known. In this study, we use phylogenetic metrics in conjunction with geographical distributions of living reef coral species to model how extinctions are likely to affect evolutionary diversity across different ecoregions. Based on two measures—phylogenetic diversity and phylogenetic species variability—we highlight regions with the largest losses of evolutionary diversity and hence of potential conservation interest. Notably, the projected loss of evolutionary diversity is relatively low in the most species-rich areas such as the Coral Triangle, while many regions with fewer species stand to lose much larger shares of their diversity. We also suggest that for complex ecosystems like coral reefs it is important to consider changes in phylogenetic species variability; areas with disproportionate declines in this measure should be of concern even if phylogenetic diversity is not as impacted. These findings underscore the importance of integrating evolutionary history into conservation planning for safeguarding the future diversity of coral reefs.  相似文献   

19.
The evolutionary origin of vertebrate placodes remains controversial because divergent morphologies in urochordates, cephalochordates and vertebrates make it difficult to recognize organs that are clearly homologous to placode-derived features, including the olfactory organ, adenohypophysis, lens, inner ear, lateral line and cranial ganglia. The larvacean urochordate Oikopleura dioica possesses organs that morphologically resemble the vertebrate olfactory organ and adenohypophysis. We tested the hypothesis that orthologs of these vertebrate placodes exist in a larvacean urochordate by analyzing the developmental expression of larvacean homologs of the placode-marking gene families Eya, Pitx and Six. We conclude that extant chordates inherited olfactory and adenohypophyseal placodes from their last common ancestor, but additional independent proliferation and perhaps loss of placode types probably occurred among the three subphyla of Chordata.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号