首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The search for effective iron chelating agents was primarily driven by the need to treat iron-loading refractory anemias such as β-thalassemia major. However, there is a potential for therapeutic use of iron chelators in non-iron overload conditions. Iron can, under appropriate conditions, catalyze the production of toxic oxygen radicals which have been implicated in numerous pathologies and, hence, iron chelators may be useful as inhibitors of free radical-mediated tissue damage. We have developed the orally effective iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and demonstrated that it inhibits iron-mediated oxyradical formation and their effects (e.g. 2-deoxyribose oxidative degradation, lipid peroxidation and plasmid DNA breaks). In this study we further characterized the mechanism of the antioxidant action of PIH and some of its analogs against OH formation from the Fenton reaction. Using electron paramagnetic resonance (EPR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap for OH we showed that PIH and salicylaldehyde isonicotinoyl hydrazone (SIH) inhibited Fe(II)-dependent production of OH from H2O2. Moreover, PIH protected 2-deoxyribose against oxidative degradation induced by Fe(II) and H2O2. The protective effect of PIH against both DMPO hydroxylation and 2-deoxyribose degradation was inversely proportional to Fe(II) concentration. However, PIH did not change the primary products of the Fenton reaction as indicated by EPR experiments on OH-mediated ethanol radical formation. Furthermore, PIH dramatically enhanced the rate of Fe(II) oxidation to Fe(III) in the presence of oxygen, suggesting that PIH decreases the concentration of Fe(II) available for the Fenton reaction. These results suggest that PIH and SIH deserve further investigation as inhibitors of free-radical mediated tissue damage.  相似文献   

2.
Previous work from our laboratory demonstrated that pyridoxal isonicotinoyl hydrazone (PIH) has in vitro antioxidant activity against iron plus ascorbate-induced 2-deoxyribose degradation due to its ability to chelate iron; the resulting Fe(III)-PIH(2) complex is supposedly unable to catalyze oxyradical formation. A putative step in the antioxidant action of PIH is the inhibition of Fe(III)-mediated ascorbate oxidation, which yields the Fenton reagent Fe(II) [Biochim. Biophys. Acta 1523 (2000) 154]. In this work, we demonstrate that PIH inhibits Fe(III)-EDTA-mediated ascorbate oxidation (measured at 265 nm) and the formation of ascorbyl radical (in electron paramagnetic resonance (EPR) studies). The efficiency of PIH against ascorbate oxidation, ascorbyl radical formation and 2-deoxyribose degradation was dose dependent and directly proportional to the period of preincubation of PIH with Fe(III)-EDTA. The efficiency of PIH in inhibiting ascorbate oxidation and ascorbyl radical formation was also inversely proportional to the Fe(III)-EDTA concentration in the media. When EDTA was replaced by the weaker iron ligand nitrilotriacetic acid (NTA), PIH was much more effective in preventing ascorbate oxidation, ascorbyl radical formation and 2-deoxyribose degradation. Moreover, the replacement of EDTA with citrate, a physiological chelator with a low affinity for iron, also resulted in PIH having a higher efficiency in inhibiting iron-mediated ascorbate oxidation and 2-deoxyribose degradation. These results demonstrate that PIH removes iron from EDTA (or from either NTA or citrate), forming an iron-PIH complex that cannot induce ascorbate oxidation effectively, thus inhibiting iron-mediated oxyradical formation. These results are of pharmacological relevance because PIH has been considered for experimental chelating therapy in iron-overload diseases.  相似文献   

3.
Tannic acid (TA) has well-described antimutagenic and antioxidant activities. The antioxidant activity of TA has been previously attributed to its capacity to form a complex with iron ions, interfering with the Fenton reaction [Biochim. Biophys. Acta 1472, 1999, 142]. In this work, we observed that TA inhibits, in the micromolar range, in vitro Cu(II) plus ascorbate-mediated hydroxyl radical (*OH) formation (determined as 2-deoxyribose degradation) and oxygen uptake, as well as copper-mediated ascorbate oxidation and ascorbate radical formation (quantified in EPR studies). The effect of TA against 2-deoxyribose degradation was three orders of magnitude higher than classic *OH scavengers, but was similar to several other metal chelators. Moreover, the inhibitory effectiveness of TA, by the four techniques used herein, was inversely proportional to the Cu(II) concentration in the media. These results and the observation of copper-induced changes in the UV spectra of TA are indications that the antioxidant activity of TA relates to its copper chelating ability. Thus, copper ions complexed to TA are less capable of inducing ascorbate oxidation, inhibiting the sequence of reactions that lead to 2-deoxyribose degradation. On the other hand, the efficiency of TA against 2-deoxyribose degradation declined considerably with increasing concentrations of the *OH detector molecule, 2-deoxyribose, suggesting that the copper-TA complex also possesses an *OH trapping activity.  相似文献   

4.
Iron chelating agents are essential for treating iron overload in diseases such as beta-thalassemia and are potentially useful for therapy in non-iron overload conditions, including free radical mediated tissue injury. Deferoxamine (DFO), the only drug available for iron chelation therapy, has a number of disadvantages (e.g., lack of intestinal absorption and high cost). The tridentate chelator pyridoxal isonicotinoyl hydrazone (PIH) has high iron chelation efficacy in vitro and in vivo with high selectivity and affinity for iron. It is relatively non-toxic, economical to synthesize and orally effective. We previously demonstrated that submillimolar levels of PIH and some of its analogues inhibit lipid peroxidation, ascorbate oxidation, 2-deoxyribose degradation, plasmid DNA strand breaks and 5,5-dimethylpyrroline-N-oxide (DMPO) hydroxylation mediated by either Fe(II) plus H(2)O(2) or Fe(III)-EDTA plus ascorbate. To further characterize the mechanism of PIH action, we studied the effects of PIH and some of its analogues on the degradation of 2-deoxyribose induced by Fe(III)-EDTA plus ascorbate. Compared with hydroxyl radical scavengers (DMSO, salicylate and mannitol), PIH was about two orders of magnitude more active in protecting 2-deoxyribose from degradation, which was comparable with some of its analogues and DFO. Competition experiments using two different concentrations of 2-deoxyribose (15 vs. 1.5 mM) revealed that hydroxyl radical scavengers (at 20 or 60 mM) were significantly less effective in preventing degradation of 2-deoxyribose at 15 mM than 2-deoxyribose at 1.5 mM. In contrast, 400 microM PIH was equally effective in preventing degradation of both 15 mM and 1.5 mM 2-deoxyribose. At a fixed Fe(III) concentration, increasing the concentration of ligands (either EDTA or NTA) caused a significant reduction in the protective effect of PIH towards 2-deoxyribose degradation. We also observed that PIH and DFO prevent 2-deoxyribose degradation induced by hypoxanthine, xanthine oxidase and Fe(III)-EDTA. The efficacy of PIH or DFO was inversely related to the EDTA concentration. Taken together, these results indicate that PIH (and its analogues) works by a mechanism different than the hydroxyl radical scavengers. It is likely that PIH removes Fe(III) from the chelates (either Fe(III)-EDTA or Fe(III)-NTA) and forms a Fe(III)-PIH(2) complex that does not catalyze oxyradical formation.  相似文献   

5.
Pyridoxal isonicotinoyl hydrazone (PIH) and many of its analogs are effective iron chelators in vivo and in vitro, and are of interest for the treatment of secondary iron overload. Because previous work has implicated the Fe(3+)-chelator complexes as a determinant of toxicity, the role of iron-based oxidative stress in the toxicity of PIH analogs was assessed. The Fe(3+) complexes of PIH analogs were reduced by K562 cells and the physiological reductant, ascorbate. Depletion of the antioxidant, glutathione, sensitized Jurkat T lymphocytes to the toxicity of PIH analogs and their Fe(3+) complexes, and toxicity of the chelators increased with oxygen tension. Fe(3+) complexes of pyridoxal benzoyl hydrazone (PBH) and salicyloyl isonicotinoyl hydrazone (SIH) caused lipid peroxidation and toxicity in K562 cells loaded with eicosapentenoic acid (EPA), a readily oxidized fatty acid, whereas Fe(PIH)(2) did not. The lipophilic antioxidant, vitamin E, completely prevented both the toxicity and lipid peroxidation caused by Fe(PBH)(2) in EPA-loaded cells, indicating a causal relationship between oxidative stress and toxicity. PBH also caused concomitant lipid peroxidation and toxicity in EPA-loaded cells, both of which were reversed as its concentration increased. In contrast, PIH was inactive, while SIH was equally toxic toward control and EPA-loaded cells, without causing lipid peroxidation, indicating a much smaller contribution of oxidative stress to the mechanism of toxicity of these analogs. In summary, PIH analogs and their Fe(3+) complexes are redox active in the intracellular environment. The contribution of oxidative stress to the overall mechanism of toxicity varies across the series.  相似文献   

6.
Tannic acid (TA), a plant polyphenol, has been described as having antimutagenic, anticarcinogenic and antioxidant activities. Since it is a potent chelator of iron ions, we decided to examine if the antioxidant activity of TA is related to its ability to chelate iron ions. The degradation of 2-deoxyribose induced by 6 microM Fe(II) plus 100 microM H2O2 was inhibited by TA, with an I50 value of 13 microM. Tannic acid was over three orders of magnitude more efficient in protecting against 2-deoxyribose degradation than classical *OH scavengers. The antioxidant potency of TA was inversely proportional to Fe(II) concentration, demonstrating a competition between H2O2 and AT for reaction with Fe(II). On the other hand, the efficiency of TA was nearly unchanged with increasing concentrations of the *OH detector molecule, 2-deoxyribose. These results indicate that the antioxidant activity of TA is mainly due to iron chelation rather than *OH scavenging. TA also inhibited 2-deoxyribose degradation mediated by Fe(III)-EDTA (iron = 50 microM) plus ascorbate. The protective action of TA was significantly higher with 50 microM EDTA than with 500 microM EDTA, suggesting that TA removes Fe(III) from EDTA and forms a complex with iron that cannot induce *OH formation. We also provided evidence that TA forms a stable complex with Fe(II), since excess ferrozine (14 mM) recovered 95-96% of the Fe(II) from 10 microM TA even after a 30-min exposure to 100-500 microM H2O2. Addition of Fe(III) to samples containing TA caused the formation of Fe(II)n-TA, complexes, as determined by ferrozine assays, indicating that TA is also capable of reducing Fe(III) ions. We propose that when Fe(II) is complexed to TA, it is unable to participate in Fenton reactions and mediate *OH formation. The antimutagenic and anticarcinogenic activity of TA, described elsewhere, may be explained (at least in part) by its capacity to prevent Fenton reactions.  相似文献   

7.
A major obstacle to the therapeutic use of anthracyclines, highly effective anticancer agents, is the fact that their administration results in dose-dependent cardiomyopathy. According to the currently accepted hypothesis, anthracyclines injure the heart by generating oxygen free radicals. The ability of pyridoxal isonicotinoyl hydrazone (PIH) and salicylaldehyde isonicotinoyl hydrazone (SIH) -- new iron chelators -- to protect against peroxidation as well as their suitable biological, physical and chemical properties make the compounds promising candidates for pre-clinical and clinical studies. Activities of carbonyl reductase CR (1.1.1.184), dihydrodiol dehydrogenase DD2 (1.3.1.20), aldehyde reductase ALR1 (1.1.1.2) and P450 isoenzymes (CYP1A1, CYP1A2, CYP2B, CYP3A) involved in the metabolism of daunorubicin, doxorubicin and other drugs or xenobiotics were studied. Various concentrations of the chelators were used either alone or together with daunorubicin or doxorubicin for in vitro studies in isolated hepatocytes. A significant decrease of activity was observed for all enzymes only at PIH and SIH concentrations higher than those presumed to be used for therapy. The results show that PIH and SIH have no effect on the activities of the enzymes studied in vitro and allow us to believe that they will not interfere with the metabolism of co-administered drugs and other xenobiotics. Daunorubicin (Da) and doxorubicin (Dx) significantly reduce cytochrome P450 activity, but the addition of SIH and PIH chelators (50 microM) reverses the reduction and restores the activity to 70-90 % of the activity of relevant controls.  相似文献   

8.
The antioxidant activity of tannic acid (TA), a plant polyphenol claimed to possess antimutagenic and anticarcinogenic activities, was studied by monitoring (i) 2-deoxyribose degradation (a technique for OH detection), (ii) ascorbate oxidation, (iii) ascorbate radical formation (determined by EPR analysis) and (iv) oxygen uptake induced by the system, which comprised Fe(III) complexes (EDTA, nitrilotriacetic acid (NTA) or citrate as co-chelators), ascorbate and oxygen. TA removes Fe(III) from the co-chelators (in the case of EDTA, this removal is slower than with NTA or citrate), forming an iron-TA complex less capable of oxidizing ascorbate into ascorbate radical or mediating 2-deoxyribose degradation. The effectiveness of TA against 2-deoxyribose degradation, ascorbate oxidation and ascorbate radical formation was substantially higher in the presence of iron-NTA (or iron-citrate) than with iron-EDTA, which is consistent with the known formation constants of the iron complexes with the co-chelators. Oxygen uptake and 2-deoxyribose degradation induced by Fe(II) autoxidation were also inhibited by TA. These results indicate that TA inhibits OH formation induced by Fe(III)/ascorbate/O(2) mainly by arresting Fe(III)-induced ascorbate oxidation and Fe(II) autoxidation (which generates Fe(II) and H(2)O(2), respectively), thus limiting the production of Fenton reagents and OH formation. We also hypothesize that the Fe(II) complex with TA exhibits an OH trapping activity, which explains the effect of TA on the Fenton reaction.  相似文献   

9.
Since there are several problems with desferrioxamine (DFO) therapy, pyridoxal isonicotinoyl hydrazone (PIH) has been studied for more than 10 years as a promising new candidate for iron chelation therapy in iron-overload diseases. Iron chelation could also be helpful for experimental treatment of several other pathologies including rheumatoid arthritis and heart ischemia/reperfusion, due to the generation of oxyradicals and lipid peroxidation mediated by delocalized iron. We demonstrate here that sub-millimolar levels of PIH can inhibit the Fe(III)-EDTA/ascorbate-mediated formation of hydroxyl-like radicals as tested by the release of ethylene from 2-keto-4-methylthiobutyric acid (KMB assay) and the formation of malonaldehyde from 2-deoxyribose damage. PIH could also decrease the rates of Fe(III)-EDTA-mediated oxidation of ascorbate and block the peroxidation of liposomes of rat brain phospholipids induced by ferrous iron-EDTA. In all cases the in vitro antioxidant effectiveness of PIH was comparable to its analogs—including salicylaldehyde isonicotinoyl hydrazone—and to DFO. We conclude that PIH and its analogs are effective new candidates against iron-mediated oxidative stress for use in experimental medicine.  相似文献   

10.
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto–enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with FeII, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Abbreviations DFO desferrioxamine - HPKIH di-2-pyridyl ketone isonicotinoyl hydrazone - HNIH 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone - HPCIH 2-pyridinecarbaldehyde isonicotinoyl hydrazone - HPIH pyridoxal isonicotinoyl hydrazone - L linear DNA - OC open circular DNA - SC supercoiled DNA  相似文献   

11.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical ((.-)OH) formation from H(2)O(2) in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited (.-)OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the (.-)OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H(2)O(2). These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

12.
The orally effective iron chelator, pyridoxal isonicotinoyl hydrazone (PIH), and five analogues, pyridoxal benzoyl hydrazone (PBH), pyridoxal p-methoxybenzoyl hydrazone ((PpMBH), pyridoxal m-fluorobenzoyl hydrazone (PmFBH), 3-hydroxy- isonicotinaldehyde isonicotinoyl hydrazone (IIH) and salicylaldehyde isonicotinoyl hydrazone (SIH) were synthesised and characterised and their acid dissociation constants measured by glass electrode potentiometry and UV—Vis spectrophotometry. Analysis of the data showed that at physiological pH all of the ligands are predominantly (av. 80%) in the form of the neutral molecule, allowing passage through cell membranes and access to intracellular iron pools. The results are discussed in the context of the development of an orally effective iron chelator for clinical use.  相似文献   

13.
The chelating agent pyridoxal isonicotinoyl hydrazone (PIH) has recently been shown to mobilize 59Fe from reticulocytes loaded with non-heme 59Fe. In this study, various chelating agents were tested for their ability to effect the mobilization of iron from reticulocytes by PIH. They fall into several groups. The largest group includes chelators such as citrate, ethylenediaminetetracetic acid and desferrioxamine, which fail to affect PIH-induced iron mobilization and do not mobilize iron per se. Either these chelators do not enter reticulocytes or they do not take up iron from PIH-Fe complexes. The second group includes chelators such as 2,2′-bipyridine, 1,10-phenanthroline, bathophenanthroline sulfonate and N,N′-ethylenebis(o-hydroxyphenylglycine) which inhibit PIH-induced iron mobilization from reticulocytes and, when added together with PIH, induce radioiron accumulation in an alcohol-soluble fraction of reticulocytes. It appears that these chelators enter the cell and compete with PIH for 59Fe(II), but having bound iron are unable to cross the cell membrane. Spectral analysis suggests that Fe(II) chelators such as 2,2′-bipyridine and 1,10-phenanthroline remove iron from Fe(II)PIH but are not able to do so from Fe(III)PIH. Then there are compounds such as 2,3-dihydroxybenzoic acid and catechol which potentiate PIH-induced iron mobilization although they are unable to mobilize iron from reticulocytes by themselves. Lastly, there is a group of miscellaneous compounds which include chelators that either potentiate the iron-mobilizing effect of PIH as well as mobilizing iron from reticulocytes by themselves (tropolone), or that reduce PIH-induced iron mobilization while themselves having an iron-mobilizing effect (N,N′-bis(2,3-dihydroxybenzoyl)-1,6-diaminohexane). In further experiments, heme was found to stimulate globin synthesis in reticulocytes, the heme synthesis of which was inhibited by PIH, suggesting that PIH is probably not toxic to the cells.  相似文献   

14.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical (?OH) formation from H2O2 in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited ?OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the ?OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H2O2. These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

15.
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, orally-active tridentate iron chelator providing both effective protection against various types of oxidative stress-induced cellular injury and anticancer action. However, the major limitation of SIH is represented by its labile hydrazone bond that makes it prone to plasma hydrolysis. Recently, nine new SIH analogues derived from aromatic ketones with improved hydrolytic stability were developed. Here we analyzed their antiproliferative potential in MCF-7 breast adenocarcinoma and HL-60 promyelocytic leukemia cell lines. Seven of the tested substances showed greater selectivity than the parent agent SIH towards the latter cancer cell lines compared to non-cancerous H9c2 cardiomyoblast-derived cells. The tested chelators induced a dose-dependent dissipation of the inner mitochondrial membrane potential, an induction of apoptosis as evidenced by Annexin V positivity or significant increases of activities of caspases 3, 7, 8 and 9 and cell cycle arrest. With the exception of nitro group-bearing NHAPI, the studies of iron complexes of the chelators confirmed the crucial role of iron in the mechanism of their antiproliferative action. Finally, all the assayed chelators inhibited the oxidation of ascorbate by iron ions indicating lack of redox activity of the chelator-iron complexes. In conclusion, this study identified several important design criteria for improvement of the antiproliferative selectivity of the aroylhydrazone iron chelators. Several of the novel compounds--in particular the ethylketone-derived HPPI, NHAPI and acetyl-substituted A2,4DHAPI--merit deeper investigation as promising potent and selective anticancer agents.  相似文献   

16.
Tryptophan hydroxylase requires Fe2+ for in vitro enzyme activity. In this study, the intracellular activity of tryptophan hydroxylase was assessed by applying 3-hydroxybenzylhydrazine (NSD-1015), an inhibitor of aromatic l-amino acid decarboxylase, to monolayer cultures of RBL2H3 cells, a serotonin producing mast cell line. The effect of manipulating intracellular 'free' iron levels on enzyme activity was analyzed by administration of iron chelators. Desferrioxamine (DFO) suppressed the intracellular enzyme activity. Salicylaldehyde isonicotinoyl hydrazone (SIH) also suppressed enzyme activity, but stimulated it when administered in the Fe-bound form. Hemin also stimulated enzyme activity, which progressively increased over several hours to more than sixfold the initial level. DFO and SIH inhibited the hemin stimulatory effect when administered simultaneously with hemin. Both suppression and stimulation with these chelators took place without a significant decrease or increase in the amount of enzyme. These results indicate that there was an inadequate supply of Fe2+ in the cells to support full activity of tryptophan hydroxylase.  相似文献   

17.
One of the most important biological reactions of nitric oxide (nitrogen monoxide, *NO) is its reaction with transition metals, of which iron is the major target. This is confirmed by the ubiquitous formation of EPR-detectable g=2.04 signals in cells, tissues, and animals upon exposure to both exogenous and endogenous *NO. The source of the iron for these dinitrosyliron complexes (DNIC), and its relationship to cellular iron homeostasis, is not clear. Evidence has shown that the chelatable iron pool (CIP) may be at least partially responsible for this iron, but quantitation and kinetic characterization have not been reported. In the murine cell line RAW 264.7, *NO reacts with the CIP similarly to the strong chelator salicylaldehyde isonicotinoyl hydrazone (SIH) in rapidly releasing iron from the iron-calcein complex. SIH pretreatment prevents DNIC formation from *NO, and SIH added during the *NO treatment "freezes" DNIC levels, showing that the complexes are formed from the CIP, and they are stable (resistant to SIH). DNIC formation requires free *NO, because addition of oxyhemoglobin prevents formation from either *NO donor or S-nitrosocysteine, the latter treatment resulting in 100-fold higher intracellular nitrosothiol levels. EPR measurement of the CIP using desferroxamine shows quantitative conversion of CIP into DNIC by *NO. In conclusion, the CIP is rapidly and quantitatively converted to paramagnetic large molecular mass DNIC from exposure to free *NO but not from cellular nitrosothiol. These results have important implications for the antioxidative actions of *NO and its effects on cellular iron homeostasis.  相似文献   

18.
Zhao G  Arosio P  Chasteen ND 《Biochemistry》2006,45(10):3429-3436
Overexpression of human H-chain ferritin (HuHF) is known to impart a degree of protection to cells against oxidative stress and the associated damage to DNA and other cellular components. However, whether this protective activity resides in the protein's ability to inhibit Fenton chemistry as found for Dps proteins has never been established. Such inhibition does not occur with the related mitochondrial ferritin which displays much of the same iron chemistry as HuHF, including an Fe(II)/H(2)O(2) oxidation stoichiometry of approximately 2:1. In the present study, the ability of HuHF to attenuate hydroxyl radical production by the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + OH(-) + *OH) was examined by electron paramagnetic resonance (EPR) spin-trapping methods. The data demonstrate that the presence of wild-type HuHF during Fe(2+) oxidation by H(2)O(2) greatly decreases the amount of .OH radical produced from Fenton chemistry whereas the ferroxidase site mutant 222 (H62K + H65G) and human L-chain ferritin (HuLF) lack this activity. HuHF catalyzes the pairwise oxidation of Fe(2+) by the detoxification reaction [2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH(core) + 4H(+)] that occurs at the ferroxidase site of the protein, thereby preventing the production of hydroxyl radical. The small amount of *OH radical that is produced in the presence of ferritin (相似文献   

19.
John T Edward 《Biometals》1998,11(3):203-205
Pyridoxal isonicotinoyl hydrazone (PIH), salicylaldehydebenzoyl hydrazone (SBH), and their analogschelate iron(III) and show promise asorally effective drugs for treating diseases of iron overload. Theirbiological activity isrelated to their lipophilicity, as measured by their partition coefficients P betweenn-octanoland water. However, the method of calculating log P described in an article in this journal(Edwardet al. 1995; BioMetals, 8, 209-217) is faulty for compounds such as PIH, SBH andtheir analogs whichcontain adjacent hydrophilic groups. Consequently, the calculations reportedin the article, based on erro-neouslog P values of the chelating molecules, giveerroneous log P values of the iron(III) complexes. Thechelators most effective inmobilizing 59 Fe from reticulocytes have log P < 2.8, not log P < 0 and theiron(III)complexes of the most effective chelators have log P < 3.1, not log P < 0.  相似文献   

20.
It was reported that the electron paramagnetic resonance (EPR) spectrum of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/lipid alkoxyl radical exhibited a quartet with 1:2:2:1 relative intensity that is identical to that of DMPO/hydroxyl radical (K. M. Schaich and D. C. Borg, 1990, Free Radicals Res. Commun. 9, 267-278). We repeated these EPR experiments using HPLC separation of radical adducts and isotope substitution. We found that the HPLC/EPR chromatogram of the radical adduct with a 1:2:2:1 quartet obtained by the reduction of methyl linoleate hydroperoxide (MLOOH) with Fe2+ exhibited identical retention time to that of the DMPO/OH radical adduct obtained from the Fenton reaction in two different solvent systems. Upon performing the same reaction in 17O-enriched water, the 17O-hyperfine coupling constants due to DMPO/17OH were identified. Ultimately, approximately 80-90% of the total DMPO/OH is derived from water by an iron-dependent nucleophilic addition reaction. Initially, a water-independent mechanism also significantly contributes to DMPO/OH formation. Regardless of its mechanism of formation, the 1:2:2:1 quartet radical adduct of DMPO formed during the reduction of MLOOH by Fe2+ is in fact DMPO/OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号