首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Components of ginger (Zingiber officinale) extracts have been described as potential new drug candidates against Alzheimer disease (AD), able to interact with several molecular targets related to the AD treatment. However, there are very few theoretical studies in the literature on the possible mechanisms of action by which these compounds can work as potential anti-AD drugs. For this reason, we performed here docking, molecular dynamic simulations and mmpbsa calculations on four components of ginger extracts former reported as active inhibitors of human acetylcholinesterase (HssAChE), and compared our results to the known HssAChE inhibitor and commercial drug in use against AD, donepezil (DNP). Our findings points to two among the compounds studied: (E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-on and 1-(3,4-dihydroxy-5-methoxyphenyl)-7-(4-hydroxy-3- ethoxyphenyl) heptane-3,5-diyl diacetate, as promising new HssAChE inhibitors that could be as effective as DNP. We also mapped the binding of the studied compounds in the different binding pockets inside HssAChE and established the preferred interactions to be favored in the design of new and more efficient inhibitors.  相似文献   

2.
3.
Acetylcholinesterase inhibitors were introduced for the symptomatic treatment of Alzheimer’s disease (AD). Among the currently approved inhibitors, donepezil (DNP) is one of the most preferred choices in AD therapy. The X-ray crystal structures of Torpedo californica AChE in complex with two novel rigid DNP-like analogs, compounds 1 and 2, have been determined. Kinetic studies indicated that compounds 1 and 2 show a mixed-type inhibition against TcAChE, with Ki values of 11.12?±?2.88 and 29.86?±?1.12?nM, respectively. The DNP rigidification results in a likely entropy-enthalpy compensation with solvation effects contributing primarily to AChE binding affinity. Molecular docking evidenced the molecular basis for the binding of compounds 1 and 2 to the active site of β-secretase-1. Overall, these simplified DNP derivatives may represent new structural templates for the design of lead compounds for a more effective therapeutic strategy against AD by foreseeing a dual AChE and BACE-1 inhibitory activity.  相似文献   

4.
We recently reported that synthetic derivatives of rutaecarpine alkaloid exhibited high acetyl cholinesterase (AChE) inhibitory activity and high selectivity for AChE over butyrylcholinesterases (BuChE). To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), in this paper, further research results were presented. Starting from a structure-based drug design, a series of novel 2-(2-indolyl-)-4(3H)-quinazolines derivates were designed and synthesized as the ring-opened analogues of rutaecarpine alkaloid and subjected to pharmacological evaluation as AChE inhibitors. Among them, derivates 3a–c and 3g–h exhibited strong inhibitory activity for AChE and high selectivity for AChE over BuChE. The structure–activity relationships were discussed and their binding conformation and simultaneous interactions mode were further clarified by kinetic characterization and the molecular docking studies.  相似文献   

5.
Memoquin (1) is a lead compound multitargeted against Alzheimer’s disease (AD). It is an AChE inhibitor, free-radical scavenger, and inhibitor of amyloid-β (Aβ) aggregation. A new series of 1 derivatives was designed and synthesized by linking its 2,5-diamino-benzoquinone core with motifs that are present in the structure of known amyloid binding agents like curcumin, the benzofuran derivative SKF64346, or the benzothiazole bearing compounds KHG21834 and BTA-1. The weaker AChE inhibitory potencies and the concomitant nearly equipotent anti-amyloid activities of the new compounds with respect to 1 resulted in a more balanced biological profile against both targets. Selected compounds turned out to be effective Aβ aggregation inhibitors in a cell-based assay. By properly combining two or more distinct pharmacological properties in a molecule, we can achieve greater effectiveness compared to single-targeted drugs for investigating AD.  相似文献   

6.
Alzheimer''s disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD.  相似文献   

7.
In the present work, we propose to design drugs that target the enzyme dihydrofolate redutase (DHFR) as a means of a novel drug therapy against plague. Potential inhibitors of DHFR from Yersinia pestis (YpDHFR) were selected by virtual screening and subjected to docking, molecular dynamics (MD) simulations, and Poisson–Boltzmann surface area method, in order to evaluate their interactions in the active sites of YpDHFR and human DHFR (HssDHFR). The results suggested selectivity for three compounds that were further used to propose the structures of six new potential selective inhibitors for YpDHFR.  相似文献   

8.
Aflatoxins are secondary metabolites of the fungi Aspergillus flavus and A. parasiticus. Among them, aflatoxin B1 (AFB1) is the most frequent type in nature and the most carcinogenic for mammals. It can contaminate many kinds of food like seeds, oil, olives, milk, dairy products, corn and meat, causing acute and chronic damages to the organism, especially in the liver, being, for this reason, considered highly hepatotoxic. AFB1 is also a mixed inhibitor of the enzyme acetylcholinesterase (AChE). This fact, together with its high toxicity and carcinogenicity, turns AFB1 into a potential chemical and biological warfare agent, as well as its metabolites. In order to investigate this, we performed inedited molecular modeling studies on the interactions of AFB1 and its metabolites inside the peripheral anionic site of human AChE (HssAChE), to verify their stability, suggest the preferential ways of inhibition, and compare their behavior to each other. Our results suggest that all metabolites can be better inhibitors of HssAChE than AFB1 and that AFBO and AFM1, the most toxic and carcinogenic metabolites of AFB1, are also the most effective HssAChE inhibitors among the AFB1 metabolites.

Communicated by Ramaswamy H. Sarma  相似文献   


9.
The peripheral anionic site (PAS) of acetylcholinesterase (AChE) is involved in amyloid beta (Aβ) peptides aggregation of Alzheimer's disease (AD). AChE exhibits an aryl acylamidase (AAA) activity along with the well known esterase activity. Numerous studies have reported the beneficiary effect of metal chelators in AD treatment. Hence, a comparative study on the effect of metal chelators on both the esterase and AAA activity of AChE globular (G4 and G1) molecular forms was performed. The inhibitory effect of 1,10‐phenanthroline was high towards AChE esterase activity. The corresponding IC50 values for esterase activity of G4 and G1‐form was 190 µM and 770 µM and for AAA activity it was 270 µM and 2.74 mM, respectively. Kinetic studies on both forms of AChE show that 1,10‐phenanthroline inhibits esterase in competitive and AAA activity in non‐competitive manner. Protection studies further revealed that the nature of 1,10‐phenanthroline inhibition on AChE is through its direct binding to protein rather than its metal chelation property. Molecular docking studies shows orientation of 1,10‐phenathroline in the PAS through hydrophobic interactions with the PAS residues (Trp286, Tyr124 and Tyr341) and hydrogen bonding with Phe295. Further molecular dynamics simulation of “hAChE‐1,10‐phenanthroline” complex revealed that both hydrogen and hydrophobic interaction contribute equally for 1,10‐phenanthroline binding to hAChE. Such an interaction of 1,10‐phenanthroline on PAS may hinder “AChE‐Aβ peptide” complex formation. Hence, 1,10‐phenanthroline can act as a lead molecule for developing drug(s) against AD ailment with dual functions namely, anti‐cholinesterase and anti‐amyloid aggregation potency in a single chemical entity. Proteins 2013. Proteins 2013; 81:1179–1191. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Acetylcholinesterase (AChE) inhibitors are currently in focus for the pharmacotherapy of Alzheimer’s disease (AD). These inhibitors increase the level of acetylcholine in the brain and facilitate cholinergic neurotransmission. AChE inhibitors such as rivastigmine, galantamine, physostigmine and huperzine are obtained from plants, indicating that plants can serve as a potential source for novel AChE inhibitors. We have performed a virtual screening of diverse natural products with distinct chemical structure against AChE. NDGA was one among the top scored compounds and was selected for enzyme kinetic studies. The IC50 of NDGA on AChE was 46.2 μM. However, NDGA showed very poor central nervous system (CNS) activity and blood–brain barrier (BBB) penetration. In silico structural modification on NDGA was carried out in order to obtain derivatives with better CNS activity as well as BBB penetration. The studies revealed that some of the designed compounds can be used as lead molecules for the development of drugs against AD
Figure
Inhibitory activity of NDGA against AChE  相似文献   

11.
A series of xanthone derivatives were designed, synthesized and evaluated as multifunctional ligands against Alzheimer’s disease (AD). In vitro studies showed all xanthone derivatives had good metal chelating property and exhibited selective inhibitory activity against Acetylcholinesterase (AChE). In particular, compound 2a showed the highest inhibitory activity against AChE, and the IC50 value was (0.328 ± 0.001) μM, which was comparable to tacrine. Kinetic analysis and molecular docking studies indicated that these derivatives targeted both the catalytically active site (CAS) and the peripheral anion site (PAS) of AChE. Moreover, all derivatives showed higher anti-oxidative activity than vitamin C. Furthermore, copper complex had higher anti-AChE activity and antioxidant activity. Thus, these xanthone derivatives are potential multi-targeted-directed ligands for further development for the treatment of AD.  相似文献   

12.
A series of pterostilbene β-amino alcohol derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease (AD). In vitro assays demonstrated that most of the derivatives were selective acetylacholinesterase (AChE) inhibitors with moderate multifunctional properties. Among them, compound 5f exhibited the best inhibitory activity for EeAChE (IC50 = 24.04 μM), that was better than pterostilbene under our experimental condition. In addition, compound 5f displayed reasonable antioxidant activity and could confer significant neuroprotective effect against H2O2-induced PC-12 cell injury. Moreover, 5f also showed self-induced Aβ1-42 aggregation inhibitory potency and displayed high BBB permeability in vitro. These multifunctional properties highlight 5f as a promising candidate for further studies directed to the development of novel drugs against AD.  相似文献   

13.
Acetylcholinesterase inhibitors (AChEIs) are currently the drugs of choice, although only symptomatic and palliative, for the treatment of Alzheimer’s disease (AD). Donepezil is one of most used AChEIs in AD therapy, acting as a dual binding site, reversible inhibitor of AChE with high selectivity over butyrylcholinesterase (BChE). Through a combined target- and ligand-based approach, a series of coumarin alkylamines matching the structural determinants of donepezil were designed and prepared. 6,7-Dimethoxycoumarin derivatives carrying a protonatable benzylamino group, linked to position 3 by suitable linkers, exhibited fairly good AChE inhibitory activity and a high selectivity over BChE. The inhibitory potency was strongly influenced by the length and shape of the spacer and by the methoxy substituents on the coumarin scaffold. The inhibition mechanism, assessed for the most active compound 13 (IC50 7.6 nM) resulted in a mixed-type, thus confirming its binding at both the catalytic and peripheral binding sites of AChE.  相似文献   

14.
Abstract

Several (thiazol-2-yl)hydrazone derivatives from 2-, 3- and 4-acetylpyridine were synthesized and tested against human monoamine oxidase (hMAO) A and B enzymes. Most of them had an inhibitory effect in the low micromolar/high nanomolar range, being derivatives of 4-acetylpyridine selective hMAO-B inhibitors also at low nanomolar concentrations. The structure–activity relationship, as confirmed by molecular modeling studies, proved that the pyridine ring linked to the hydrazonic nitrogen and the substituted aryl moiety at C4 of the thiazole conferred the inhibitory effects on hMAO enzymes. Successively, the strongest hMAO-B inhibitors were tested toward acetylcholinesterase (AChE) and the most interesting compound showed activity in the low micromolar range. Our results suggest that this scaffold could be further investigated for its potential multi-targeted role in the discovery of new drugs against the neurodegenerative diseases.  相似文献   

15.
Cholinergic therapy based on cholinesterase (ChE) inhibitory drugs is the mainstay for the treatment of Alzheimer's disease. Therefore, an extensive research has been continuing for the discovery of drug candidates as inhibitors of acetyl‐ and butyrylcholinesterase. In this study, two natural molecules, e. g. hyperforin and hyuganin C were tested in vitro for their AChE and BChE inhibitory activity. Both of the compounds were ineffective against AChE, whereas hyperforin (IC50=141.60±3.39 μm ) and hyuganin C (IC50=38.86±1.69 μm ) were found to be the highly active inhibitors of BChE as compared to galantamine (IC50=46.58±0.91 μm ) which was used as the reference. Then, these molecules were further proceeded to molecular docking experiments in order to establish their interactions at the active site of BChE. The molecular docking results indicated that both of them are able to block the access to key residues in the catalytic triad of the enzyme, while they complement some of the hydrophobic residues of the cavity, what is consistent with our in vitro data. While both compounds were predicted as mutagenic, only hyuganin C showed hepatotoxicity in in silico analysis. According to whole outcomes that we obtained, particularly hyuganin C besides hyperforin are the promising BChE inhibitors, which can be the promising compounds for AD therapy.  相似文献   

16.
In order to study the structure–activity relationship of Flavokawain B Mannich-based derivatives as acetylcholinesterase (AChE) inhibitors in our recent investigation, 20 new nitrogen-containing chalcone derivatives (4?a–8d) were designed, synthesized, and evaluated for AChE inhibitory activity in vitro. The results suggested that amino alkyl side chain of chalcone dramatically influenced the inhibitory activity against AChE. Among them, compound 6c revealed the strongest AChE inhibitory activity (IC50 value: 0.85?μmol/L) and the highest selectivity against AChE over BuChE (ratio: 35.79). Enzyme kinetic study showed that the inhibition mechanism of compound 6c against AChE was a mixed-type inhibition. The molecular docking assay showed that this compound can both bind with the catalytic site and the peripheral site of AChE.  相似文献   

17.
Coxiella burnetii is a gram-negative bacterium able to infect several eukaryotic cells, mainly monocytes and macrophages. It is found widely in nature with ticks, birds, and mammals as major hosts. C. burnetii is also the biological warfare agent that causes Q fever, a disease that has no vaccine or proven chemotherapy available. Considering the current geopolitical context, this fact reinforces the need for discovering new treatments and molecular targets for drug design against C. burnetii. Among the main molecular targets against bacterial diseases reported, the enzyme dihydrofolate reductase (DHFR) has been investigated for several infectious diseases. In the present work, we applied molecular modeling techniques to evaluate the interactions of known DHFR inhibitors in the active sites of human and C. burnetii DHFR (HssDHFR and CbDHFR) in order to investigate their potential as selective inhibitors of CbDHFR. Results showed that most of the ligands studied compete for the binding site of the substrate more effectively than the reference drug trimethoprim. Also the most promising compounds were proposed as leads for the drug design of potential CbDHFR inhibitors.  相似文献   

18.
The thiolation reaction was carried out in a benzene solution at 80°C and p‐substituted ketones and mercaptoacetic acid in a molar ratio (1:4) of in the presence of a catalytic amount of toluene sulfonic acids. The enzyme inhibition activities of the novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives were investigated. These novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives showed good inhibitory action against acetylcholinesterase (AChE) butyrylcholinesterase (BChE), and human carbonic anhydrase I and II isoforms (hCA I and II). AChE inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. Many clinically established drugs are carbonic anhydrase inhibitors, and it is highly anticipated that many more will eventually find their way into the market. The novel synthesized compounds inhibited AChE and BChE with Ki values in the range of 0.64–1.47 nM and 9.11–48.12 nM, respectively. On the other hand, hCA I and II were effectively inhibited by these compounds, with Ki values between 63.27–132.34 and of 29.63–127.31 nM, respectively.  相似文献   

19.
Yang ZD  Duan DZ  Xue WW  Yao XJ  Li S 《Life sciences》2012,90(23-24):929-933
AimsInhibition of acetylcholinesterase (AChE) is still considered as a strategy for the treatment of neurological disorders such as Alzheimer's disease (AD). Many plant derived alkaloids (such as huperzine A, galanthamine and rivastigmine) are known for their AChE inhibitory activity. The aim of the present work was to isolate and identify new AChE inhibitors from Holarrhen antidysenterica.Main methodsThese compounds were tested for AChE inhibiting activity by the Ellman's method in 96-well microplates. In addition, molecular modeling was performed to explore the binding mode of inhibitors 15 at the active site of AChE, and the preliminary structure–activity relationships (SARs) were discussed.Key findingsIn the course of searching for AChE inhibitors from herb medicines, the total alkaloidal extract from the seeds of H. antidysenterica was found having potent AChE inhibitory activity with an IC50 value of 6.1 μg/mL. Further bioactivity-guided chromatographic fractionation afforded five steroidal alkaloids, conessine 1, isoconessimine 2, conessimin 3, conarrhimin 4 and conimin 5. All the isolated compounds, except for 2, showed strong AChE inhibiting activity with IC50 values ranging from 4 to 28 μM. The most active inhibitor is compound 3 with an IC50 value of 4 μM. The mode of AChE inhibition by 3 was reversible and non-competitive.SignificanceThe results suggest that these alkaloids could be potential candidates for further development of new drugs against AD.  相似文献   

20.
A series of new indole-3-acetic acid (IAA)-tacrine hybrids as dual acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) inhibitors were designed and prepared based on the molecular docking mode of AChE with an IAA derivative (1a), a moderate AChE inhibitor identified by screening our compound library for anti-Alzheimer’s disease (AD) drug leads. The enzyme assay results revealed that some hybrids, e.g. 5d and 5e, displayed potent dual in vitro inhibitory activities against AChE/BChE with IC50 values in low nanomolar range. Molecular modeling studies in tandem with kinetic analysis suggest that these hybrids target both catalytic active site and peripheral anionic site of cholinesterase (ChE). Molecular dynamic simulations and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculations indicate that 5e has more potent binding affinity than hit 1a, which may explain the stronger inhibitory effect of 5e on AChE. Furthermore, their predicted pharmacokinetic properties and in vitro influences on mouse brain neural network electrical activity were discussed. Taken together, compound 5e can be highlighted as a lead compound worthy of further optimization for designing new anti-AD drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号