首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABAergic terminals from rat midbrain characterized by immunolocalization of glutamic acid decarboxylase and/or the vesicular inhibitory amino acid transporter respond to ATP or P(1),P(5)-di(adenosine-5') pentaphosphate (Ap(5)A) with an increase in the intrasynaptosomal calcium concentration measured by a microfluorimetric technique in single synaptic terminals. The ATP response is mediated through the activation of P2X receptors with an abundant presence of P2X(3) subunits. Ap(5)A, however, exerts its effects by acting through a different receptor termed the dinucleotide receptor. Both receptors, once activated in the presence of extrasynaptosomal calcium, induce a concentration-dependent GABA release from synaptosomal populations with EC(50) values of 16 and 20 microM for ATP and Ap(5)A, respectively. Specific inhibition of GABA release is obtained with pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (80 microM) on the ATP effect and with P(1),P(5)-di(inosine-5') pentaphosphate (100 nM) on the dinucleotide receptor.  相似文献   

2.
Individual analysis of synaptic terminals calcium responses, induced by dinucleotides pentaphosphate, Ap(5)A or Gp(5)G, demonstrates the presence of two main groups considering the concentration required for stimulation. The first group corresponds to those responding to Ap(5)A or Gp(5)G at nanomolar concentration, representing 16% and 12%, respectively, and the second one responds to micromolar concentration and represents, respectively, 17% and 14%, of the total functional synaptosomal population in rat midbrain. Dose-response curves in single terminals showed an Ap(5)A EC(50) values of 0.9+/-0.2 nM and 11.8+/-0.9 microM, being the maximal intrasynaptosomal calcium increase of 200+/-0.3 and 125+/-0.2 nM for the high and low affinity responding terminals, respectively. Combination of microfluorimetric and immunocytochemical studies showed lack of correlation between dinucleotides pentaphosphate responses and P2X receptor subunits expression, in spite of the abundance of P2X(2), P2X(3) and P2X(7) at the presynaptic level in rat midbrain synaptosomes. Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a P2X receptors antagonist, showed no effect on low affinity dinucleotides receptors population, and partial inhibition on the high affinity one. On the other hand, diinosine pentaphosphate (Ip(5)I) completely abolished the low affinity dinucleotides responses, and 60% inhibition of the high affinity ones.  相似文献   

3.
In this study, we show specific intracellular responses evoked by the stimulation of astrocytes with the P1,P5-di(adenosine-5')pentaphosphate, Ap5A. The stimulation of astrocytes with micromolar concentrations of the dinucleotide elicited rapid increases in intracellular calcium concentration ([Ca2+]i), showing an EC50 value of 15.27 +/- 0.61 micro m. Moreover, the stimulation of cells with nanomolar concentrations of Ap5A, unable to induce calcium responses, increased the phosphorylated forms of extracellular-signal regulated kinase 1/2 (ERK) with an EC50 value of 9.8 +/- 2.4 nm. The maximal activation was observed at 100 nm Ap5A, which was similar to that produced by epidermal growth factor (EGF) under the same experimental conditions. The present data reported here indicate that Ap5A mediated these effects by interacting with a specific receptor, not yet identified, which was different from the P2Y1 and P2Y2/P2Y4 receptors present in all individual astrocytes.  相似文献   

4.
The kinetic properties of sea urchin flagellar dynein ATPase have been reinvestigated using a continuous assay which regenerates ATP and contains P1,P5-di(adenosine-5')pentaphosphate, a potent adenylate kinase inhibitor. Earlier studies (Shimizu, T. (1981) Biochemistry 20, 4347-4354) revealed complex, highly cooperative kinetics with respect to MgATP2- concentration in the absence of this inhibitor. With Ap5A, the kinetics are characteristic of classical Michaelis-Menten enzymes. Isolated 21 S and 14S enzyme forms were also examined, and their kinetic parameters are presented Vanadate inhibition patterns in the presence of P1,P5-di(adenosine-5')pentaphosphate lose their nonlinear character, and we observe linear noncompetitive inhibition of the "mixed" type.  相似文献   

5.
Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence.  相似文献   

6.
Spontaneously beating isolated rat atria were subjected to 1 h of anoxia at 37 degrees C in various cardioplegic solutions. Contraction continued for different times upon initiation of anoxia, depending on the nature of the cardioplegic solution. Two hundred micromolar P1,P5-di(adenosine-5')pentaphosphate (Ap5A) stopped atrial function in less than 30 s of anoxia in contrast to 50 s in the case of Hearse's cardioplegic solution (16 mM MgCl2, 16 mM KCl, 1 mM Procaine), and 20 min in the case of controls. The stopping time was also prolonged from 30 to approximately 50-55 seconds if a lower concentration of Ap5A (100 microM) was used. Function, adenine nucleotides (AN), and phosphocreatine (PCr) were then measured 20 min after reoxygenation. The recovery of both function and AN was most rapid and complete with 200 microM Ap5A (97% recovery in ATP and 100% in function) and least complete in control (50% recovery in ATP and 78% in function). A positive correlation between recovery of ATP, or total adenine nucleotides, and recovery of function was observed in all cases. The higher the level of ATP remaining at the end of 1 h of anoxia and the more recovered after 20 min of reoxygenation, the more complete the recovery of function. The PCr returned to normal or even higher than normal values in all cases, even though function returned only in proportion to ATP. Since PCr is mitochondrial in origin, it appears that loss of a portion of the AN localized at the energy-utilizing sites occurred before serious mitochondrial damage and was responsible for the incomplete postanoxic functional recovery.  相似文献   

7.
Abnormalities of striatal glutamate neurotransmission may play a role in the pathophysiology of Parkinson's disease and may respond to neurosurgical interventions, specifically stimulation or lesioning of the subthalamic nucleus (STN). The major glutamatergic afferent pathways to the striatum are from the cortex and thalamus, and are thus likely to be sources of striatal neuronally-released glutamate. Corticostriatal terminals can be distinguished within the striatum at the electron microscopic level as their synaptic vesicles contain the vesicular glutamate transporter, VGLUT1. The majority of terminals which are immunolabeled for glutamate but are not VGLUT1 positive are likely to be thalamostriatal afferents. We compared the effects of short term, high frequency, STN stimulation and lesioning in 6-hydroxydopamine (6OHDA)-lesioned rats upon striatal terminals immunolabeled for both presynaptic glutamate and VGLUT1. 6OHDA lesions resulted in a small but significant increase in the proportions of VGLUT1-labeled terminals making synapses on dendritic shafts rather than spines. STN stimulation for one hour, but not STN lesions, increased the proportion of synapses upon spines. The density of presynaptic glutamate immuno-gold labeling was unchanged in both VGLUT1-labeled and -unlabeled terminals in 6OHDA-lesioned rats compared to controls. Rats with 6OHDA lesions+STN stimulation showed a decrease in nerve terminal glutamate immuno-gold labeling in both VGLUT1-labeled and -unlabeled terminals. STN lesions resulted in a significant decrease in the density of presynaptic immuno-gold-labeled glutamate only in VGLUT1-labeled terminals. STN interventions may achieve at least part of their therapeutic effect in PD by normalizing the location of corticostriatal glutamatergic terminals and by altering striatal glutamatergic neurotransmission.  相似文献   

8.
在中枢神经系统,谷氨酸转运体在谷氨酸一谷氨酰胺循环中发挥着重要作用。谷氨酸转运体有高亲和力转运体,即兴奋性氨基酸转运体(excitatory amino acid transporters,EAATs)和低亲和力转运体,即囊泡谷氨酸转运体(vesicular glutamate transporters,VGLUTs)两种类型。其中,VGLUTs的功能是特异地将突触囊泡外的谷氨酸转运进入突触囊泡内,它包括三个成员,分别是VGLUT1、VGLUT2和VGLUT3。一方面,VGLUT1和VGLUT2标记了所有的谷氨酸能神经元,是谷氦酸能神经元和它们轴突末端高度特异的标志;另一方面,VGLUT1标志着皮质一皮质投射,而VGLUT2则标志着丘脑一皮层投射,VGLUT3则位于抑制性突触末端。  相似文献   

9.
Glutamate and GABA mediate most of the excitatory and inhibitory synaptic transmission; they are taken up and accumulated in synaptic vesicles by specific vesicular transporters named VGLUT1-3 and VGAT, respectively. Recent studies show that VGLUT2 and VGLUT3 are co-expressed with VGAT. Because of the relevance this information has for our understanding of synaptic physiology and plasticity, we investigated whether VGLUT1 and VGAT are co-expressed in rat cortical neurons. In cortical cultures and layer V cortical terminals we observed a population of terminals expressing VGLUT1 and VGAT. Post-embedding immunogold studies showed that VGLUT1+/VGAT+ terminals formed both symmetric and asymmetric synapses. Triple-labeling studies revealed GABAergic synapses expressing VGLUT1 and glutamatergic synapses expressing VGAT. Immunoisolation studies showed that anti-VGAT immunoisolated vesicles contained VGLUT1 and anti-VGLUT1 immunoisolated vesicles contained VGAT. Finally, vesicles containing VGAT resident in glutamatergic terminals undergo active recycling. In conclusion, we demonstrate that in neocortex VGLUT1 and VGAT are co-expressed in a subset of axon terminals forming both symmetric and asymmetric synapses, that VGLUT1 and VGAT are sorted to the same vesicles and that vesicles at synapses expressing the vesicular heterotransporter participate in the exo-endocytotic cycle.  相似文献   

10.
Presynaptic terminal formation is a complex process that requires assembly of proteins responsible for synaptic transmission at sites of axo-dendritic contact. Accumulation of presynaptic proteins at developing terminals is facilitated by glutamate receptor activation. Glutamate is loaded into synaptic vesicles for release via the vesicular glutamate transporters VGLUT1 and VGLUT2. During postnatal development there is a switch from predominantly VGLUT2 expression to high VGLUT1 and low VGLUT2, raising the question of whether the developmental increase in VGLUT1 is important for presynaptic development. Here, we addressed this question using confocal microscopy and quantitative immunocytochemistry in primary cultures of rat neocortical neurons. First, in order to understand the extent to which the developmental switch from VGLUT2 to VGLUT1 occurs through an increase in VGLUT1 at individual presynaptic terminals or through addition of VGLUT1-positive presynaptic terminals, we examined the spatio-temporal dynamics of VGLUT1 and VGLUT2 expression. Between 5 and 12 days in culture, the percentage of presynaptic terminals that expressed VGLUT1 increased during synapse formation, as did expression of VGLUT1 at individual terminals. A subset of VGLUT1-positive terminals also expressed VGLUT2, which decreased at these terminals. At individual terminals, the increase in VGLUT1 correlated with greater accumulation of other synaptic vesicle proteins, such as synapsin and synaptophysin. When the developmental increase in VGLUT1 was prevented using VGLUT1-shRNA, the density of presynaptic terminals and accumulation of synapsin and synaptophysin at terminals were decreased. Since VGLUT1 knock-down was limited to a small number of neurons, the observed effects were cell-autonomous and independent of changes in overall network activity. These results demonstrate that up-regulation of VGLUT1 is important for development of presynaptic terminals in the cortex.  相似文献   

11.
A method for the isolation of gamma-aminobutyric acidergic (GABAergic) and glutamatergic terminals from crustacean muscle was developed, using differential centrifugation and sucrose density gradient centrifugation. Individual fractions were assessed using a variety of markers. One fraction was isolated which showed 40-fold purification of glutamate decarboxylase with a yield of 12%. This fraction was enriched in GABA, glutamate, glutamate dehydrogenase, and 5'-nucleotidase, but not in NADPH cytochrome c reductase. This fraction possessed an uptake system for GABA and glutamate with apparent kinetic constants of Km = 50 microM, Vmax = 250 pmol/min/mg of protein and Km = 183 microM, Vmax = 219 pmol/min/mg of protein, respectively. Electron microscopy showed nerve terminal profiles and a heterogeneous population of membrane vesicles. This fraction contained 3.4 nmol ATP/mg of protein which was stable for 30 min at 12 degrees C, and was also able to synthesise ATP from exogenous adenosine. The terminals released labelled GABA and glutamate in a Ca2+-dependent fashion on depolarisation. No release of ATP was detected. It is concluded that viable nerve terminals have been isolated which could be used as model systems for the study of GABAergic and glutamatergic neurochemistry.  相似文献   

12.
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Packaging and storage of glutamate into glutamatergic neuronal vesicles requires ATP-dependent vesicular glutamate uptake systems, which utilize the electrochemical proton gradient as a driving force. VGLUT1, the first identified vesicular glutamate transporter, is only expressed in a subset of glutamatergic neurons. We report here the molecular cloning and functional characterization of a novel glutamate transporter, VGLUT2, from mouse brain. VGLUT2 has all major functional characteristics of a synaptic vesicle glutamate transporter, including ATP dependence, chloride stimulation, substrate specificity, and substrate affinity. It has 75 and 79% amino acid identity with human and rat VGLUT1, respectively. However, expression patterns of VGLUT2 in brain are different from that of VGLUT1. In addition, VGLUT2 activity is dependent on both membrane potential and pH gradient of the electrochemical proton gradient, whereas VGLUT1 is primarily dependent on only membrane potential. The presence of VGLUT2 in brain regions lacking VGLUT1 suggests that the two isoforms together play an important role in vesicular glutamate transport in glutamatergic neurons.  相似文献   

13.
The synthesis of diadenosine hexaphosphate (Ap6A), a potent vasoconstrictor, is catalyzed by acyl-CoA synthetase from Pseudomonas fragi. In a first step AMP is transferred from ATP to tetrapolyphosphate (P4) originating adenosine pentaphosphate (p5A) which, subsequently, is the acceptor of another AMP moiety from ATP generating diadenosine hexaphosphate (Ap6A). Diadenosine pentaphosphate (Ap5A) and diadenosine tetraphosphate (Ap4A) were also synthesized in the course of the reaction. In view of the variety of biological effects described for these compounds the potential capacity of synthesis of diadenosine polyphosphates by the mammalian acyl-CoA synthetases may be relevant.  相似文献   

14.
The vanilloid receptor VR1 (TRPV1) is a temperature- and capsaicin-sensitive cation channel expressed by a class of primary afferents involved in nociception. To confirm the hypothesis that VR1-positive primary afferents are glutamatergic and contact spinal neurons that express the main classes of ionotropic glutamate receptors, we performed multiple immunofluorescent staining for VR1 and the glutamate transporter VGLUT2 (a specific marker for glutamatergic transmission) or AMPA and NMDA receptor subunits. VR1-positive cells in the dorsal root ganglion and boutons of their central afferent fibers in the dorsal horn expressed VGLUT2, and the latter contacted AMPA- or NMDA receptor-positive perikarya. Based on our previous observations of preferential targeting of VR1-positive primary afferents to spinal neurons that express the neurokinin receptor NK1 (Hwang et al., 2003), we further quantified the frequency of termination of VR1-positive afferents onto NK1-positive neurons co-expressing glutamate receptors. A larger fraction of NK1/NMDA receptors-positive than NK1/AMPA receptors-positive sites were contacted by VR1-positive boutons. We conclude that VR1-positive primary afferents in the rat use glutamate as neurotransmitter and contact postsynaptic sites that co-express NK1 and ionotropic glutamate receptors.  相似文献   

15.
Rat Brain Synaptosomal ATP:AMP-Phosphotransferase Activity   总被引:2,自引:1,他引:2  
Adenylate kinase activity (ATP:AMP-phosphotransferase; EC 2.7.4.3) was studied in various subcellular fractions of rat brain tissues. Because of the presence of other adenosine nucleotide-utilizing enzymes, adenylate kinase activity was assayed in both the forward and reverse directions by using coupled enzyme systems and by using a specific adenylate kinase inhibitor, P1,P5-di(adenosine-5') pentaphosphate. As expected, the highest specific adenylate kinase activity (2.89 mumol/min/mg of protein) was detected in the cytosolic brain fraction. However, substantial enzyme activity (0.68 mumol/min/mg) was also found in the intact synaptosomal fraction isolated on Percoll/sucrose gradients. The increased specific enzyme activity of purified synaptosomes and the differences found between the kinetic parameters of the membrane-bound and cytosolic enzyme forms suggest that the synaptosomal adenylate kinase activity cannot be attributed to the small amount of contaminating cytosol present in our preparations. The adenylate kinase enzyme adhered to purified synaptic plasma membranes and was not released by washings with isoosmotic sucrose medium. The facts that the adenylate kinase enzyme activity could be measured in intact synaptosomal preparations and that both its substrates and its inhibitors do not cross intact plasma membranes support the possibility that the synaptosomal adenylate kinase is an ecto-enzyme.  相似文献   

16.
Simple and fast purification of Escherichia coli adenylate kinase   总被引:2,自引:0,他引:2  
O Barzu  S Michelson 《FEBS letters》1983,153(2):280-284
Adenylate kinase from E. coli (strains CR341 and CR341 T28, a temperature-sensitive mutant) was purified by a two-step chromatographic procedure. The enzyme from crude extracts of both mutant and parent strain was bound to blue-Sepharose at pH 7.5, thereafter specifically eluted with 0.05 mM P1,P5-di(adenosine-5')pentaphosphate. A second chromatography on Sephadex G-100 yielded pure enzyme. E. coli adenylate kinase was strongly inhibited by P1,P5-di(adenosine-5')pentaphosphate (Ki 0.6 microM for adenylate kinase of strain CR341 and 2.1 microM in the case of mutant enzyme). After denaturation in 6 M guanidinium hydrochloride both mutant and parent adenylate kinase returned rapidly to the native, active state by dilution of guanidinium hydrochloride.  相似文献   

17.
Human lymphocytes contain NTPDase (NTPDase-1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5), a cation-dependent enzyme that hydrolyzes ATP and ADP and also other di- and triphosphate nucleosides, acting at an optimum pH of 8.0. A significant inhibition of ATP and ADP hydrolysis (P<0.05) was observed in the presence of 20 mM sodium azide. NTPDase inhibitors, 20 mM sodium fluoride, 0.2 mM trifluoperazine and 0.3 mM suramin, significantly decreased ATP and ADP hydrolysis (P<0.05) and ADP hydrolysis was only inhibited by 0.5 mM orthovanadate (P<0.05). ATP and ADP hydrolysis was not inhibited in the presence of 0.01 mM Ap5A (P1,P5-di(adenosine-5')pentaphosphate), 0.1 mM ouabain, 1 mM levamisole, 2 microg/mL oligomycin, 0.1 mM N-ethylmaleimide (NEM), or 5 mM sodium azide. With respect to kinetic behavior, apparent K(m) values of 77.6+/-10.2 and 106.8+/-21.0 microM, and V(max) values of 68.9+/-8.1 and 99.4+/-8.5 (mean+/-S.E., n=3) nmol Pi/min/mg protein were obtained for ATP and ADP, respectively. A Chevilard plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. The presence of CD39 was determined by flow cytometry, showing a low density of 2.72+/-0.24% (mean+/-S.E.; n=30) in human peripheral lymphocytes. The study of NTPDase activity in human lymphocytes may be important to determine the immune response status against infectious agents related to ATP and ADP hydrolysis.  相似文献   

18.
The diadenine nucleotides diadenosine 5',5"-P1,P3-triphosphate (Ap3A) and diadenosine 5',5"-P1,P4-tetraphosphate (Ap4A) can be released from platelets and were shown to act as long-lived signal molecules. Accordingly, we studied their potential effect on hepatic metabolism. In isolated perfused rat liver, Ap3A and Ap4A increase the portal pressure, lead to a transient net release of Ca2+, complex net K+ movement across the liver plasma membrane and stimulate hepatic glucose output and 14CO2 production from [1-14C]glutamate. These responses resemble that obtained with extracellular ATP. This and studies on the additivity of ATP and Ap4A effects suggest similar mechanisms mediating the ATP and diadenine nucleotide effects in the liver. Ap3A and Ap4A increased the activity of glycogen phosphorylase a in isolated hepatocyte suspensions by about 100%, pointing to a direct effect of these nucleotides on hepatic parenchymal cells. A response of hepatic non-parenchymal cells to diadenine nucleotide infusion is suggested by a marked stimulation of thromboxane and prostaglandin D2 release from perfused liver. Studies with the thromboxane A2 receptor antagonist BM 13.177 (20 microM) show that the pressure and glucose response to the diadenine nucleotides is partially mediated by this thromboxane formation. Studies with retrograde and sequential liver perfusions suggest a less efficient degradation of the diadenine nucleotides during a single liver passage compared to extracellular ATP. The data suggest that Ap3A and Ap4A are potential regulators of hepatic hemodynamics and metabolism, involving complex interactions between hepatic parenchymal cells and hepatic non-parenchymal cells, including eicosanoids as signal molecules.  相似文献   

19.
Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase.   总被引:2,自引:0,他引:2  
In the presence of ATP, luciferin (LH2), Mg2+ and pyrophosphatase, the firefly (Photinus pyralis) luciferase synthesizes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) through formation of the E-LH2-AMP complex and transfer of AMP to ATP. The maximum rate of the synthesis is observed at pH 5.7. The Km values for luciferin and ATP are 2-3 microM and 4 mM, respectively. The synthesis is strictly dependent upon luciferin and a divalent metal cation. Mg2+ can be substituted with Zn2+, Co2+ or Mn2+, which are about half as active as Mg2+, as well as with Ni2+, Cd2+ or Ca2+, which, at 5 mM concentration, are 12-20-fold less effective than Mg2+. ATP is the best substrate of the above reaction, but it can be substituted with adenosine 5'-tetraphosphate (p4A), dATP, and GTP, and thus the luciferase synthesizes the corresponding homo-dinucleoside polyphosphates:diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A), dideoxyadenosine 5',5"'-P1,P4-tetraphosphate (dAp4dA) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). In standard reaction mixtures containing ATP and a different nucleotide (p4A, dATP, adenosine 5'-[alpha,beta-methylene]-triphosphate, (Ap[CH2]pp), (S')-adenosine-5'-[alpha-thio]triphosphate [Sp)ATP[alpha S]) and GTP], luciferase synthesizes, in addition to Ap4A, the corresponding hetero-dinucleoside polyphosphates, Ap5A, adenosine 5',5"'-P1,P4-tetraphosphodeoxyadenosine (Ap4dA), diadenosine 5',5"'-P1,P4-[alpha,beta-methylene] tetraphosphate (Ap[CH2]pppA), (Sp-diadenosine 5',5"'-P1,P4-[alpha-thio]tetraphosphate [Sp)Ap4A[alpha S]) and adenosine-5',5"'-P1,P4-tetraphosphoguanosine (Ap4G), respectively. Adenine nucleotides, with at least a 3-phosphate chain and with an intact alpha-phosphate, are the preferred substrates for the formation of the enzyme-nucleotidyl complex. Nucleotides best accepting AMP from the E-LH2-AMP complex are those which contain at least a 3-phosphate chain and an intact terminal pyrophosphate moiety. ADP or other NDP are poor adenylate acceptors as very little diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) or adenosine-5',5"'-P1,P3-triphosphonucleosides (Ap3N) are formed. In the presence of NTP (excepting ATP), luciferase is able to split Ap4A, transferring the resulting adenylate to NTP, to form hetero-dinucleoside polyphosphates. In the presence of PPi, luciferase is also able to split Ap4A, yielding ATP. The cleavage of Ap4A in the presence of Pi or ADP takes place at a very low rate. The synthesis of dinucleoside polyphosphates, catalyzed by firefly luciferase, is compared with that catalyzed by aminoacyl-tRNA synthetases and Ap4A phosphorylase.  相似文献   

20.
Vesicular glutamate transporters (VGLUTs) are essential to glutamatergic synapses and determine the glutamatergic phenotype of neurones. The three known VGLUT isoforms display nearly identical uptake characteristics, but the associated expression domains in the adult rodent brain are largely segregated. Indeed, indirect evidence obtained in young VGLUT1-deficient mice indicated that in cells that co-express VGLUT1 and VGLUT2, the transporters may be targeted to different synaptic vesicles, which may populate different types of synapses formed by the same neurone. Direct evidence for a systematic segregation of VGLUT1 and VGLUT2 to distinct synapses and vesicles is lacking, and the mechanisms that may convey this segregation are not known. We show here that VGLUT1 and VGLUT2 are co-localized in many layers of the young hippocampus. Strikingly, VGLUT2 co-localizes with VGLUT1 in the mossy fibers at early stages. Furthermore, we show that a fraction of VGLUT1 and VGLUT2 is carried by the same vesicles at these stages. Hence, hippocampal neurones co-expressing VGLUT1 and VGLUT2 do not appear to sort them to separate vesicle pools. As the number of transporter molecules per vesicle affects quantal size, the developmental window where VGLUT1 and VGLUT2 are co-expressed may allow for greater plasticity in the control of quantal release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号