首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mammalian target of rapamycin (mTOR) is the central element of a signaling pathway involved in the control of mRNA translation and cell growth. The actions of mTOR are mediated in part through the phosphorylation of the eukaryotic initiation factor 4E-binding protein, PHAS-I. In vitro mTOR phosphorylates PHAS-I in sites that control PHAS-I binding to eukaryotic initiation factor 4E; however, whether mTOR directly phosphorylates PHAS-I in cells has been a point of debate. The Arg-Ala-Ile-Pro (RAIP motif) and Phe-Glu-Met-Asp-Ile (tor signaling motif) sequences found in the NH2- and COOH-terminal regions of PHAS-I, respectively, are required for the efficient phosphorylation of PHAS-I in cells. Here we show that mutations in either motif markedly decreased the phosphorylation of recombinant PHAS-I by mTOR in vitro. Wild-type PHAS-I, but none of the mutant proteins, was coimmunoprecipitated with hemagglutinin-tagged raptor, an mTOR-associated protein, after extracts of cells overexpressing raptor had been supplemented with recombinant PHAS-I proteins. Moreover, raptor overexpression enhanced the phosphorylation of wild-type PHAS-I by mTOR but not the phosphorylation of the mutant proteins. The results not only provide direct evidence that both the RAIP and tor signaling motifs are important for the phosphorylation by mTOR, possibly by allowing PHAS-I binding to raptor, but also support the view that mTOR phosphorylates PHAS-I in cells.  相似文献   

2.
Insulin stimulates protein synthesis by promoting phosphorylation of the eIF4E-binding protein, 4EBP1. This effect is rapamycin-sensitive and mediated by mammalian target of rapamycin (mTOR) complex 1 (mTORC1), a signaling complex containing mTOR, raptor, and mLST8. Here we demonstrate that insulin produces a stable increase in the kinase activity of mTORC1 in 3T3-L1 adipocytes. The response was associated with a marked increase in 4EBP1 binding to raptor in mTORC1, and it was abolished by disrupting the TOR signaling motif in 4EBP1. The stimulatory effects of insulin on both 4EBP1 kinase activity and binding occurred rapidly and at physiological concentrations of insulin, and both effects required an intact mTORC1. Results of experiments involving size exclusion chromatography and coimmunoprecipitation of epitope-tagged subunits provide evidence that the major insulin-responsive form is dimeric mTORC1, a structure containing two heterotrimers of mTOR, raptor, and mLST8.  相似文献   

3.
Mammalian target of rapamycin (mTOR) functions in two distinct signaling complexes, mTORC1 and mTORC2. In response to insulin and nutrients, mTORC1, consisting of mTOR, raptor (regulatory-associated protein of mTOR), and mLST8, is activated and phosphorylates eukaryotic initiation factor 4E-binding protein (4EBP) and p70 S6 kinase to promote protein synthesis and cell size. Previously we found that activation of mTOR kinase in response to insulin was associated with increased 4EBP1 binding to raptor. Here we identify prolinerich Akt substrate 40 (PRAS40) as a binding partner for mTORC1. A putative TOR signaling motif, FVMDE, is identified in PRAS40 and shown to be required for interaction with raptor. Insulin stimulation markedly decreases the level of PRAS40 bound by mTORC1. Recombinant PRAS40 inhibits mTORC1 kinase activity in vivo and in vitro, and this inhibition depends on PRAS40 association with raptor. Furthermore, decreasing PRAS40 expression by short hairpin RNA enhances 4E-BP1 binding to raptor, and recombinant PRAS40 competes with 4E-BP1 binding to raptor. We, therefore, propose that PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding.  相似文献   

4.
The mTOR kinase controls cell growth, proliferation, and survival through two distinct multiprotein complexes, mTORC1 and mTORC2. mTOR and mLST8 are in both complexes, while raptor and rictor are part of only mTORC1 and mTORC2, respectively. To investigate mTORC1 and mTORC2 function in vivo, we generated mice deficient for raptor, rictor, or mLST8. Like mice null for mTOR, those lacking raptor die early in development. However, mLST8 null embryos survive until e10.5 and resemble embryos missing rictor. mLST8 is necessary to maintain the rictor-mTOR, but not the raptor-mTOR, interaction, and both mLST8 and rictor are required for the hydrophobic motif phosphorylation of Akt/PKB and PKCalpha, but not S6K1. Furthermore, insulin signaling to FOXO3, but not to TSC2 or GSK3beta, requires mLST8 and rictor. Thus, mTORC1 function is essential in early development, mLST8 is required only for mTORC2 signaling, and mTORC2 is a necessary component of the Akt-FOXO and PKCalpha pathways.  相似文献   

5.
Heat shock protein 90 (Hsp90) was co-immunoprecipitated with raptor, the binding partner of the mammalian target of rapamycin (mTOR) from HEK293 cells. Hsp90 was detected in the anti-raptor antibody immunoprecipitates prepared from the cell extract by immunoblot analysis using the anti-Hsp90 antibody, and the association of these two proteins was confirmed by immunoprecipitation from the cells co-expressing Hsp90 and raptor as epitope-tagged molecules. Geldanamycin, a potent inhibitor of Hsp90, disrupted the in vivo binding of Hsp90 to raptor without affecting the association of raptor and mTOR, and suppressed the phosphorylation by mTOR of the downstream translational regulators p70 S6 kinase (S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The protein kinase activity of S6K as well as the phosphorylation of the substrate, 40S ribosomal protein S6, were lowered in the geldanamycin-treated cells. These results indicate that Hsp90 is involved in the regulation of protein translation by facilitating the phosphorylation reaction of 4E-BP1 and S6K catalyzed by the mTOR/raptor complex through the association with raptor, and that the mTOR signaling pathway is a novel target of geldanamycin.  相似文献   

6.
The mTORC1 protein kinase complex consists of mTOR, raptor, mLST8/GβL and PRAS40. Previously, we reported that mTOR plays an important role in regulating protein synthesis in response to alcohol (EtOH). However, the mechanisms by which EtOH regulates mTORC1 activity have not been established. Here, we investigated the effect of EtOH on the phosphorylation and interaction of components of mTORC1 in C2C12 myocytes. We also examined the specific role that PRAS40 plays in this process. Incubation of myocytes with EtOH (100 mM, 24 h) increased raptor and PRAS40 phosphorylation. Likewise, there were increased levels of the PRAS40 upstream regulators Akt and IRS‐1. EtOH also caused changes in mTORC1 protein–protein interactions. EtOH enhanced the binding of raptor and PRAS40 with mTOR. These alterations occurred in concert with increased binding of 14‐3‐3 to raptor, while the PRAS40 and 14‐3‐3 interaction was not affected. The shRNA knockdown (KD) of PRAS40 decreased protein synthesis similarly to EtOH. PRAS40 KD increased raptor phosphorylation and its association with 14‐3‐3, whereas decreased GβL–mTOR binding. The effects of EtOH and PRAS40 KD were mediated by AMPK. Both factors increased in vitro AMPK activity towards the substrate raptor. In addition, KD enhanced the activity of AMPK towards TSC2. Collectively, our results indicate that EtOH stabilizes the association of raptor, PRAS40, and GβL with mTOR, while likewise increasing the interaction of raptor with 14‐3‐3. These data suggest a possible mechanism for the inhibitory effects of EtOH on mTOR kinase activity and protein synthesis in myocytes. J. Cell. Biochem. 109: 1172–1184, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.

Background

mTOR is a genetically conserved serine/threonine protein kinase, which controls cell growth, proliferation, and survival. A multifunctional protein CAD, catalyzing the initial three steps in de novo pyrimidine synthesis, is regulated by the phosphorylation reaction with different protein kinases, but the relationship with mTOR protein kinase has not been known.

Results

CAD was recovered as a binding protein with mLST8, a component of the mTOR complexes, from HEK293 cells transfected with the FLAG-mLST8 vector. Association of these two proteins was confirmed by the co-immuoprecipitaiton followed by immunoblot analysis of transfected myc-CAD and FLAG-mLST8 as well as that of the endogenous proteins in the cells. Analysis using mutant constructs suggested that CAD has more than one region for the binding with mLST8, and that mLST8 recognizes CAD and mTOR in distinct ways. The CAD enzymatic activity decreased in the cells depleted of amino acids and serum, in which the mTOR activity is suppressed.

Conclusion

The results obtained indicate that mLST8 bridges between CAD and mTOR, and plays a role in the signaling mechanism where CAD is regulated in the mTOR pathway through the association with mLST8.  相似文献   

8.
Hwang SK  Kim HH 《BMB reports》2011,44(8):506-511
Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/GβL and PRAS40. mTORC2 contains mTOR, rictor, mLST8/GβL, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.  相似文献   

9.
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB   总被引:15,自引:0,他引:15  
The drug rapamycin has important uses in oncology, cardiology, and transplantation medicine, but its clinically relevant molecular effects are not understood. When bound to FKBP12, rapamycin interacts with and inhibits the kinase activity of a multiprotein complex composed of mTOR, mLST8, and raptor (mTORC1). The distinct complex of mTOR, mLST8, and rictor (mTORC2) does not interact with FKBP12-rapamycin and is not thought to be rapamycin sensitive. mTORC2 phosphorylates and activates Akt/PKB, a key regulator of cell survival. Here we show that rapamycin inhibits the assembly of mTORC2 and that, in many cell types, prolonged rapamycin treatment reduces the levels of mTORC2 below those needed to maintain Akt/PKB signaling. The proapoptotic and antitumor effects of rapamycin are suppressed in cells expressing an Akt/PKB mutant that is rapamycin resistant. Our work describes an unforeseen mechanism of action for rapamycin that suggests it can be used to inhibit Akt/PKB in certain cell types.  相似文献   

10.
11.
In mammalian cells, the mammalian target of rapamycin (mTOR) forms an enzyme complex with raptor (together with other proteins) named mTOR complex 1 (mTORC1), of which a major target is the p70 ribosomal protein S6 kinase (p70S6K). A second enzyme complex, mTOR complex 2 (mTORC2), contains mTOR and rictor and regulates the Akt kinase. Both mTORC1 and mTORC2 are regulated by phosphorylation, complex formation and localization. So far, the role of p70S6K-mediated mTOR S2448 phosphorylation has not been investigated in detail. Here, we report that endogenous mTOR phosphorylated at S2448 binds to both, raptor and rictor. Experiments with chemical inhibitors of the mTOR kinase and of the phosphatidylinositol-3-kinase revealed that downregulation of mTOR S2448 phosphorylation correlates with decreased mTORC1 activity but can occur decoupled of effects on mTORC2 activity. In addition, we found that the correlation of the mTOR S2448 phosphorylation status with mTORC1 activity is not a consequence of effects on the assembly of mTOR protein and raptor. Our data allow new insights into the role of mTOR phosphorylation for the regulation of its kinase activity.  相似文献   

12.
mTOR/RAFT1/FRAP is the target of the immunosuppressive drug rapamycin and the central component of a nutrient- and hormone-sensitive signaling pathway that regulates cell growth. We report that mTOR forms a stoichiometric complex with raptor, an evolutionarily conserved protein with at least two roles in the mTOR pathway. Raptor has a positive role in nutrient-stimulated signaling to the downstream effector S6K1, maintenance of cell size, and mTOR protein expression. The association of raptor with mTOR also negatively regulates the mTOR kinase activity. Conditions that repress the pathway, such as nutrient deprivation and mitochondrial uncoupling, stabilize the mTOR-raptor association and inhibit mTOR kinase activity. We propose that raptor is a missing component of the mTOR pathway that through its association with mTOR regulates cell size in response to nutrient levels.  相似文献   

13.
mTOR and raptor are components of a signaling pathway that regulates mammalian cell growth in response to nutrients and growth factors. Here, we identify a member of this pathway, a protein named GbetaL that binds to the kinase domain of mTOR and stabilizes the interaction of raptor with mTOR. Like mTOR and raptor, GbetaL participates in nutrient- and growth factor-mediated signaling to S6K1, a downstream effector of mTOR, and in the control of cell size. The binding of GbetaL to mTOR strongly stimulates the kinase activity of mTOR toward S6K1 and 4E-BP1, an effect reversed by the stable interaction of raptor with mTOR. Interestingly, nutrients and rapamycin regulate the association between mTOR and raptor only in complexes that also contain GbetaL. Thus, we propose that the opposing effects on mTOR activity of the GbetaL- and raptor-mediated interactions regulate the mTOR pathway.  相似文献   

14.

Background

The appropriate control of mitotic entry and exit is reliant on a series of interlocking signaling events that coordinately drive the biological processes required for accurate cell division. Overlaid onto these signals that promote orchestrated cell division are checkpoints that ensure appropriate mitotic spindle formation, a lack of DNA damage, kinetochore attachment, and that each daughter cell has the appropriate complement of DNA. We recently discovered that AMP-activated protein kinase (AMPK) modulates the G2/M phase of cell cycle progression in part through its suppression of mammalian target of rapamycin (mTOR) signaling. AMPK directly phosphorylates the critical mTOR binding partner raptor inhibiting mTORC1 (mTOR-raptor rapamycin sensitive mTOR kinase complex 1). As mTOR has been previously tied to mitotic control, we examined further how raptor may contribute to this process.

Methodology/Principal Findings

We have discovered that raptor becomes highly phosphorylated in cells in mitosis. Utilizing tandem mass spectrometry, we identified a number of novel phosphorylation sites in raptor, and using phospho-specific antibodies demonstrated that raptor becomes phosphorylated on phospho-serine/threonine-proline sites in mitosis. A combination of site-directed mutagenesis in a tagged raptor cDNA and analysis with a series of new phospho-specific antibodies generated against different sites in raptor revealed that Serine 696 and Threonine 706 represent two key sites in raptor phosphorylated in mitosis. We demonstrate that the mitotic cyclin-dependent kinase cdc2/CDK1 is the kinase responsible for phosphorylating these sites, and its mitotic partner Cyclin B efficiently coimmunoprecipitates with raptor in mitotic cells.

Conclusions/Significance

This study demonstrates that the key mTOR binding partner raptor is directly phosphorylated during mitosis by cdc2. This reinforces previous studies suggesting that mTOR activity is highly regulated and important for mitotic progression, and points to a direct modulation of the mTORC1 complex during mitosis.  相似文献   

15.
The raptor-mTOR protein complex is a key component of a nutrient-sensitive signaling pathway that regulates cell size by controlling the accumulation of cellular mass. How nutrients regulate signaling through the raptor-mTOR complex is not well known. Here we show that a redox-sensitive mechanism regulates the phosphorylation of the raptor-mTOR effector S6K1, the interaction between raptor and mTOR, and the kinase activity of the raptor-mTOR complex. In cells treated with the oxidizing agents diamide or phenylarsine oxide, S6K1 phosphorylation increased and became insensitive to nutrient deprivation. Conversely, the reducing reagent BAL (British anti-Lewisite, also known as 2,3-dimercapto-1-propanol) inhibits S6K1 phosphorylation and stabilizes the interaction of mTOR and raptor to mimic the state of the complex under nutrient-deprived conditions. Our findings suggest that a redox-based signaling mechanism may participate in regulating the nutrient-sensitive raptor-mTOR complex and pathway.  相似文献   

16.
The role and control of the four rapamycin-sensitive phosphorylation sites that govern the association of PHAS-I with the mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), were investigated by using newly developed phospho-specific antibodies. Thr(P)-36/45 antibodies reacted with all three forms of PHAS-I that were resolved when cell extracts were subjected to SDS-polyacrylamide gel electrophoresis. Thr(P)-69 antibodies bound the forms of intermediate and lowest mobility, and Ser(P)-64 antibodies reacted only with the lowest mobility form. A portion of PHAS-I that copurified with eIF4E reacted with Thr(P)-36/45 and Thr(P)-69 antibodies but not with Ser(P)-64 antibodies. Insulin and/or amino acids increased, and rapamycin decreased, the reactivity of all three antibodies with PHAS-I in both HEK293 cells and 3T3-L1 adipocytes. Immunoprecipitated epitope-tagged mammalian target of rapamycin (mTOR) phosphorylated Thr-36/45. mTOR also phosphorylated Thr-69 and Ser-64 but only when purified immune complexes were incubated with the activating antibody, mTAb1. Interestingly, the phosphorylation of Thr-69 and Ser-64 was much more sensitive to inhibition by rapamycin-FKBP12 than the phosphorylation of Thr-36/45, and the phosphorylation of Ser-64 by mTOR was facilitated by phosphorylation of Thr-36, Thr-45, and Thr-69. In these respects the phosphorylation of PHAS-I by mTOR in vitro resembles the ordered phosphorylation of PHAS-I in cells.  相似文献   

17.
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates processes including mRNA translation, proliferation, and survival. By assembling with different cofactors, mTOR forms two complexes with distinct biological functions. Raptor-bound mTOR (mTORC1) governs cap-dependent mRNA translation, whereas mTOR, rictor, and mSin1 (mTORC2) activate the survival and proliferative kinase Akt. How the balance between the competing needs for mTORC1 and -2 is controlled in normal cells and deregulated in disease is poorly understood. Here, we show that the ubiquitin hydrolase UCH-L1 regulates the balance of mTOR signaling by disrupting mTORC1. We find that UCH-L1 impairs mTORC1 activity toward S6 kinase and 4EBP1 while increasing mTORC2 activity toward Akt. These effects are directly attributable to a dramatic rearrangement in mTOR complex assembly. UCH-L1 disrupts a complex between the DDB1-CUL4 ubiquitin ligase complex and raptor and counteracts DDB1-CUL4-mediated raptor ubiquitination. These events lead to mTORC1 dissolution and a secondary increase in mTORC2. Experiments in Uchl1-deficient and transgenic mice suggest that the balance between these pathways is important for preventing neurodegeneration and the development of malignancy. These data establish UCH-L1 as a key regulator of the dichotomy between mTORC1 and mTORC2 signaling.  相似文献   

18.
The mammalian target of rapamycin (mTOR) kinase occurs in mTOR complex 1 (mTORC1) and complex 2 (mTORC2), primarily differing by the substrate specificity factors raptor (in mTORC1) and rictor (in mTORC2). Both complexes are activated during human cytomegalovirus (HCMV) infection. mTORC1 phosphorylates eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-BP1) and p70S6 kinase (S6K) in uninfected cells, and this activity is lost upon raptor depletion. In infected cells, 4E-BP1 and S6K phosphorylation is maintained when raptor or rictor is depleted, suggesting that either mTOR complex can phosphorylate 4E-BP1 and S6K. Studies using the mTOR inhibitor Torin1 show that phosphorylation of 4E-BP1 and S6K in infected cells depends on mTOR kinase. The total levels of 4E-BP1 and viral proteins representative of all temporal classes were lowered by Torin1 treatment and by raptor, but not rictor, depletion, suggesting that mTORC1 is involved in the production of all classes of HCMV proteins. We also show that Torin1 inhibition of mTOR kinase is rapid and most deleterious at early times of infection. While Torin1 treatment from the beginning of infection significantly inhibited translation of viral proteins, its addition at later time points had far less effect. Thus, with respect to mTOR's role in translational control, HCMV depends on it early in infection but can bypass it at later times of infection. Depletion of 4E-BP1 by use of short hairpin RNAs (shRNAs) did not rescue HCMV growth in Torin1-treated human fibroblasts as it has been shown to in murine cytomegalovirus (MCMV)-infected 4E-BP1(-/-) mouse embryo fibroblasts (MEFs), suggesting that during HCMV infection mTOR kinase has additional roles other than phosphorylating and inactivating 4E-BP1. Overall, our data suggest a dynamic relationship between HCMV and mTOR kinase which changes during the course of infection.  相似文献   

19.
In higher eukaryotes, growth factors promote anabolic processes and stimulate cell growth, proliferation, and survival by activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Deregulation of PI3K/Akt signaling is linked to human diseases, including cancer and metabolic disorders. The PI3K-dependent signaling kinase complex mTORC2 (mammalian target of rapamycin complex 2) has been defined as the regulatory Ser-473 kinase of Akt. The regulation of mTORC2 remains very poorly characterized. We have reconstituted mTORC2 by its assembly in vitro or by co-expression its four essential components (rictor, SIN1, mTOR, mLST8). We show that the functional mTOR kinase domain is required for the mTORC2 activity as the Ser-473 kinase of Akt. We also found that mTOR by phosphorylation of SIN1 prevents its lysosomal degradation. Thus, the kinase domain of mTOR is required for the functional activity of mTORC2, and it controls integrity of mTORC2 by maintaining the protein stability of SIN1.  相似文献   

20.
mTOR complex 1 (mTORC1; mammalian target of rapamycin [mTOR] in complex with raptor) is a key regulator of protein synthesis and cell growth in response to nutrient amino acids. Here we report that inositol polyphosphate multikinase (IPMK), which possesses both inositol phosphate kinase and lipid kinase activities, regulates amino acid signaling to mTORC1. This regulation is independent of IPMK's catalytic function, instead reflecting its binding with mTOR and raptor, which maintains the mTOR-raptor association. Thus, IPMK appears to be a physiologic mTOR cofactor, serving as a determinant of mTORC1 stability and amino acid-induced mTOR signaling. Substances that block IPMK-mTORC1 binding may afford therapeutic benefit in nutrient amino acid-regulated conditions such as obesity and diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号