首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have established a sensitive and specific enzyme-linked immunosorbent assay (ELISA) for the detection of the activator protein which stimulates the enzymic hydrolysis of GM1 (GM1-activator) in human urine. The level of GM1-activator in 19 normal, adult urine samples was estimated to be 370.7±33.2 ng/ml. The amounts of GM1-activator excreted in 24 h were estimated to be between 0.28 and 1.1 mg. The coefficient of variation for this method is 4.3% for the intra-assay and 14.4% for the inter-assay. Urine samples, without purification, can be used directly for the ELISA.  相似文献   

2.
The activator protein for the enzymatic hydrolysis of sulfatide, ganglioside GM1, and globotriaosylceramide was purified from human kidney, brain, and urine. As far as they could be assayed, these three activities cochromatographed during all steps, indicating that they are due to the same protein. This result was corroborated by immunochemical comparison of individually purified activator preparations. In contrast, the activator for ganglioside GM2 hydrolysis could clearly be separated from the other activities. Kinetic data were determined for the interaction of the sulfatide activator with the different glycolipids and hydrolases.  相似文献   

3.
Cholera toxin bound to particles of colloidal gold was used to investigate by electron microscopy the binding of the toxin in human duodenum. Cholera toxin binding was detected only in the apical (brush border) plasma membrane domain suggesting that the ganglioside GM1 is absent from the basolateral plasma membrane domain. Intracellularly, toxin binding became detectable in thetrans side of the Golgi apparatus. Labeling of endosomes may indicate that the non toxin-occupied GM1-ganglioside becomes internalized.  相似文献   

4.
Non-acid and acid glycosphingolipids were isolated from feces of one litter of germ-free rats from day 17 to day 51. Quantitative and qualitative changes described for small intestine of conventional rats [Bouhours D, Bouhours J-F (1981) Biochem Biophys Res Commun 99:1384–89] were also found in the feces of these germ-free rats. A decrease in lactosylceramide and sialyllactosylceramide excretion and a change fromN-acetylneuraminic acid toN-glycoloylneuraminic acid, as well as an appearance of type 1 chain blood group H-active penta- and decaglycosylceramides were observed during the weaning period. Thus the dramatic changes seen in rat intestinal glycosphingolipids postnatally seem to be primarily regulated by non-microbial factors.Abbreviations GM3 GM3-ganglioside, II3NeuAc-LacCer or II3NeuGc-LacCer - SPG IV3NeuAc-nLcOse4Cer - GM1 GM1-ganglioside, II3NeuAc-GgOse4Cer  相似文献   

5.
Formation and turnover of myelin ganglioside   总被引:7,自引:6,他引:1  
—In young adult rats, the formation and turnover of GM1-ganglioside in myelin were compared with the formation and turnover of GM1-ganglioside in whole brain and of total lipids in whole brain and myelin, after injection of d-[1-14C]glucosamine. During the first 24 hr after injection, the specific activity of GM1-ganglioside in myelin was less than 25 per cent of that of GM1-ganglioside in whole brain. The specific activity of ganglioside in whole brain was maximal at 24 hr and then declined steadily during the next 3 months, whereas the specific activity of GM1-ganglioside in myelin continued to increase and did not reach a peak until about one month after injection, by which time its specific activity had increased five-fold. Consequently, the specific activity of GM1-ganglioside in myelin was 50 per cent higher than ganglioside in whole brain after one month. These differences in the formation and turnover of GM1-ganglioside in myelin and of whole brain are similar to those of other lipids of myelin and of whole brain, indicating that the metabolic activity of myelin ganglioside is similar to myelin lipids, but differs from whole brain lipids or whole brain gangliosides. These data provide additional evidence that ganglioside in myelin is an intrinsic constituent of the myelin sheath. GT1 (G1), GD1b, (G2), GD1a (G3), GM1 (G4), GM2 (G5), GM3 (G6).  相似文献   

6.
Human liver extracts contain an activating protein which is required for hexosaminidase A-catalysed hydrolysis of the N-acetylgalactosaminyl linkage of GM2 ganglioside [N-acetylgalactosaminyl-(N-acetylneuraminyl) galactosylglucosylceramide]. A partially purified preparation of human liver hexosaminidase A that is substantially free of GM2 ganglioside hydrolase activity is used to assay the activating protein. The proceudres of heat and alcohol denaturation, ion-exchange chromatography and gel filtration were used to purify the activating protein over 100-fold from crude human liver extracts. When the purified activating protein is analysed by polyacrylamide-gel disc electrophoresis, two closely migrating protein bands are seen. When purified activating protein is used to reconstitute the GM2 ganglioside hydrolase activity, the rate of reaction is proportional to the amount of hexosaminidase A used. The activation is specific for GM2 ganglioside and and hexosaminidase A. The activating protein did not stimulate hydrolysis of asialo-GM2 ganglioside by either hexosaminidase A or B. Hexosaminidase B did not catalyse hydrolysis of GM2 ganglioside with or without the activator. Kinetic experiments suggest the presence of an enzyme–activator complex. The dissociation constant of this complex is decreased when higher concentrations of substrate are used, suggesting the formation of a ternary complex between enzyme, activator and substrate. Determination of the molecular weight of the activating protein by gel-filtration and sedimentation-velocity methods gave values of 36000 and 39000 respectively.  相似文献   

7.
The preparation of a GM1-ganglioside (GM1) [14C]-labelled in the sialic acid residue is reported. This can be obtained by re-N-acetylation in the presence of [1-14C]-acetic anhydride, of a GM1 derivative de-N-acetylated specifically on the sialic acid residue by alkaline hydrolysis of GM1 with tetramethylammonium hydroxide. The radiolabelled GM1 is utilized to investigate the binding properties and the mode of interaction of GM1 with cultured fibroblasts. Three different forms of association (one serum-removable, one trypsin-removable and one trypsin-stable) have been recognized to occur in a way that depended on cell culture conditions (presence or absence of fetal calf serum), ganglioside concentration (from, 5×10–9 M to 10–4 M) and incubation time (up to 24 h). Some metabolic modifications of GM1 during the period of high cell viability were also investigated.Abbreviations GM1 GM1-ganglioside, II3NeuAc-GgOse4Cer - FCS fetal calf serum - EMEM Eaglés Minimum Essential Medium with Earlés salts - PBS Dulbecco phosphate buffered saline without calcium and magnesium  相似文献   

8.
A rapid procedure is described for the separation of CMP-sialic acid:lactosylceramide sialyltransferase reaction components using Sep Pak C18 cartridges. The quantitative separation of the more polar nucleotide sugar, CMP-sialic acid, and its free acid from the less polar GM3-ganglioside is simple and rapid relative to previously described methods. Recovery of GM3 is optimized by the addition of phosphatidylcholine to the reaction mixture prior to the chromatographic step. Using rat liver Golgi membranes as a source of CMP-sialic acid: lactosylceramide sialyltransferase activity (GM3 synthase; ST-1), the transfer of [14C] sialic acid from CMP-[14C] sialic acid to lactosylceramide can be quantified by this assay. The procedure is reliable and may be applicable to the isolation of ganglioside products in otherin vitro glycosyltransferase assays.Abbreviations GM3 GM3-ganglioside - II3NeuAc-LacCer NeuAc2-3Gal1-4Glc1-1Cer - GD1a GD1a-ganglioside, IV3NeuAc, II3NeuAc-GgOse4Cer, NeuAc2-3Gal1-3GalNac1-4(NeuAc2-3)Gal1-4Glc1-1Cer - GD3 GD3-ganglioside, II3(NeuAc)2LacCer, NeuAc2-8NeuAc2-3Gal1-4Glc1-1Cer - GgOse4Cer asialo-GM1 Gal1-3GalNAc1-4Gal1-4Glc1-1Cer - FucGMI fucosyl-GMI-ganglioside, Fuc1-2Gal1-3GalNAc1-4Gal1-4 Glc1-1Cer - ST-1 GM3 synthase, CMP-sialic acid:lactosylceramide sialyltransferase - LacCer lactosylceramide, Gal1-4Glc1-1Cer - CMP-NeuAc cytidine 5-monophospho-N-acetylneuraminic acid - PC phosphatidylcholine - PMSF phenylmethylsulfonyl fluoride  相似文献   

9.
Sialidases cleave off sialic acid residues from the oligosaccharide chain of gangliosides in their catabolic pathway while sialyltransferases transfer sialic acid to the growing oligosaccharide moiety in ganglioside biosynthesis. Ganglioside GM3 is a common substrate for both types of enzymes, for sialidase acting on ganglioside GM3 as well as for ganglioside GD3 synthase. Therefore, it is possible that both enzymes recognize similar structural features of the sialic acid moiety of their common substrate, ganglioside GM3. Based on this idea we used a variety of GM3 derivatives as glycolipid substrates for a bacterial sialidase (Clostridium perfringens) and for GD3 synthase (of rat liver Golgi vesicles). This study revealed that those GM3 derivatives that were poorly degraded by sialidase also were hardly recognized by sialyltransferase (GD3 synthase). This may indicate similarities in the substrate binding sites of these enzymes.  相似文献   

10.
The effect of the chain length of the fatty acid residue of the ceramide moiety of ganglioside GM3 on the binding ability of monoclonal antibody M2590, which is specific for the carbohydrate structure of GM3-ganglioside, was examined by means of a direct binding assay on thin layer chromatography plates (TLC immunostaining) and a quantitative enzyme-linked immunosorbent assay (ELISA). Derivatives of GM3 with a long fatty acid chain reacted with the M2590 antibody, but those with a short fatty acid chain showed no reaction in either assay system. These results suggested that the acyl fatty acid moiety of the ganglioside played an important role in the formation or maintenance of the antigenic structure of the carbohydrate moiety of the ganglioside.  相似文献   

11.
The125I-labeled fragment C of tetanus toxin was found to bind specifically to the gangliosides GD1b, GT1b, and GQ1b when applied to thin-layer chromatograms on which a mixture of gangliosides had been resolved. As little as 2.5 pmoles of these gangliosides could be detected by this method. In addition to factors determined by the sample, namely the amount and species of gangliosides present, optimal binding of the125I-labeled fragment C also depended upon the iodination procedure used to generate the probe, the toxin concentration, and the concentration, buffer type, pH, and ionic strength of the binding solution. This new technique was shown to be a sensitive method for the detection and identification of specific gangliosides originating from extraneural or neural cells.Nomenclature: The gangliosides follow the nomenclature system of Svennerholm [Eur J Biochem (1977) 79:11–21] GM3 II3NeuAc-LacCer - GD3 II3(NeuAc)2-LacCer - GM1 II3NeuAc-GgOse4Cer - GD1a IV3NeuAc, II3NeuAc-GgOse4Cer - GD1b II3(NeuAc)2-GgOse4Cer - GT1b IV3NeuAc, II3(NeuAc)2-GgOse4Cer - GQ1b IV3(Neu-Ac)2, II3(NeuAc)2-GgOse4Cer - GP1b IV3(NeuAc)3, II3(NeuAc)2-GgOse4Cer  相似文献   

12.
A fluorometric method for monitoring the enzymic hydrolysis of the terminal galactose from GM1-ganglioside has been developed. The released galactose is oxidized with galactose dehydrogenase and NAD and the fluorescence of the product NADH measured. This method can detect as little as 0.1 nmol of galactose. β-Galactosidase from the gastropod Turbo cornutus was employed for the hydrolysis reaction. The rate of GM1-ganglioside hydrolysis is linearly proportional to incubation time for 30 min under the assay conditions employed. In addition to galactose, the other product of hydrolysis, GM2-ganglioside, is identified by thin-layer chromatography. This procedure provides a convenient and specific method for measuring the release of galactose from GM1-ganglioside.  相似文献   

13.
Animal heme-containing peroxidases play roles in innate immunity, hormone biosynthesis, and the pathogenesis of inflammatory diseases. Using the peroxidase-like domain of Duox1 as a query, we carried out homology searching of the National Center for Biotechnology Information database. Two novel heme-containing peroxidases were identified in humans and mice. One, termed VPO1 for vascular peroxidase 1, exhibits its highest tissue expression in heart and vascular wall. A second, VPO2, present in humans but not in mice, is 63% identical to VPO1 and is highly expressed in heart. The peroxidase homology region of VPO1 shows 42% identity to myeloperoxidase and 57% identity to the insect peroxidase peroxidasin. A molecular model of the VPO1 peroxidase region reveals a structure very similar to that of known peroxidases, including a conserved heme binding cavity, critical catalytic residues, and a calcium binding site. The absorbance spectra of VPO1 are similar to those of lactoperoxidase, and covalent attachment of the heme to VPO1 protein was demonstrated by chemiluminescent heme staining. VPO1 purified from heart or expressed in HEK cells is catalytically active, with a Km for H2O2 of 1.5 mM. When co-expressed in cells, VPO1 can use H2O2 produced by NADPH oxidase enzymes. VPO1 is likely to carry out peroxidative reactions previously attributed exclusively to myeloperoxidase in the vascular system.  相似文献   

14.
15.
The role of gangliosides in the reception of low density lipoproteins (LDL) was studied using as targets mouse ascites hepatoma 22a (MAH) cells which bind LDL through a specific high affinity receptor. Low density lipoprotein binding and uptake by MAH cells decreased after brief treatment of the cells with neuraminidase to partially remove surface sialic acid residues. The LDL uptake capability of the neuraminidasetreated MAH cells was fully restored after incorporation of exogeneous GM1- and GD1a-gangliosides into the cell surface. In contrast, free (extracellular) gangliosides inhibited LDL uptake by native MAH cells. This inhibitory effect was seen at ganglioside concentrations corresponding to the ganglioside content of serum and was most pronounced with gangliosides whose sialic acids were linked to a terminal galactose residue (GM3, GD1a, GT1b) but was smaller or absent with gangliosides whose sialic acids were attached to an internal galactose (GM1, GM2). The binding of gangliosides to LDL was structure and concentration dependent, saturable and trypsin sensitive. The LDL-ganglioside interaction was further investigated by steady state fluorescence spectroscopy. Changes in the LDL fluorescence polarization were observed with as little as 0.01 M concentrations of the gangliosides. The magnitude and nature of the effect depended on the type of ganglioside. We conclude that the LDL surface possesses sites recognizing specific carbohydrate sequences of glycoconjugates and that changes in the cell surface concentrations of sialic acids significantly modulate the LDL uptake. It is postulated that shedding of gangliosides into the blood stream may be a factor involved in regulation of cholesterol homeostasis.Abbreviations MAH mouse ascites hepatoma 22a - LDL low density lipoprotein - ASM anthrylvinyl-labeled sphingomyelin [N-12-(9-anthryl-trans-dodecanoyl-sphingosine-1-phosphocholine] - RITC rhodamine isothiocyanate. The designation of gangliosides follows the IUPAC-IUB recommendation [1]: GM3, II3NeuAc-LacCer, II3-N-acetylneuraminosyllactosylceramide - GM2 II3-NeuAc-GgOse3Cer, II3-N-acetylneuraminosylgangliotriaosylceramide - GM1 II3-NeuAc-GgOse4Cer, II3-N-acetylneuraminosylgangliotetraosylceramide - GD1a, II3 IV3(NeuAc)2-GgOse4Cer, II3, IV3-di(N-acetylneuraminosyl)gangliotetraosylceramide - GT1b II3(NeuAc)2, IV3 NeuAc-GgOse4Cer, II3-di-N-acetylneuraminosyl, IV3-N-acetylneuraminosylgangliotetraosylceramide  相似文献   

16.
The complete definition of the chemical structure of GD1b-ganglioside (GD1b) lactone isolated from human brain has been given by means of spectrometric and spectroscopic analyses. GD1h lactone contains a single ester linkage involving the external sialic acid carboxyl group and the C-9 hydroxyl group of the internal sialic acid unit. A synthetic lactone of GD1b prepared treating GD1b with glacial acetic acid characterized in the same way showed an identical chemical structure.Abbreviations: Ganglioside nomenclature is according to Svennerholm [16] and the IUPAC-IUB Recommendations [17] GM1 GM1-ganglioside, II3NeuAc-GgOse4Cer, Gal1-3GalNac1-4[NeuAc2-3]Gal1-4Glc1-1Cer - GD1b GD1b-ganglioside, II3(NeuAc)2GgOse4Cer, Gal1-3GalNAc1-4[NeuAc2-8NeuAc2-3]Gal1-4Glc1-1Cer - GD1b lactone GD1b-L, Gal1-3GalNAc1-4[NeuAc(1-9)2-8NeuAc2-3]Gal1-4Glc1-1Cer - Cer ceramide - FAB-MS fast atom bombardment-mass spectrometry - 1H-NMR proteon nuclear magnetic resonance - 1D-NMR one dimensional NMR - 2D-COSY two dimensional correlated spectroscopy - DMSO-d6 deuterated dimethylsulfoxide  相似文献   

17.
Gangliosides GM2, GM1 and GD1b were radiolabelled at C-6 of the terminal galactose orN-acetylgalactosamine by the galactose oxidase/[3H]NaBH4 method; gangliosides GM2, GM1, Fuc-GM1 and GD1a were radiolabelled at C-3 of the long chain base by the 2,3-dichloro-5,6-dicyanobenzoquinone/[3H]NaBH4 method.By application of an original HPLC procedure, eight different molecular species were prepared from each labelled ganglioside. Each of these species was characterized by the presence of one of the following long chain bases:erythro C18 sphingosine,threo C18 sphingosine,erythro C18 sphinganine,threo C18 sphinganine,erythro C20 sphingosine,threo C20 sphingosine,erythro C20 sphinganine andthreo C20 sphinganine.From GD1b only the species containing theerythro forms of long chain bases were obtained.The individual molecular species were more than 99% homogeneous and had a radiopurity better than 99%. The molecular species of the same ganglioside, radiolabelled at C-3 of the long chain base, had identical specific radioactivity, namely 1.17, 1.25, 0.85 and 1.28 Ci/mmol for GM2, GM1, Fuc-GM1 and GD1a respectively. The molecular species of the same ganglioside, radiolabelled at C-6 of terminal galactose orN-acetylgalactosamine, had similar specific radioactivity, namely 1.34–1.40, 1.44–1.51, 1.37–1.44 Ci/mmol for GM2, GM1 and GD1b respectively.  相似文献   

18.
This paper describes the isolation ofEscherichia coli heat-labile enterotoxin (LT) by affinity chromatography on an anti-cholera toxin immunoglobulin-Sepharose column, and the subunit composition of crude and affinity-isolated LT. LT and its subunits were assayed with ganglioside (GM1)-ELISA, immunodiffusion, skin toxicity, and broken cell adenylate cyclase activation methods. The results show that the immunoaffinity method, applied to LT of different strains and batches, yielded about 100-fold purification with approximately 50% recovery of LT antigen. LT was shown to contain a GM1-ganglioside binding subunit as well as another subunit which does not bind to GM1 but activates adenylate cyclase. Immunodiffusion tests showed that the two LT subunits were immunologically related to but not identical with, respectively, the B and A subunits of cholera toxin. The LT “A” and “B” subunits were present in similar proportions in the affinity-isolated and crude LT preparations, but in the purified fraction they had only partially reassociated into holotoxin.  相似文献   

19.
Blood group A-active glycosphingolipids of the small intestine, A-6 and A-12, which have been characterized previously in the adult rat [Breimer ME, Hansson GC, Karlsson K-A, Leffler H (1982) J Biol Chem 257:906–12], were found to appear during postnatal development, using immunostaining on thin layer chromatograms with two monoclonal anti-A antibodies, A005 and A581. In this system, A005 was found to be specific for the A determinant based on the type 2 chain, while A581 reacted mainly with the A determinant based on the type 1 chain and only weakly with the A determinant based on the type 2 chain. A-6 Type 1 was detected first at 18 days after birth. Its concentration increased markedly during the fourth week. A-6 Type 2 was detected, at a very low level, in neonates. Its concentration increased between days 15 and 20 and then decreased almost to the neonate level by 28 days. Dodecaglycosylceramide A-12 followed the same pattern of reactivity as A-6 type 1 with A581, and remained strongly reactive with A005 after 20 days. Linear A-6 and branched A-12 appeared simultaneously. Antibodies directed against blood group H determinants based on the type 1 or type 2 chains did not detect any H structure which might have appeared as a precursor of either A-6 or A-12 at the early stages of postnatal development.Abbreviations A-6, A-12, H-5, H-10 etc the glycolipids are abbreviated by giving blood group activity, and number of sugars (see also Fig. 1) - GM3 GM3-ganglioside, H3NeuAc-LcCer - PBS phosphate-buffered saline  相似文献   

20.
The heat shock protein 70 (Hsp70/DnaK) gene of Bacillus licheniformis is 1,839 bp in length encoding a polypeptide of 612 amino acid residues. The deduced amino acid sequence of the gene shares high sequence identity with other Hsp70/DnaK proteins. The characteristic domains typical for Hsps/DnaKs are also well conserved in B. licheniformis DnaK (BlDnaK). BlDnaK was overexpressed in Escherichia coli using pQE expression system and the recombinant protein was purified to homogeneity by nickel-chelate chromatography. The optimal temperature for ATPase activity of the purified BlDnaK was 40°C in the presence of 100 mM KCl. The purified BlDnaK had a V max of 32.5 nmol Pi/min and a K M of 439 μM. In vivo, the dnaK gene allowed an E. coli dnaK756-ts mutant to grow at 44°C, suggesting that BlDnaK should be functional for survival of host cells under environmental changes especially higher temperature. We also described the use of circular dichroism to characterize the conformation change induced by ATP binding. Binding of ATP was not accompanied by a net change in secondary structure, but ATP together with Mg2+ and K+ ions had a greater enhancement in the stability of BlDnaK at stress temperatures. Simultaneous addition of DnaJ, GrpE, and NR-peptide (NRLLLTG) synergistically stimulates the ATPase activity of BlDnaK by 11.7-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号