首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bladder cancer is a common malignancy and miR-99a-5p has been reported to be downregulated in bladder cancer, but its function and the underlying mechanism in bladder cancer development remains largely unclear. Here, we report that miR-99a-5p expression was decreased in bladder cancer compared with the adjacent normal tissues. Receiver operating characteristic curve revealed that miR-99a-5p expression signature had area under curve value of 0.7989 in differing bladder cancer from the adjacent normal tissues. Bladder cancer patients with low expression of miR-99a-5p had a poor survival rate. Gain-of-function and loss-of-function approaches demonstrated that miR-99a-5p inhibited bladder cell proliferation and cell cycle. Furthermore, we identified that mammalian target of rapamycin (mTOR) was a direct target of miR-99a-5p and mTOR restore could rescue the proliferative ability of bladder cancer cells. Moreover, miR-99a-5p/mTOR axis regulated S6K1 phosphorylation. These suggested that miR-99a-5p/mTOR axis might be a therapeutic target for bladder cancer.  相似文献   

3.
Cryptotanshinone (CPT) has been demonstrated to inhibit proliferation and mammalian target of rapamycin (mTOR) pathway in MCF‐7 breast cancer cells. However, the same results are unable to be repeated in MDA‐MB‐231 cells. Given the main difference of oestrogen receptor α (ERα) between two types of breast cancer cells, It is possibly suggested that CPT inhibits mTOR pathway dependent on ERα in breast cancer. CPT could significantly inhibit cell proliferation of ERα‐positive cancer cells, whereas ERα‐negative cancer cells are insensitive to CPT. The molecular docking results indicated that CPT has a high affinity with ERα, and the oestrogen receptor element luciferase reporter verified CPT distinct anti‐oestrogen effect. Furthermore, CPT inhibits mTOR signalling in MCF‐7 cells, but not in MDA‐MB‐231 cells, which is independent on binding to the FKBP12 and disrupting the mTOR complex. Meanwhile, increased expression of phosphorylation AKT and insulin receptor substrate (IRS1) induced by insulin‐like growth factor 1 (IGF‐1) was antagonized by CPT, but other molecules of IGF‐1/AKT/mTOR signalling pathway such as phosphatase and tensin homolog (PTEN) and phosphatidylinositol‐4,5‐bisphosphate 3‐kinase (PI3K) were negatively affected. Finally, the MCF‐7 cells transfected with shERα for silencing ERα show resistant to CPT, and p‐AKT, phosphorylation of p70 S6 kinase 1 (p‐S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E‐BP1) were partially recovered, suggesting ERα is required for CPT inhibition of mTOR signalling. Overall, CPT inhibition of mTOR is dependent on ERα in breast cancer and should be a potential anti‐oestrogen agent and a natural adjuvant for application in endocrine resistance therapy.  相似文献   

4.
5.
Werner syndrome (WS), caused by mutations at the WRN helicase gene, is a progeroid syndrome characterized by multiple features consistent with accelerated aging. Aberrant double‐strand DNA damage repair leads to genomic instability and reduced replicative lifespan of somatic cells. We observed increased autophagy in WRN knockdown cells; this was further increased by short‐term rapamycin treatment. Long‐term rapamycin treatment resulted in improved growth rate, reduced accumulation of DNA damage foci and improved nuclear morphology; autophagy markers were reduced to near‐normal levels, possibly due to clearance of damaged proteins. These data suggest that protein aggregation plays a role in the development of WS phenotypes and that the mammalian target of rapamycin complex 1 pathway is a potential therapeutic target of WS.  相似文献   

6.
7.
A previous study has demonstrated that Ganshuang granule (GSG) plays an anti‐fibrotic role partially by deactivation of hepatic stellate cells (HSCs). In HSCs activation, mammalian target of rapamycin (mTOR)‐autophagy plays an important role. We attempted to investigate the role of mTOR‐autophagy in anti‐fibrotic effect of GSG. The cirrhotic mouse model was prepared to demonstrate the anti‐fibrosis effect of GSG. High performance liquid chromatography (HPLC) analyses were used to identify the active component of GSG. The primary mouse HSCs were isolated and naringin was added into activated HSCs to observe its anti‐fibrotic effect. 3‐methyladenine (3‐MA) and Insulin‐like growth factor‐1 (IGF‐1) was added, respectively, into fully activated HSCs to explore the role of autophagy and mTOR. GSG played an anti‐fibrotic role through deactivation of HSCs in cirrhotic mouse model. The concentration of naringin was highest in GSG by HPLC analyses and naringin markedly suppressed HSCs activation in vitro, which suggested that naringin was the main active component of GSG. The deactivation of HSCs caused by naringin was not because of the autophagic activation but mTOR inhibition, which was supported by the following evidence: first, naringin induced autophagic activation, but when autophagy was blocked by 3‐MA, deactivation of HSCs was not attenuated or reversed. Second, naringin inhibited mTOR pathway, meanwhile when mTOR was activated by IGF‐1, deactivation of HSCs was reversed. In conclusion, we have demonstrated naringin in GSG suppressed activation of HSCs for anti‐fibrosis effect by inhibition of mTOR, indicating a potential therapeutic application for liver cirrhosis.  相似文献   

8.
9.
10.
VSMC (vascular smooth muscle cell) proliferation contributes significantly to intimal thickening in atherosclerosis, restenosis and venous bypass graft diseases. Ang II (angiotensin II) has been implicated in VSMC proliferation though the activation of multiple growth-promoting signals. Although TZDs (thiazolidinediones) can inhibit VSMC proliferation and reduce Ang II-induced fibrosis, the mechanism underlying the inhibition of VSMC proliferation and fibrosis needs elucidation. We have used primary cultured rat aortic VSMCs and specific antibodies to investigate the inhibitory mechanism of rosiglitazone on Ang II-induced VSMC proliferation. Rosiglitazone treatment significantly inhibited Ang II-induced rat aortic VSMC proliferation in a dose-dependent manner. Western blot analysis showed that rosiglitazone significantly lowered phosphorylated ERK1/2 (extracellular-signal-regulated kinase 1/2), Akt (also known as protein kinase B), mTOR (mammalian target of rapamycin), p70S6K (70 kDa S6 kinase) and 4EBP1 (eukaryotic initiation factor 4E-binding protein) levels in Ang II-treated VSMCs. In addition, PPAR-γ (peroxisome-proliferator-activated receptor γ) mRNA increased significantly and CTGF (connective tissue growth factor), Fn (fibronectin) and Col III (collagen III) levels decreased significantly. The results demonstrate that the rosiglitazone directly inhibits the pro-atherosclerotic effect of Ang II on rat aortic VSMCs. It also attenuates Ang II-induced ECM (extracellular matrix) molecules and CTGF production in rat aortic VSMCs, reducing fibrosis. Importantly, PPAR-γ activation mediates these effects, in part, through the mTOR-p70S6K and -4EBP1 system.  相似文献   

11.
SERPINA5 belongs to the serine protease inhibitor superfamily and has been reported to be lowly expressed in a variety of malignancies. However, few report of SERPINA5 in gastric cancer has been found. The purpose of this study was to determine the role of SERPINA5 in GC and to investigate potential tumorigenic mechanisms. We performed qPCR to determine the level of SERPINA5 expression in GC. We used public databases to evaluate whether SERPINA5 could be utilized to predict overall survival and disease‐free survival in GC patients. We also knocked down the expression of SERPINA5 and evaluated its effect on cell proliferation and migration. Furthermore, we explored the signal pathways and regulatory mechanisms related to SERPINA5 functions. According to our findings, SERPINA5 was shown to exhibit high expression in GC. Notably, SERPINA5 was prognostic in GC with high expression being unfavourable. SERPINA5 was further observed to promote GC tumorigenesis by modulating GC cell proliferation ability. Mechanically, SERPINA5 could inhibit CBL to regulate the PI3K/AKT/mTOR signalling pathway, thereby promoting GC carcinogenesis progression. These results highlight the important role of SERPINA5 in GC cell proliferation and suggest that SERPINA5 could be a novel target for GC treatment and a predictor for GC prognosis.  相似文献   

12.
Malignant glioma is a severe type of brain tumor with a grim prognosis. The occurrence of resistance compromises the efficacy of chemotherapy for glioma. Long noncoding RNA growth arrest-specific 5 (GAS5) has recently become an attractive target for cancer therapy by regulating cell growth, invasion, and migration. Nevertheless, its role in glioma chemoresistance remains elusive. In the current study, the expression of GAS5 was decreased in glioma cell lines, and lower levels of GAS5 were observed in U138 and LN18 glioma cells that had low sensitivity to cisplatin. Functional assay confirmed that knockdown of GAS5 enhanced cell resistance to cisplatin in U87 cells, which had a relatively high expression of GAS5. Conversely, elevation of GAS5 increased cell sensitivity to cisplatin in U138 cells that had a relatively low expression of GAS5. Mechanistically, cisplatin exposure evoked excessive autophagy concomitant with an increase in autophagy-related LC3II expression and a decrease in autophagy substrate p62 expression, which was reversely muted after GAS5 overexpression. In addition, GAS5 restored cisplatin-inhibited mammalian target of rapamycin (mTOR) activation. Preconditioning with mTOR antagonist rapamycin engendered not only mTOR inhibition but also abrogated GAS5-mediated depression in cisplatin-evoked autophagy. Notably, blocking the mTOR pathway also attenuated GAS5-increased sensitivity to cisplatin in U138 cells. Cumulatively, these findings indicate that GAS5 may blunt the resistance of glioma cells to cisplatin by suppressing excessive autophagy through the activation of mTOR signaling, implying a promising therapeutic strategy against chemoresistance in glioma.  相似文献   

13.
KLOTHO was originally identified as an aging-suppressor gene that causes a human aging-like phenotype when tested in KLOTHO-deficient-mice. Recent evidence suggests that KLOTHO functions as a tumor suppressor by inhibiting Wnt signaling. KLOTHO gene silencing, including DNA methylation, has been observed in some human cancers. Aberrant activation of Wnt signaling plays a significant role in aging, and its silencing may be related to prostate cancer and other types of cancers. Thus, we investigated whether the expression of the anti-aging gene KLOTHO was associated with epigenetic changes in prostate cancer cell lines. KLOTHO mRNA was detected in the 22Rv1 cell line while it was not detected in DU145 and PC-3 cell lines. The restoration of KLOTHO mRNA in the DU145 and PC-3 cell lines was induced with a DNA methyltransferase inhibitor. Methylation-specific PCR was performed to determine the specific CpG sites in the KLOTHO promoter responsible for expression. In addition, the level of methylation was assessed in each CpG by performing bisulfite sequencing and quantitative pyrosequencing analysis. The results suggested a remarkable inverse relationship between KLOTHO expression and promoter methylation in prostate cancer cell lines.  相似文献   

14.
哺乳动物雷帕霉素靶(mTOR)是细胞生长的中心调控因子,应用RT-PCR、免疫印迹、放射性同位素体外测定酶活性等方法,研究mTOR在小鼠受精卵第一次有丝分裂过程中在卵中的表达、活性变化以及对卵裂的影响.研究发现mTOR在小鼠卵母细胞和受精卵中都有表达,在mRNA水平,mTOR从G2期开始降解,在蛋白水平,则各期没有明显变化;mTOR的激酶活性在受精后明显升高,并且在整个1-细胞期保持较高活性;mTOR的特异性抑制剂雷帕霉素能抑制卵裂,并且能抑制成熟促进因子MPF的调节亚基cyclin B的表达,从而抑制了MPF的活性.结果表明mTOR可能通过促进MPF的激活而促进小鼠受精卵的分裂.  相似文献   

15.
Gastric cancer (GC) is one of the most common cancers. Resistance to 5-fluorouracil (5-Fu)-based chemotherapy is a major cause of treatment failure followed by the poor prognosis of patients. In GC, it was reported that human differentiated embryonic chondrocyte-expressed gene 2 (DEC2), suppressed tumor proliferation and metastasis, but the effect of DEC2 on chemosensitivity of GC cells was unknown. In our study, we found that DEC2 can obviously increase the sensibility of GC cells to 5-Fu by promoting 5-Fu-induced apoptosis. DEC2 overexpression is significantly associated with decreased phosphorylation of STAT5A (P-STAT5A). More importantly, negative correlations between DEC2 with P-STAT5A expression were observed in tissue sections from GC patients. GC patients with low expression levels of DEC2 and high expression levels of P-STAT5A showed a poor prognosis. Furthermore, enhanced chemosensitivity mediated by DEC2 can be reversed by STAT5A which confer GC cells resistance to apoptosis induced by 5-Fu. Together, our results suggest that through inhibiting activation of STAT5A, DEC2 enhances 5-Fu-induced apoptosis and suppression of proliferation in GC cells. These findings will provide new insight for identifying potential targets that can be used to sensitize GC cells to chemotherapy.  相似文献   

16.
The mammalian target of rapamycin (mTOR) is a large Ser/Thr protein kinase that belongs to the phosphoinositide 3-kinase (PI3K) family and mediates various physiological and pathological processes, especially cell proliferation, protein synthesis, autophagy, and cancer development. The mTOR expression is transient and tightly regulated in normal cells, but it is overactivated in cancer cells. Recently, several studies have indicated that microRNAs (miRNAs) play a critical role in the regulation of mTOR and mTOR-associated processes, some acting as inhibitors and the others as activators. Although it is still in infancy, the strategy of combining both miRNAs and mTOR inhibitors might provide an approach to selectively sensitizing tumor cells to chemotherapy-induced DNA damage and subsequently attenuating the tumor cell growth and apoptosis.  相似文献   

17.
We examined chemosensitivity to 5-fluorouracil (5-FU) in four human gastric cancer cell lines, by analyzing the expression of p53 and its related genes. Treatment with 1mM 5-FU induced variable degrees of apoptosis in the cultured cells. The apoptotic indices 72 h after treatment were approximately 14% in MKN-74 (wild-type p53 gene), 12% in MKN-45 (wild-type), 3% in MKN-28 (mutated) and 0.5% in KATO-III cells (deleted), respectively. On the other hand, 50 M 5-FU had little effect on the induction of apoptosis in MKN-74 cells, the value being approximately 2% after 72 h. Induction of P53 expression was noted 3 h after initiating the treatment, followed by the induction of P21/Waf1 after 6 h in both MKN-74 and MKN-45 cells. The same expression mode was noted in MKN-74 treated with 50 M 5-FU. Conversely, the level of P53 expression was constant in MKN-28 cells and absent in KATO-III cells, in which P21/Waf1 had never been induced. The Bax/Bcl-2 expression ratio was gradually elevated for up to 72 h in MKN-74 and MKN-45 cells treated with 1mM 5-FU; in contrast, it was unchanged in MKN-28 and KATO-III cells, and MKN-74 treated with 50 M 5-FU. These results might indicate that (1) 1mM 5-FU induces apoptosis in cultured gastric cancer cells carrying the wild-type p53 gene, but not those carrying the mutated type or a gene deletion, and (2) the elevated Bax/Bcl-2 expression ratio plays a more crucial role than the higher expression of P21/Waf1 in the induction of p53- gene dependent apoptosis.  相似文献   

18.
5-aminolevulinic acid (5-ALA) is contained in all organisms and a starting substrate for heme biosynthesis. Since administration of 5-ALA specifically leads cancer cells to accumulate protoporphyrin IX (PpIX), a potent photosensitizer, we tested if 5-ALA also serves as a thermosensitizer. 5-ALA enhanced heat-induced cell death of cancer cell lines such as HepG2, Caco-2, and Kato III, but not other cancer cell lines including U2-OS and normal cell lines including WI-38. Those 5-ALA-sensitive cancer cells, but neither U2-OS nor WI-38, accumulated intracellular PpIX and exhibited an increased reactive oxygen species (ROS) generation under thermal stress with 5-ALA treatment. In addition, blocking the PpIX-exporting transporter ABCG2 in U2-OS and WI-38 cells enhanced their cell death under thermal stress with 5-ALA. Finally, a ROS scavenger compromised the cell death enhancement by 5-ALA. These suggest that 5-ALA can sensitize certain cancer cells, but not normal cells, to thermal stress via accumulation of PpIX and increase of ROS generation.  相似文献   

19.
The effects and signaling mechanisms of brain-derived neurotrophic factor (BDNF) on translation elongation were investigated in cortical neurons. BDNF increased the elongation rate approximately twofold, as determined by measuring the ribosomal transit time. BDNF-accelerated elongation was inhibited by rapamycin, implicating the mammalian target of rapamycin (mTOR). To explore the mechanisms underlying these effects, we examined the protein phosphorylation cascades that lead to the activation of translation elongation in neurons. BDNF increased eukaryote elongation factor 1A (eEF1A) phosphorylation and decreased eEF2 phosphorylation. Whereas eEF2 phosphorylation levels altered by BDNF were inhibited by rapamycin, eEF1A phosphorylation was not affected by rapamycin or PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor. BDNF induced phosphorylation of eEF2 kinase (Ser366), as well as decreased its kinase activity. All these events were inhibited by rapamycin. Furthermore, mTOR siRNA, which reduced mTOR levels up to 50%, inhibited the BDNF-induced enhancement in elongation rate and decrease in eEF2 phosphorylation. These results strongly suggest that BDNF enhances translation elongation through the activation of the mTOR-eEF2 pathway.  相似文献   

20.
In spite of the achievement in treatment, the gastric cancer (GC) mortality still remains high. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play a crucial part in tumor progression. In this study, we explored the expression and function of microRNA-501-5p (miR-501-5p) in GC cell lines. Quantitative real-time polymerase chain reaction assay results suggested that miR-501-5p was significantly upregulated in GC tissues and cell lines. And, the Cell Counting Kit-8 colony formation and cell migration assay results showed that the downregulation of miR-501-5p decreased GC cell proliferation and migration. Besides that, we found that GC cell cycle was arrested in G2 phase and cell apoptosis rate was increased by silencing the expression of miR-501-5p in GC cell lines using the flow cytometry. We also found that miR-501-5p could directly target lysophosphatidic acid receptor 1 (LPAR1) and negatively regulate LPAR1 expression in GC cell lines by performing dual-luciferase reporter gene assay and Western blot analysis. And, LPAR1 was significantly downregulated in GC tissues and inversely correlated with miR-501-5p expression. Furthermore, LPAR1 downregulation promoted cell proliferation and migration, which were attenuated by cotransfection of miR-501-5p inhibitor in GC cells. In conclusion, miR-501-5p can promote GC cell proliferation and migration by targeting and downregulating LPAR1. miR-501-5p/LPAR1 may become a potential therapeutic target for GC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号