首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+ influx from the extracellular space in nonexcitable cells occurs via receptor-operated and refilling processes. However, they showed different characteristics with respect to the Mn2+ permeability, depletion of intracellular Ca2+ stores, and sensitivity to the K+ ionophore valinomycin in rat pancreatic acinar cells. While Mn2+ did not enter into the cells during the refilling phase, the opposite was true in receptor-operated Ca2+ influx (ROCI) evoked by carbachol (CCh). ROCI occurred in the absence of intracellular Ca2+ release from the stores. Valinomycin abolished the second response of Ca2+ elicited by CCh, whereas it had no effect on ROCI. These observations suggest that receptor-operated Ca2+ channels (ROCCs) and refilling channels may be different in rat pancreatic acinar cells.  相似文献   

2.
D I Yule  D V Gallacher 《FEBS letters》1988,239(2):358-362
The changes in cytosolic free calcium concentration [( Ca2+]i) were monitored (fura-2) in single, isolated, mouse pancreatic acinar cells stimulated by acetylcholine (ACh). Responses to ACh at concentrations between 10(-7) and 5 x 10(-7) M are marked by the appearance of regular, sinusoidal, oscillations in [Ca2+]i. At 37 degrees C the oscillations are transient, being seen only in the initial rising phase of the calcium signal. At 30 degrees C regular oscillations can be maintained throughout the period of ACh application. This study reports that release of intracellular calcium and influx of extracellular calcium are both involved in the generation of these oscillatory calcium signals.  相似文献   

3.
We have studied the action of cholinergic agonists on outer hair cells, both in situ and isolated from the cochlea of the guinea pig, combining new fast CCD technology for Ca2+ imaging and conventional patch-clamp methods. Carbachol (1 mM) activated a current with a reversal potential near -70 mV and a bell-shaped I-V curve, suggesting that it was a Ca2+ activated K+ current. In a few cells, this current was preceded by a transient inward current, probably owing to an influx of Ca2+ and other cations through the acetylcholine (ACh) receptors. The amplitude of the Ca2+ signal was maximal in a circumscribed region at the basal pole of the cell and decreased steeply towards the apical pole, compatible with Ca2+ influx and/or Ca2+ induced Ca2+ release at the cells base. The time course of the Ca2+ rise was fastest at the base, but it was still slightly slower, and more rounded, than that of the K+ current. In some recordings the K+ current was observed without any measurable change of intracellular Ca2+. The K+ current was potentiated (18%) by caffeine (5 mM), and decreased (19%) by ryanodine (0.1 mM) in the majority of cells tested. The results are discussed in terms of a labile intracellular Ca2+ store located at the base of the cell, close to the Ca2+ permeable ACh receptor channels and Ca2+ activated K+ channels, whose contribution to the Ca2+ rise occurring in the region of the channels is variable, and probably dependent on its ability to refill with Ca2+.  相似文献   

4.
We have investigated the role of the ryanodine-sensitive intracellular Ca2+ release channel (ryanodine receptor) in the cytosolic Ca2+ oscillations evoked in pancreatic acinar cells by acetylcholine (ACh) or cholecystokinin (CCK). Ryanodine abolished or markedly inhibited the agonist evoked Ca2+ spiking, but enhanced the frequency of spikes evoked by direct internal inositol trisphosphate (InsP3) application. We have also investigated the possibility that cyclic ADP-ribose (cADP-ribose), the putative second messenger controlling the ryanodine receptor, plays a role in Ca2+ oscillations. We found that cADP-ribose could itself induce repetitive Ca2+ spikes localized in the secretory pole and that these spikes were blocked by ryanodine, but also by the InsP3 receptor antagonist heparin. Our results indicate that both the ryanodine and the InsP3 receptors are involved in Ca2+ spike generation.  相似文献   

5.
Polarized Ca(2+) signals that originate at and spread from the apical pole have been shown to occur in acinar cells from lacrimal, parotid, and pancreatic glands. However, "local" Ca(2+) signals, that are restricted to the apical pole of the cell, have been previously demonstrated only in pancreatic acinar cells in which the primary function of the Ca(2+) signal is to regulate exocytosis. We show that submandibular acinar cells, in which the primary function of the Ca(2+) signal is to drive fluid and electrolyte secretion, are capable of both Ca(2+) waves and local Ca(2+) signals. The generally accepted model for fluid and electrolyte secretion requires simultaneous Ca(2+)-activation of basally located K(+) channels and apically located Cl(-) channels. Whereas a propagated cell-wide Ca(2+) signal is clearly consistent with this model, a local Ca(2+) signal is not, because there is no increase in intracellular Ca(2+) concentration at the basal pole of the cell. Our data provide the first direct demonstration, in submandibular acinar cells, of the apical and basal location of the Cl(-) and K(+) channels, respectively, and confirm that local Ca(2+) signals do not Ca(2+)-activate K(+) channels. We reevaluate the model for fluid and electrolyte secretion and demonstrate that Ca(2+)-activation of the Cl(-) channels is sufficient to voltage-activate the K(+) channels and thus demonstrate that local Ca(2+) signals are sufficient to support fluid secretion.  相似文献   

6.
Studies on pancreatic acinar cells provided the original evidence for the Ca(2+) releasing action of inositol 1,4,5-trisphosphate (IP(3)). Ironically, this system has presented problems for the general theory that IP(3) acts primarily on the endoplasmic reticulum (ER), because the IP(3)-elicited Ca(2+) release occurs in the apical pole, which is dominated by zymogen granules (ZGs) and apparently contains very little ER. Using confocal and two-photon microscopy and a number of different ER-specific fluorescent probes, we have now investigated in detail the distribution of the ER in living pancreatic acinar cells. It turns out that although the bulk of the ER, as expected, is clearly located in the baso-lateral part of the cell, there is significant invasion of ER into the granular pole and each ZG is in fact surrounded by strands of ER. This structural evidence from living cells, in conjunction with recent functional studies demonstrating the high Ca(2+) mobility in the ER lumen, provides the framework for a coherent and internally consistent theory for cytosolic Ca(2+) signal generation in the apical secretory pole, in which the primary Ca(2+) release occurs from ER extensions in the granular pole supplied with Ca(2+) from the main store at the base of the cell by the tunnel function of the ER.  相似文献   

7.
The spatiotemporal changes in intracellular free Ca(2+) concentration ([Ca(2+)](i)) as well as fluid secretion and exocytosis induced by acetylcholine (ACh) in intact acini of guinea pig nasal glands were investigated by two-photon excitation imaging. Cross-sectional images of acini loaded with the fluorescent Ca(2+) indicator fura-2 revealed that the ACh-evoked increase in [Ca(2+)](i) was immediate and spread from the apical region (the secretory pole) of acinar cells to the basal region. Immersion of acini in a solution containing a fluorescent polar tracer, sulforhodamine B (SRB), revealed that fluid secretion, detected as a rapid disappearance of SRB fluorescence from the extracellular space, occurred exclusively in the luminal region and was accompanied by a reduction in acinar cell volume. Individual exocytic events were also visualized with SRB as the formation of Omega-shaped profiles at the apical membrane. In contrast to the rapidity of fluid secretion, exocytosis of secretory granules occurred with a delay of approximately 70s relative to the increase in [Ca(2+)](i). Exocytic events also occurred deep within the cytoplasm in a sequential manner with the latency of secondary exocytosis being greatly reduced compared with that of primary exocytosis. The delay in sequential compound exocytosis relative to fluid secretion may be important for release of the viscous contents of secretory granules into the nasal cavity.  相似文献   

8.
Although the role of calcium (Ca2+) in the signal transduction and pathobiology of the exocrine pancreas is firmly established, the role of magnesium (Mg2+) remains unclear. We have characterized the intracellular distribution of Mg2+ in response to hormone stimulation in isolated mouse pancreatic acinar cells and studied the role of Mg2+ in modulating Ca2+ signaling using microspectrofluorometry and digital imaging of Ca2+- or Mg2+-sensitive fluorescent dyes as well as Mg2+-sensitive intracellular microelectrodes. Our results indicate that an increase in intracellular Mg2+ concentrations reduced the cholecystokinin (CCK) -induced Ca2+ oscillations by inhibiting the capacitive Ca2+ influx. An intracellular Ca2+ mobilization, on the other hand, was paralleled by a decrease in [Mg2+]i, which was reversible upon hormone withdrawal independent of the electrochemical gradients for Mg2+, Ca2+, Na+, and K+, and not caused by Mg2+ efflux from acinar cells. In an attempt to characterize possible Mg2+ stores that would explain the reversible, hormone-induced intracellular Mg2+ movements, we ruled out mitochondria or ATP as potential Mg2+ buffers and found that the CCK-induced [Mg2+]i decrease was initiated at the basolateral part of the acinar cells, where most of the endoplasmic reticulum (ER) is located, and progressed from there toward the apical pole of the acinar cells in an antiparallel fashion to Ca2+ waves. These experiments represent the first characterization of intracellular Mg2+ movements in the exocrine pancreas, provide evidence for possible Mg2+ stores in the ER, and indicate that the spatial and temporal distribution of intracellular Mg concentrations profoundly affects acinar cell Ca2+ signaling.  相似文献   

9.
Pancreatic acinar cells exhibit a remarkable polarization of Ca2+ release and Ca2+ influx mechanisms. In the present brief review, we discuss the localization of channels responsible for Ca2+ release [mainly IP3 (inositol 1,4,5-trisphosphate) receptors] and proteins responsible for SOCE (store-operated Ca2+ entry). We also place these Ca2+-transporting mechanisms on the map of cellular organelles in pancreatic acinar cells, and discuss the physiological implications of the cellular geography of Ca2+ signalling. Finally, we highlight some unresolved questions stemming from recent observations of co-localization and co-immunoprecipitation of IP3 receptors with Orai channels in the apical (secretory) region of pancreatic acinar cells.  相似文献   

10.
In nonexcitable cells, such as exocrine cells from the pancreas and salivary glands, agonist-stimulated Ca2+ signals consist of both Ca2+ release and Ca2+ influx. We have investigated the contribution of these processes to membrane-localized Ca2+ signals in pancreatic and parotid acinar cells using total internal reflection fluorescence (TIRF) microscopy (TIRFM). This technique allows imaging with unsurpassed resolution in a limited zone at the interface of the plasma membrane and the coverslip. In TIRFM mode, physiological agonist stimulation resulted in Ca2+ oscillations in both pancreas and parotid with qualitatively similar characteristics to those reported using conventional wide-field microscopy (WFM). Because local Ca2+ release in the TIRF zone would be expected to saturate the Ca2+ indicator (Fluo-4), these data suggest that Ca2+ release is occurring some distance from the area subjected to the measurement. When acini were stimulated with supermaximal concentrations of agonists, an initial peak, largely due to Ca2+ release, followed by a substantial, maintained plateau phase indicative of Ca2+ entry, was observed. The contribution of Ca2+ influx and Ca2+ release in isolation to these near-plasma membrane Ca2+ signals was investigated by using a Ca2+ readmission protocol. In the absence of extracellular Ca2+, the profile and magnitude of the initial Ca2+ release following stimulation with maximal concentrations of agonist or after SERCA pump inhibition were similar to those obtained with WFM in both pancreas and parotid acini. In contrast, when Ca2+ influx was isolated by subsequent Ca2+ readmission, the Ca2+ signals evoked were more robust than those measured with WFM. Furthermore, in parotid acinar cells, Ca2+ readdition often resulted in the apparent saturation of Fluo-4 but not of the low-affinity dye Fluo-4-FF. Interestingly, Ca2+ influx as measured by this protocol in parotid acinar cells was substantially greater than that initiated in pancreatic acinar cells. Indeed, robust Ca2+ influx was observed in parotid acinar cells even at low physiological concentrations of agonist. These data indicate that TIRFM is a useful tool to monitor agonist-stimulated near-membrane Ca2+ signals mediated by Ca2+ influx in exocrine acinar cells. In addition, TIRFM reveals that the extent of Ca2+ influx in parotid acinar cells is greater than pancreatic acinar cells when compared using identical methodologies.  相似文献   

11.
The pancreatic acinar cell synthesises a variety of digestive enzymes. In transit through the secretory pathway, these enzymes are separated from constitutively secreted proteins and packaged into zymogen granules, which are localised in the apical pole of the cell. Stimulation of the cell by secretagogues such as acetylcholine and cholecystokinin, acting at receptors on the basolateral plasma membrane, causes the generation of an intracellular Ca(2+) signal. This signal, in turn, triggers the fusion of the zymogen granules with the apical plasma membrane, leading to the polarised secretion of the enzymes. This review describes recent advances in our understanding of the control of secretion in the acinar cell. In particular, we discuss the mechanisms underlying the sorting of digestive enzymes into the zymogen granules, the molecular components of the exocytotic "membrane fusion machine," the generation and propagation of the Ca(2+ signal and the development of new techniques for the visualisation of single granule fusion events.  相似文献   

12.
The abilities of various divalent cations to enter the cytoplasm of mouse lacrimal acinar cells was examined under resting and agonist-stimulated conditions, by monitoring their effects on the fluorescence of cytosolic fura-2. In vitro, Ni2+, Co2+, and Mn2+ quenched the fura-2 fluorescence, whereas Sr2+, Ba2+, and La3+ produced an excitation spectrum and maximum brightness similar to Ca2+. Stimulation of mouse lacrimal acinar cells with methacholine (MeCh) caused a biphasic elevation of intracellular Ca2+ concentration [( Ca2+]i) resulting from a release of Ca2+ from intracellular pools followed by a sustained entry of extracellular Ca2+. Neither La3+ nor Ni2+ entered the cells under resting or stimulated conditions, but both blocked Ca2+ entry. Although both Co2+ and Mn2+ entered unstimulated cells, this process was not increased by MeCh. Both Sr2+ and Ba2+ were capable of supporting a sustained increase in fura-2 fluorescence in response to MeCh, indicating that these cations can enter the cells through the agonist-regulated channels. However, Sr2+, but not Ba2+, was capable of refilling the agonist-sensitive intracellular stores. These findings demonstrate dissociation of agonist-induced Ca2+ entry from intracellular Ca2+ pool refilling and thereby provide strong support for the recently modified version of the capacitative Ca2+ entry model according to which influx into the cytoplasm occurs directly across the plasma membrane and does not require a specialized cation channel directly linking the extracellular space and the intracellular Ca2+ stores.  相似文献   

13.
T Sasaki  D V Gallacher 《FEBS letters》1990,264(1):130-134
In exocrine acinar cells a variety of neurotransmitters (e.g. acetylcholine) stimulate phosphatidylinositol 4,5-bisphosphate hydrolysis elevating intracellular calcium to activate calcium-dependent membrane currents (outward K+ and inward Cl-). This study shows that in lacrimal acinar cells extracellular application of ATP is also associated with outward and inward current responses; these, however, are not the result of phosphoinositide metabolism. ATP directly activates receptor-operated cation channels which permit influx of Na+ and Ca+ (the inward current). The elevation in [Ca2+]i which results is sufficient to activate the outward K+ current. ATP thus promotes Ca+ influx in the absence of phosphoinositide metabolism.  相似文献   

14.
Establishment of salivary cell lines retaining normal morphological and physiological characteristics is important in the investigation of salivary cell function. A submandibular gland cell line, SMG-C6, has recently been established. In the present study, we characterized the phosphoinositide (PI)-Ca2+ signaling system in this cell line. Inositol 1,4,5-trisphosphate(1,4,5-IP3) formation, as well as Ca2+ storage, release, and influx in response to muscarinic, alpha1-adrenergic, P2Y-nucleotide, and cytokine receptor agonists were determined. Ca2+ release from intracellular stores was strongly stimulated by acetylcholine (ACh) and ATP, but not by norepinephrine (NA), epidermal growth factor (EGF), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFalpha). Consistently, 1, 4,5-IP3 formation was dramatically stimulated by ACh and ATP. ACh-stimulated cytosolic free Ca2+ concentration [Ca2+]i increase was inhibited by ryanodine, suggesting that the Ca2+-induced Ca2+ release mechanism is involved in the ACh-elicited Ca2+ release process. Furthermore, ACh and ATP partially discharged the IP3-sensitive Ca2+ store, and a subsequent exposure to thapsigargin (TG) induced further [Ca2+]i increase. However, exposure to TG depleted the store and a subsequent stimulation with ACh or ATP did not induce further [Ca2+]i increase, suggesting that ACh and ATP discharge the same storage site sensitive to TG. As in freshly isolated submandibular acinar cells, exposure to ionomycin and monensin following ACh or TG induced further [Ca2+]i increase, suggesting that IP3-insensitive stores exist in SMG-C6 cells. Ca2+ influx was activated by ACh, ATP, or TG, and was significantly inhibited by La3+, suggesting the involvement of store-operated Ca2+ entry (SOCE) pathway. These results indicate that in SMG-C6 cells: (i) Ca2+ release is triggered by muscarinic and P2Y-nucleotide receptor agonists through formation of IP3; (ii) both the IP3-sensitive and -insensitive Ca2+ stores are present; and (iii) Ca2+ influx is mediated by the store-operated Ca2+ entry pathway. We conclude that Ca2+ regulation in SMG-C6 cells is similar to that in freshly isolated SMG acinar cells; therefore, this cell line represents an excellent SMG cell model in terms of intracellular Ca2+ signaling.  相似文献   

15.
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation.  相似文献   

16.
Agonist-specific cytosolic Ca2+ oscillation patterns can be observed in individual cells and these have been explained by the co-existence of separate oscillatory mechanisms. In pancreatic acinar cells activation of muscarinic receptors typically evokes sinusoidal oscillations whereas stimulation of cholecystokinin (CCK) receptors evokes transient oscillations consisting of Ca2+ waves with long intervals between them. We have monitored changes in the cytosolic Ca2+ concentration ([Ca2+]i) by measuring Ca2(+)-activated Cl- currents in single internally perfused mouse pancreatic acinar cells. With minimal intracellular Ca2+ buffering we found that low concentrations of both ACh (50 nM) and CCK (10 pM) evoked repetitive short-lasting Ca2+ spikes of the same duration and frequency, but the probability of a spike being followed by a longer and larger Ca2+ wave was low for ACh and high for CCK. The probability that the receptor-evoked shortlasting Ca2+ spikes would initiate more substantial Ca2+ waves was dramatically increased by intracellular perfusion with solutions containing high concentrations of the mobile low affinity Ca2+ buffers citrate (10-40 mM) or ATP (10-20 mM). The different Ca2+ oscillation patterns normally induced by ACh and CCK would therefore appear not to be caused by separate mechanisms. We propose that specific receptor-controlled modulation of Ca2+ signal spreading, either by regulation of Ca2+ uptake into organelles and/or cellular Ca2+ extrusion, or by changing the sensitivity of the Ca2(+)-induced Ca2+ release mechanism, can be mimicked experimentally by different degrees of cytosolic Ca2+ buffering and can account for the various cytosolic Ca2+ spike patterns.  相似文献   

17.
Park MK  Lee M  Petersen OH 《Cell calcium》2004,35(4):367-379
Isolated single pancreatic acinar cells have long been used as a model for studying many kinds of signaling processes due to their structural and functional polarities, but without significant validation. In this study, we examined the morphological and functional changes of dissociated single pancreatic acinar cells. Acutely isolated single cells showed a collapsed membrane potential and a much reduced secretion of zymogen granules in response to acetylcholine (ACh) stimulation, whereas clustered cells showed a much more negative membrane potential and potent exocytotic secretion. The isolated single cells became vertically flattened due to the loss of supporting adhesions with nearby cells, and the granule-attached luminal membrane was severely reduced versus that of clustered cells. However, polarized Ca(2+) signals and mitochondrial localizations were relatively well preserved in the isolated single cells, in that Ca(2+) release by ACh commenced at the indented luminal membrane. In clusters, the Ca(2+) release site was closest to the lumen where more than three cells met or at the tips of conical regions of the luminal membrane. These findings suggest that the dissociated single pancreatic acinar cells preserve an intact Ca(2+) signaling machinery but alter in shape and have impaired exocytotic functions and resting membrane potentials.  相似文献   

18.
Isolated pancreatic acini were loaded with the calcium selective fluorescent indicator, quin-2. Measurements of cellular K+ content and lactic dehydrogenase release indicated that cell viability was not affected by quin-2 loading. The concentration of intracellular free calcium of unstimulated acinar cells was calculated to be 180 +/- 4 nM. When cells suspended in media containing millimolar calcium were exposed to the secretagogues carbachol and cholecystokinin a rapid increase in [Ca2+]i occurred. Both the amplitude and rate of rise of the concentration increase were dose dependent with [Ca2+]i reaching a maximum of 860 +/- 41 nM. The dose-response relationship coincides with the known concentration dependence of the stimulation of amylase release by these agents. In the absence of extracellular calcium, carbachol was still able to elicit a rise in [Ca2+]i. These studies indicate that pancreatic secretagogues induce an increase in [Ca2+]i of acinar cells, both in the presence or absence of extracellular calcium.  相似文献   

19.
It remains unclear how different intracellular stores could interact and be recruited by Ca(2+)-releasing messengers to generate agonist-specific Ca(2+) signatures. In addition, refilling of acidic stores such as lysosomes and secretory granules occurs through endocytosis, but this has never been investigated with regard to specific Ca(2+) signatures. In pancreatic acinar cells, acetylcholine (ACh), cholecystokinin (CCK), and the messengers cyclic ADP-ribose (cADPR), nicotinic acid adenine dinucleotide phosphate (NAADP), and inositol 1,4,5-trisphosphate (IP(3)) evoke repetitive local Ca(2+) spikes in the apical pole. Our work reveals that local Ca(2+) spikes evoked by different agonists all require interaction of acid Ca(2+) stores and the endoplasmic reticulum (ER), but in different proportions. CCK and ACh recruit Ca(2+) from lysosomes and from zymogen granules through different mechanisms; CCK uses NAADP and cADPR, respectively, and ACh uses Ca(2+) and IP(3), respectively. Here, we provide pharmacological evidence demonstrating that endocytosis is crucial for the generation of repetitive local Ca(2+) spikes evoked by the agonists and by NAADP and IP(3). We find that cADPR-evoked repetitive local Ca(2+) spikes are particularly dependent on the ER. We propose that multiple Ca(2+)-releasing messengers determine specific agonist-elicited Ca(2+) signatures by controlling the balance among different acidic Ca(2+) stores, endocytosis, and the ER.  相似文献   

20.
This study investigates the effects of dephostatin, a new tyrosine phosphatase inhibitor, on intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. Dephostatin evoked a sustained elevation in [Ca2+]i by mobilizing calcium from intracellular calcium stores in either the absence of extracellular calcium or the presence of lanthanium chloride (LaCl3). Pretreatment of acinar cells with dephostatin prevented cholecystokinin-octapeptide (CCK-8)-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF- 4), whereas co-incubation with CCK-8 enhances the plateau phase of calcium response to CCK-8 without modifying the transient calcium spike. The effects of dephostatin on calcium mobilization were reversed by the presence of the sulfhydryl reducing agent, dithiothreitol. Stimulation of acinar cells with thapsigargin in the absence of extracellular Ca2+ resulted in a transient rise in [Ca2+]i . Application of dephostatin in the continuous presence of thapsigargin caused a small but sustained elevation in [Ca2+]i . These results suggest that dephostatin can mobilize Ca2+ from both a thapsigargin-sensitive and thapsigargin-insensitive intracellular stores in pancreatic acinar cells. In addition, dephostatin can stimulate the release of amylase from pancreatic acinar cells and moreover, reduce the secretory response to CCK-8. The results indicate that dephostatin can release calcium from intracellular calcium pools and consequently induces amylase secretion in pancreatic acinar cells. These effects are likely due to the oxidizing effects of this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号