共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacterial strain M4-7 capable of degrading various polyesters, such as poly(epsilon-caprolactone), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxyoctanoate), and poly(3-hydroxy-5-phenylvalerate), was isolated from a marine environment and identified as Pseudomonas alcaligenes. The relative molecular mass of a purified extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase (PhaZ(PalM4-7)) from P. alcaligenes M4-7 was 28.0 kDa, as determined by SDS-PAGE. The PhaZ(PalM4-7) was most active in 50 mM glycine-NaOH buffer (pH 9.0) at 35 degrees C. It was insensitive to dithiothreitol, sodium azide, and iodoacetamide, but susceptible to p-hydroxymercuribenzoic acid, N-bromosuccinimide, acetic anhydride, EDTA, diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride, Tween 80, and Triton X-100. In this study, the genes encoding MCL-PHA depolymerase were cloned, sequenced, and characterized from a soil bacterium, P. alcaligenes LB19 (Kim et al., 2002, Biomacromolecules 3, 291-296) as well as P. alcaligenes M4-7. The structural gene (phaZ(PalLB19)) of MCL-PHA depolymerase of P. alcaligenes LB19 consisted of an 837 bp open reading frame (ORF) encoding a protein of 278 amino acids with a deduced M((r)) of 30,188 Da. However, the MCL-PHA depolymerase gene (phaZ(PalM4-7)) of P. alcaligenes M4-7 was composed of an 834 bp ORF encoding a protein of 277 amino acids with a deduced Mr of 30,323 Da. Amino acid sequence analyses showed that, in the two different polypeptides, a substrate-binding domain and a catalytic domain are located in the N-terminus and in the C-terminus, respectively. The PhaZ(PalLB19) and the PhaZ(PalM4-7) commonly share the lipase box, GISSG, in their catalytic domains, and utilize 111Asn and 110Ser residues, respectively, as oxyanions that play an important role in transition-state stabilization of hydrolytic reactions. 相似文献
2.
13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. 总被引:2,自引:1,他引:2 下载免费PDF全文
The formation of poly(3-hydroxyalkanoates) (PHAs) in Pseudomonas putida KT2442 from various carbon sources was studied by 13C nuclear magnetic resonance spectroscopy, gas chromatography, and gas chromatography-mass spectroscopy. By using [1-13C]decanoate, the relation between beta-oxidation and PHA formation was confirmed. The labeling pattern in PHAs synthesized from [1-13C]acetate corresponded to the formation of PHAs via de novo fatty acid biosynthesis. Studies with specific inhibitors of the fatty acid metabolic pathways demonstrated that beta-oxidation and de novo fatty acid biosynthesis function independently in PHA formation. Analysis of PHAs derived from [1-13C]hexanoate showed that both fatty acid metabolic routes can function simultaneously in the synthesis of PHA. Furthermore, evidence is presented that during growth on medium-chain-length fatty acids, PHA precursors can be generated by elongation of these fatty acids with an acetyl coenzyme A molecule, presumably by a reverse action of 3-ketothiolase. 相似文献
3.
Ren Q de Roo G van Beilen JB Zinn M Kessler B Witholt B 《Applied microbiology and biotechnology》2005,69(3):286-292
We tested the synthesis and in vitro activity of the poly(3-hydroxyalkanoate) (PHA) polymerase 1 from Pseudomonas putida GPo1 in both P. putida GPp104 and Escherichia coli JMU193. The polymerase encoding gene phaC1 was expressed using the inducible PalkB promoter. It was found that the production of polymerase could be modulated over a wide range of protein levels by varying inducer concentrations. The optimal inducer dicyclopropylketone concentrations for PHA production were at 0.03% (v/v) for P. putida and 0.005% (v/v) for E. coli. Under these concentrations the maximal polymerase level synthesized in the E. coli host (6% of total protein) was about three- to fourfold less than that in P. putida (20%), whereas the maximal level of PHA synthesized in the E. coli host (8% of total cell dry weight) was about fourfold less than that in P. putida (30%). In P. putida, the highest specific activity of polymerase was found in the mid-exponential growth phase with a maximum of 40 U/g polymerase, whereas in E. coli, the maximal specific polymerase activity was found in the early stationary growth phase (2 U/g polymerase). Our results suggest that optimal functioning of the PHA polymerase requires factors or a molecular environment that is available in P. putida but not in E. coli. 相似文献
4.
YfcX enables medium-chain-length poly(3-hydroxyalkanoate) formation from fatty acids in recombinant Escherichia coli fadB strains 下载免费PDF全文
Expression of Escherichia coli open reading frame yfcX is shown to be required for medium-chain-length polyhydroxyalkanoate (PHA(MCL)) formation from fatty acids in an E. coli fadB mutant. The open reading frame encodes a protein, YfcX, with significant similarity to the large subunit of multifunctional beta-oxidation enzymes. E. coli fadB strains modified to contain an inactivated copy of yfcX and to express a medium-chain-length synthase are unable to form PHA(MCL)s when grown in the presence of fatty acids. Plasmid-based expression of yfcX in the FadB(-) YfcX(-) PhaC(+) strain restores polymer formation. YfcX is shown to be a multifunctional enzyme that minimally encodes hydratase and dehydrogenase activities. The gene encoding YfcX is located downstream from yfcY, a gene encoding thiolase activity. Results of insertional inactivation studies and enzyme activity analyses suggest a role for yfcX in PHA monomer unit formation in recombinant E. coli fadB mutant strains. Further studies are required to determine the natural role of YfcX in the metabolism of E. coli. 相似文献
5.
Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains 总被引:1,自引:0,他引:1
Gjalt W. Huisman Eric Wonink Gertjan de Koning Hans Preusting Bernard Witholt 《Applied microbiology and biotechnology》1992,38(1):1-5
We have studied the accumulation kinetics and physical characteristics of the poly(3-hydroxyalkanoates) (PHAs) formed by several Pseudomonas strains, mutants and recombinants. Although PHA synthesis generally begins only after an essential nutrient such as N, P, S or Mg becomes limiting, we have identified at least one strain (P. putida KT2442) that begins producing PHA during the exponential growth phase. This PHA is chemically and physically identical to that produced by P. oleovorans GPol, the strain in which we first identified PHA. Analysis of the PHA formed by a mutant strain defective in PHA degradation (P. oleovorans GPo500) revealed that the molecular mass (Mw), the monomer composition and thermal characteristics were similar to that of the PHA of the wild-type parent strain P. oleovorans GPo1. The pha locus of P. oleovorans encodes enzymes that are involved in PHA biosynthesis and degradation. It has been subcloned to study the two PHA polymerases separately in a PHA– mutant (GPp104) derived from P. putida KT2442. The recombinant strains accumulated lower PHA levels than the wild-type strains, and the Mw of these polymers were lower than those produced by the wild-type P. oleovorans and parent strain. The monomer composition of the two PHAs formed by the two PHA polymerases differed, indicating that the PHA polymerases have different substrate specificities for the incorporation of 3-hydroxyoctanoate and 3-hydroxyhexanoate monomers into PHA. Despite these differences, the PHAs formed were essentially indistinguishable from wild-type PHAs with respect to their thermal characteristics.Correspondence to: B. Witholt 相似文献
6.
An extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase from an isolate, Pseudomonas alcaligenes LB19, was purified to electrophoretic homogeneity by hydrophobic interaction chromatography using Octyl-Sepharose CL-4B and gel permeation chromatography using Sephadex G-150. The molecular mass of the enzyme, which consisted of a single polypeptide chain, was approximately 27.6 kDa. The pI value of the enzyme was estimated to be 5.7, and its maximum activity was observed at pH 9.0 and 45 degreesC. The enzyme was significantly inactivated by EDTA and phenylmethylsulfonyl fluoride (PMSF) but insensitive to dithiothreitol. It was also markedly inhibited by 0.1% Tween 80 and 0.05% Triton X-100. The purified enzyme could hydrolyze various types of bacterial aliphatic and aromatic MCL-PHAs but not poly(3-hydroxybutyrate), polycaprolactone, and poly(L-lactide). Biodegradation rates of the aromatic MCL-PHAs were significantly lower than those of the aliphatic MCL-PHAs, regardless of the compositions and types of aromatic substituents. It was able to hydrolyze medium-chain-length p-nitrophenylalkanoates more efficiently than the shorter-chain forms. The main hydrolysis products of poly(3-hydroxynonanoate) were identified as monomer units. The results demonstrated in this study suggest that the MCL-PHA depolymerase from P. alcaligenes LB19 is a distinct enzyme, which are different from those of other MCL-PHA degrading bacteria in its quaternary structure, pI value, sensitivity to EDTA and PMSF, and hydrolysis products of MCL-PHA. 相似文献
7.
Q. Ren B. Kessler F. van der Leij B. Witholt 《Applied microbiology and biotechnology》1998,49(6):743-750
The generation and characterization of Pseudomonas putida KT2442 mutants affected in poly-3-hydroxyalkanoate (PHA) synthesis are reported. The mutants from P. putida KT2442 carrying several copies of the PHA-polymerase-encoding gene (phaC) were isolated via N-methyl-N′-nitro-N-nitrosoguanidine chemical mutagenesis and contained mutation(s) on genes that are involved in PHA accumulation other than
the phaC genes. No PHA-free mutants were obtained, suggesting that there must be various routes for the synthesis of PHA polymerase
precursors. One of the isolated mutants (GPp120) accumulated more PHA than the parental strain, and there was virtually no
down-regulation of PHA formation by growth in non-limiting amounts of nitrogen, which normally block or reduce formation of
PHA. Compared to the parental strain, GPp120 exhibited significant changes in physiology and morphology when grown in minimal
medium: the growth rate was reduced more than twofold and cells formed filaments. The other four groups of isolated mutants,
with P. putida strains GPp121 to GPp124 as characteristic type strains, exhibited morphological characteristics similar to those of the
parental strain. However, they showed reduced PHA production compared to the parental PHA+ strain, and especially GPp121 and GPp122 showed PHA formation tightly controlled by nutrient conditions. All of these mutants
provide starting points for genetically dissecting the biosynthesis and regulation of PHA precursors.
Received: 10 November 1997 / Received revision: 6 February 1998 / Accepted: 6 February 1998 相似文献
8.
Kazuhiro Nakamura Yasuhiro Goto Naoko Yoshie Yoshio Inoue 《International journal of biological macromolecules》1992,14(6):321-325
It was found that an optically active copolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), denoted as P(3HB-co-3HV), is synthesized by Alcaligenes eutrophus H16 from several amino acids under various fermentation conditions. The optimum condition for the biosynthesis from one amino acid, threonine, was investigated and its biosynthetic pathway was discussed on the basis of the relation between the fermentation condition and the co-monomer composition of the produced polyesters. 相似文献
9.
It has been shown that Pseudomonas putida GPo1 is able to grow in continuous culture simultaneously limited by ammonium (N source) and octanoate (C source), and concomitantly accumulate poly([R]-3-hydroxyalkanoate) (PHA). Under such growth conditions the material properties of PHA can be fine-tuned if a second PHA precursor substrate is supplied. To determine the range of dual carbon and nitrogen (C, N)-limited growth conditions, tedious chemostat experiments need to be carried out for each carbon source separately. To determine the growth regime, the C/N ratio of the feed (f) to a chemostat was changed in a stepwise manner at a constant dilution rate of 0.3/h. Dual-(C, N)-limited growth was observed between C(f) /N(f) ≤ 6.4 g/g and C(f) /N(f) >9.5 g/g. In the following, we analyzed alternative approaches, using continuous medium gradients at the same dilution rate, that do not require time consuming establishments of steady states. Different dynamic approaches were selected in which the C(f) /N(f) ratio was changed continuously through a convex increase of C(f) , a convex increase of N(f) , or a linear decrease of C(f) (gradients 1, 2, and 3, respectively). In these experiments, the dual-(C, N)-limited growth regime was between 7.2 and 11.0 g/g for gradient 1, 4.3 and 6.9 g/g for gradient 2, and 5.1 and 8.9 g/g for gradient 3. A mathematical equation was developed that compensated a time delay of the gradient that was caused by the wash-in/wash-out effects of the medium feed. 相似文献
10.
11.
Wang Y Inagawa Y Osanai Y Kasuya K Saito T Matsumura S Doi Y Inoue Y 《Biomacromolecules》2002,3(5):894-898
The enzymatic degradability of chemosynthesized atactic poly([R,S]-3-hydroxybutyrate) [a-P(3HB)] by two types of extracellular poly(3-hydroxyalkanoate) (PHA) depolymerases purified from Ralstonia pickettii T1 (PhaZ(ral)) and Acidovorax Sp. TP4 (PhaZ(aci)), defined respectively as PHA depolymerase types I and II according to the position of the lipase box in the catalytic domain, were studied. The enzymatic degradation of a-P(3HB) by PhaZ(aci) depolymerase was confirmed from the results of weight loss and the scanning electron micrographs. The degradation products were characterized by one- and two-dimension (1)H NMR spectroscopy. It was found that a-P(3HB) could be degraded into monomer, dimer, and trimer by PhaZ(aci) depolymerase at temperatures ranging from 4 to 20 degrees C, while a-P(3HB) could hardly be hydrolyzed by PhaZ(ral) depolymerase in the same temperature range. These results suggested that the chemosynthesized a-P(3HB) could be degraded in the pure state by natural PHA depolymerase. 相似文献
12.
Enzymatic degradability has been investigated for a series of bacterial poly(3-hydroxybutyrate-co-3-hydroxypropionate)s (P(3HB-co-3HP)s) with 3-hydroxypropionate (3HP) unit contents from 11 to 86 mol % as well as poly(3-hydroxybutyrate) (P(3HB)) and chemosynthesized poly(3-hydroxypropionate) (P(3HP)). The behavior of degradation by two types of extracellular poly(3-hydroxyalkanoate) (PHA) depolymerases purified from Ralstonia pikettii T1 and Acidovorax Sp. TP4, defined respectively as PHA depolymerase types I and II according to the position of the lipase box in the catalytic domain, were compared in relation to the thermal properties and crystalline structures of the PHA samples elucidated by differential scanning calorimetry and wide-angle X-ray diffraction. The degradation products were characterized by high-performance liquid chromatography and one- (1D) and two-dimension (2D) (1)H NMR spectroscopy. It was found that the PHA depolymerase of Acidovorax Sp. TP4 showed degradation behavior different from that shown by depolymerase of R. pikettii T1. PHA depolymerase from Acidovorax Sp. TP4 degraded the P(3HB-co-3HP) films with lower crystallinity in higher rates than those with higher crystallinity, no matter what kinds of crystalline structures they formed. In contrast, PHA depolymerase from R. pikettii T1 degraded P(3HB-co-3HP) films forming P(3HB) crystalline structure in higher rates than those forming P(3HP)s. The increase in amorphous nature of the P(3HB-co-3HP) films with P(3HB)-homopolymer-like crystalline structure increases and then decreases the rate of degradation by depolymerase from R. pikettii T1. The 3-hydroxybutyrate (3HB) monomer was produced as a major product by the hydrolysis of P(3HB) film by PHA depolymerase from Acidovorax Sp. TP4. The P(3HB-co-3HP) films could be degraded into 3HB and 3-hydroxypropionate (3HP) monomer at last, indicating that the catalytic domain of the enzyme recognized at least two monomeric units as substrates. While the PHA depolymerase from R. pikettii T1 hydrolyzed P(3HB) film into 3HB dimer as a major product, and the catalytic domain recognized at least three monomeric units. The degradation behavior of P(3HB-co-3HP) films by the PHA depolymerase of Acidovorax Sp. TP4 could be distinguished from that by the depolymerase of R. pikettii T1. 相似文献
13.
Abstract The relationship between fatty acid metabolism and PHA biosynthesis in P. putida is described. Detailed 1 H and 13 C NMR studies were performed to investigate the structures of poly(3-hydroxyalkanoates) (PHAs) formed from carbohydrates and fatty acids. On the basis of these results, it is proposed that during growth on glucose the 3-hydroxyacyl-acyl carrier protein intermediates of the de novo fatty acid biosynthetic pathway are diverted to PHA biosynthesis. Similarly, further evidence is presented that during cultivation on fatty acids, intermediates of the β-oxidation cycle serve as precursors of PHA biosynthesis. 相似文献
14.
15.
A bacterial strain capable of degrading medium-chain-length polyhydroxyalkanoates (MCL-PHAs) was isolated from a soil sample.
This organism, which was identified as Streptomyces sp. KJ-72, secreted MCL-PHA depolymerase into the culture fluid only when it was cultivated on MCL-PHAs. The extracellular
MCL-PHA depolymerase of the organism was purified to electrophoretic homogeneity by ion exchange column chromatography and
gel filtration. The enzyme consisted of a monomeric subunit having a molecular mass of 27.1 kDa and isoelectric point of 4.7.
The maximum activity was observed at pH 8.7 and 50 °C. The enzyme was sensitive to N-bromosuccinimide and acetic anhydride, indicating the presence of tryptophan and lysine residues in the catalytic domain.
The enzyme was able to hydrolyze various chain-length p-nitrophenyl esters of fatty acids and polycaprolactone as well as various types of MCL-PHAs. However, lipase activity of
the enzyme was not detected. The main hydrolysis product of poly(3-hydroxyheptanoate) was identified to be the dimer of 3-hydroxyheptanoate.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
16.
José Manuel Borrero-de Acuña Izabook Gutierrez-Urrutia Cristian Hidalgo-Dumont Carla Aravena-Carrasco Matias Orellana-Saez Nestor Palominos-Gonzalez Jozef B. J. H. van Duuren Viktoria Wagner Lars Gläser Judith Becker Michael Kohlstedt Flavia C. Zacconi Christoph Wittmann Ignacio Poblete-Castro 《Microbial biotechnology》2021,14(6):2385-2402
Lignin-based aromatics are attractive raw materials to derive medium-chain length poly(3-hydroxyalkanoates) (mcl-PHAs), biodegradable polymers of commercial value. So far, this conversion has exclusively used the ortho-cleavage route of Pseudomonas putida KT2440, which results in the secretion of toxic intermediates and limited performance. Pseudomonas putida H exhibits the ortho- and the meta-cleavage pathways where the latter appears promising because it stoichiometrically yields higher levels of acetyl-CoA. Here, we created a double-mutant H-ΔcatAΔA2 that utilizes the meta route exclusively and synthesized 30% more PHA on benzoate than the parental strain but suffered from catechol accumulation. The single deletion of the catA2 gene in the H strain provoked a slight attenuation on the enzymatic capacity of the ortho route (25%) and activation of the meta route by nearly 8-fold, producing twice as much mcl-PHAs compared to the wild type. Inline, the mutant H-ΔcatA2 showed a 2-fold increase in the intracellular malonyl-CoA abundance – the main precursor for mcl-PHAs synthesis. As inferred from flux simulation and enzyme activity assays, the superior performance of H-ΔcatA2 benefited from reduced flux through the TCA cycle and malic enzyme and diminished by-product formation. In a benzoate-based fed-batch, P. putida H-ΔcatA2 achieved a PHA titre of 6.1 g l–1 and a volumetric productivity of 1.8 g l–1 day–1. Using Kraft lignin hydrolysate as feedstock, the engineered strain formed 1.4 g l- 1 PHA. The balancing of carbon flux between the parallel catechol-degrading routes emerges as an important strategy to prevent intermediate accumulation and elevate mcl-PHA production in P. putida H and, as shown here, sets the next level to derive this sustainable biopolymer from lignin hydrolysates and aromatics. 相似文献
17.
Cloning and Molecular Analysis of the Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) Biosynthesis Genes in Pseudomonas sp. Strain 61-3 总被引:1,自引:0,他引:1 下载免费PDF全文
Hiromi Matsusaki Sumihide Manji Kazunori Taguchi Mikiya Kato Toshiaki Fukui Yoshiharu Doi 《Journal of bacteriology》1998,180(24):6459-6467
18.
Role of fadR and atoC(Con) mutations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha+ Escherichia coli. 下载免费PDF全文
Recombinant Escherichia coli fadR atoC(Con) mutants containing the polyhydroxyalkanoate (PHA) biosynthesis genes from Alcaligenes eutrophus are able to incorporate significant levels of 3-hydroxyvalerate (3HV) into the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)]. We have used E. coli fadR (FadR is a negative regulator of fatty acid oxidation) and E. coli atoC(Con) (AtoC is a positive regulator of fatty acid uptake) mutants to demonstrate that either one of these mutations alone can facilitate copolymer synthesis but that 3HV levels in single mutant strains are much lower than in the fadR atoC(Con) strain. E. coli atoC(Con) mutants were used alone and in conjunction with atoA and atoD mutants to determine that the function of the atoC(Con) mutation is to increase the uptake of propionate and that this uptake is mediated, at least in part, by atoD+. Similarly, E. coli fadR mutants were used alone and in conjunction with fadA, fadB, and fadL mutants to show that the effect of the fadR mutation is dependent on fadB+ and fadA+ gene products. Strains that were mutant in the fadB or fadA locus were unable to complement a PHA biosynthesis pathway that was mutant at the phaA locus (thiolase), but a strain containing a fadR mutation and which was fadA+ fadB+ was able to complement the phaA mutation and incorporated 3HV into P(3HB-co-3HV) to a level of 29 mol%. 相似文献
19.
Matsusaki H Abe H Taguchi K Fukui T Doi Y 《Applied microbiology and biotechnology》2000,53(4):401-409
Pseudomonas sp. 61-3 accumulated a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer consisting of 3-hydroxyalkanoate
(3HA) units of 4–12 carbon atoms. The genes encoding β-ketothiolase (PhbARe) and NADPH-dependent acetoacetyl-CoA reductase (PhbBRe) from Ralstoniaeutropha were expressed under the control of promoters for Pseudomonas sp. 61-3 pha locus or R. eutropha phb operon together with phaC1
Ps gene (PHA synthase 1 gene) from Pseudomonas sp. 61-3 in PHA-negative mutants P. putida GPp104 and R. eutropha PHB−4 to produce copolyesters [P(3HB-co-3HA)] consisting of 3HB and medium-chain-length 3HA units of 6–12 carbon atoms. The introduction of the three genes into
GPp104 strain conferred the ability to synthesize P(3HB-co-3HA) with relatively high 3HB compositions (up to 49 mol%) from gluconate and alkanoates, although 3HB units were not incorporated
at all or at a very low fraction (3 mol%) into copolyesters by the strain carrying phaC1
Ps gene only. In addition, recombinant strains of R. eutropha PHB−4 produced P(3HB-co-3HA) with higher 3HB fractions from alkanoates and plant oils than those from recombinant GPp104 strains. One of the recombinant
strains, R. eutropha PHB−4/pJKSc46-pha, in which all the genes introduced were expressed under the control of the native promoter for Pseudomonas sp. 61-3 pha locus, accumulated P(3HB-co-3HA) copolyester with a very high 3HB fraction (85 mol%) from palm oil. The nuclear magnetic resonance analyses showed that
the copolyesters obtained here were random copolymers of 3HB and 3HA units.
Received: 12 July 1999 / Received revision: 1 October 1999 / Accepted: 2 October 1999 相似文献
20.
Sigrun D. Feldmann Hermann Sahm Georg A. Sprenger 《Applied microbiology and biotechnology》1992,38(3):354-361
The enzyme activities of the pentose phosphate pathway in the ethanologenic, Gram-negative bacterium Zymomonas mobilis were studied in order to construct a xylose catabolic pathway. In cell-free extracts of wild-type Z. mobilis CP4, activities of the enzymes transketolase (TKT) [2 munits (U)/mg], phosphoribose epimerase (640 mU/mg), phosphoribose isomerase (1600 mU/mg) and 6-phosphogluconate dehydrogenase (2 mU/mg) were determined. However, no transaldolase activity could be detected. Recombinant strains of Z. mobilis were constructed that carried the xylAB genes of the xylose catabolic pathway from Klebsiella pneumoniae. Expression of xylose isomerase (XI, 150 mU/mg) and xylulokinase (XK) (1300 mU/mg) were found in recombinant strains but no growth on pentose as sole carbon source occurred. The xyl-recombinant cells were moreover growth-inhibited in the presence of xylose and were found to accumulate xylitol phosphate due to the subsequent action of a novel enzyme, an NADPH-dependent aldose reductase, and a side reaction of XK on xylitol. From the xylAB recombinant strains, mutants were isolated that were less inhibited and formed less xylitol phosphate when grown in the presence of xylose. The tkt gene of E. coli was cloned on the xylAB plasmid and introduced into Z. mobilis strains. This led to higher TKT activities (150 mU/mg) and, in cooperation with the enzymes XI and XK, mediated a conversion of small amounts of xylose to CO2 and ethanol. However, no growth on xylose as sole carbon source was detected, instead sedoheptulose 7-P accumulated intracellularly.
Correspondence to: G. Sprenger 相似文献