首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate blood flow autoregulation in filtering and nonfiltering kidneys, renal blood flow was determined during graded reductions in renal perfusion pressure in seven anesthetized dogs containing both a filtering and nonfiltering kidney. In each dog, one kidney was made nonfiltering by the method of EH Blaine, JO Davis, and RT Witty (Circ Res 27:1081-1089, 1970). Renal perfusion pressure was decreased from 129 to 115, 99, and 83 mm Hg by stepwise constriction of the suprarenal aorta. In filtering kidneys, the maximum decrease in renal perfusion pressure reduced renal blood flow only 20.1% of control whereas renal blood flow of nonfiltering kidneys decreased by 41.0% of control. During aortic constriction, renal vascular resistance of nonfiltering kidneys remained unchanged or slightly increased. These hemodynamic changes were associated with significantly greater autoregulation indices in nonfiltering kidneys. In eight dogs with nonfiltering kidneys, competitive inhibition of adenosine with theophylline (9 mg/kg iv) restored autoregulation of renal blood flow as shown by significant decreases in renal vascular resistance. These data indicate that in the nonfiltering kidney model, autoregulation of renal blood flow is impaired. It is suggested that this impaired autoregulatory response may result from renal ischemia and the vasoconstrictor influence of elevated intrarenal adenosine concentration.  相似文献   

2.
The effect of acute infusion of the prostaglandin synthetase inhibitors - meclofenamate or indomethacin - was examined in awake rats. Studies were performed in normal rats undergoing either sodium or water diuresis and in salt-replete rats with chronic renal insufficiency. Prostaglandin synthetase inhibitors had no effect on renal plasma flow, glomerular filtration rate or fractional excretion of sodium in any of the groups. Absolute urinary excretion rates for sodium and potassium decreased only in the normal, salt-replete rats. In contrast, prostaglandin synthetase inhibitors consistently decreased urinary flow and osmolar clearance under all experimental conditions studied. In the normal, salt-replete rats the fall in urine flow was preceded by an increase in urinary excretion of cyclic AMP. These results show that inhibitors of prostaglandin synthesis enhance the ability of the kidney to reabsorb water. This effect may be secondary to increased cyclic AMP generation and to increased urea recirculation resulting in higher urea accumulation in the renal medulla.  相似文献   

3.
The effect of acute infusion of the prostaglandin synthetase inhibitors — meclofenamate or indomethacin — was examined in awake rats. Studies were performed in normal rats undergoing either sodium or water diuresis and in salt-replete rats with chronic renal insufficiency. Prostaglandin synthetase inhibitors had no effect on renal plasma flow, glomerular filtration rate or fractional excretion of sodium in any of the groups. Absolute urinary excretion rates for sodium and potassium decreased only in the normal, salt-replete rats. In contrast, prostaglandin synthetase inhibitors consistently decreased urinary flow and osmolar clearance under all experimental conditions studied. In the normal, salt-replete rats the fall in urine flow was preceded by an increase in urinary excretion of cyclic AMP. These results show that inhibitors of prostaglandin synthesis enhance the ability of the kidney to reabsorb water. This effect may be secondary to increased cyclic AMP generation and to increased urea recirculation resulting in higher urea accumulation in the renal medulla.  相似文献   

4.
The purpose of this study was to examine the role of prostaglandins in the redistribution of renal cortical blood flow that occurs following reductions in renal perfusion pressure. The distribution of blood flow to the renal cortex was examined using radio-labeled microspheres (15 ± 1 μm). It was found that in animals not treated with a prostaglandin synthesis inhibition a decrease in renal perfusion pressure to the limit of renal blood flow autoregulation was associated with a decrease in fractional flow to the outer cortex (Zone I) and an increase in fractional flow to the inner cortex (Zones III and IV). A further decrease in renal perfusion pressure below the limit of autoregulation produced a further decrease in the fractional flow to Zone I and a further increase in fractional flow to Zones III and IV. In contrast, in animals treated with the prostaglandin synthesis inhibitor meclofenamate (5 mg/kg, i.v. bolus) a reduction in renal perfusion pressure to the limit of renal blood flow autoregulation produced no change in fractional blood flow to any of the 4 cortical zones. A further decrease in renal perfusion pressure, however, did produce a fall in fractional blood flow to Zone I and an increase in fractional flow to Zones III and IV. In conclusion, the results of this study indicate that within, but not below, the limit of renal blood flow autoregulation prostaglandin synthesis is an important factor in the regulation of renal cortical blood flow distribution.  相似文献   

5.
Blood pressure fluctuates continuously throughout life and autoregulation is the primary mechanism that isolates the kidney from this fluctuation. Compared with Wistar rats, Brown Norway (B-N) rats display impaired renal myogenic autoregulation when blood pressure fluctuation is increased. They also are very susceptible to hypertension-induced renal injury. Because blockade of nitric oxide augments myogenic autoregulation in Wistar rats, we compared the response of the myogenic system in B-N rats to nitric oxide blockade with that of other strains [Wistar, Sprague-Dawley, Long-Evans, spontaneously hypertensive (SHR)]. Renal blood flow dynamics were assessed in isoflurane anesthetized rats before and after inhibition of nitric oxide synthase by Lomega-nitro-arginine methyl-ester (L-NAME, 10 mg/kg, iv). Under control conditions, myogenic autoregulation in the B-N rats was weaker than in the other strains. Myogenic autoregulation was not augmented after L-NAME administration in the SHR, but was augmented in all the normotensive rats. The enhancement was significantly greater in B-N rats so that after L-NAME the efficiency of autoregulation did not differ among the strains. The data suggest that nitric oxide is involved in the impaired myogenic autoregulation seen in B-N rats. Furthermore, the similarity of response in Wistar, Long-Evans, and Sprague-Dawley rats suggests that modulation by nitric oxide is a fundamental property of renal myogenic autoregulation.  相似文献   

6.
The purpose of this study was to examine the role of prostaglandins in the redistribution of renal cortical blood flow that occurs following reductions in renal perfusion pressure. The distribution of blood flow to the renal cortex was examined using radio-labeled microspheres (15 +/- 1 micron). It was found that in animals not treated with a prostaglandin synthesis inhibitor a decrease in renal perfusion pressure to the limit of renal blood flow autoregulation was associated with a decrease in fractional flow to the outer cortex (Zone I) and an increase in fractional flow to the inner cortex (Zones III and IV). A further decrease in renal perfusion pressure below the limit of autoregulation produced a further decrease in the fractional flow to Zone I and a further increase in fractional flow to Zones III and IV. In contrast, in animals treated with the prostaglandin synthesis inhibitor meclofenamate (5 mg/kg, i.v. bolus) a reduction in renal perfusion pressure to the limit of renal blood flow autoregulation produced no change in fractional blood flow to any of the 4 cortical zones. A further decrease in renal perfusion pressure, however, did produce a fall in fractional blood flow to Zone I and an increase in fractional flow to Zones III and IV. In conclusion, the results of this study indicate that within, but not below, the limit of renal blood flow autoregulation prostaglandin synthesis is an important factor in the regulation of renal cortical blood flow distribution.  相似文献   

7.
Prostaglandin E2, when infused into the renal artery of the dog, is a vasodilator and increases both renal interstitial hydrostatic pressure and sodium excretion. Similar studies in the rat, however, have been inconclusive. The present study examined the effect of prostaglandin E2 infusion into the renal interstitium, by means of a chronically implanted matrix, on renal blood flow, renal interstitial hydrostatic pressure and sodium excretion in the rat. Prostaglandin E2 was continuously infused directly into the kidney interstitium to mimic endogenous prostaglandin E2 production by renal cells. The maximum change in each of these parameters occurred when 10(-5) M PGE2 was infused. Renal blood flow increased from 4.70 +/- 0.91 to 5.45 +/- 0.35 ml/min (p less than 0.05) while renal interstitial hydrostatic pressure decreased from 3.9 +/- 0.4 to 2.6 +/- 0.5 mmHg (p less than 0.05) and fractional excretion of sodium decreased from 1.02 +/- 0.20 to 0.61 +/- 0.12% (p less than 0.05). Thus, the present study demonstrates that renal interstitial infusion of prostaglandin E2 increases total renal blood flow but decreases both renal interstitial hydrostatic pressure and urinary sodium excretion in the rat.  相似文献   

8.
Blood pressure and renal blood flow were monitored in conscious normotensive (N) and 2-kidney Goldblatt hypertensive (H) dogs. Plasma renin activity was significantly increased 4–8 days after partial renal artery occlusion. At this time intravenous administration of meclofenamate, 5 mg/kg, had no effect on blood pressure in the N or H or on renal vascular resistance in the N or in the H (contralateral kidney). The renal vasoconstrictor response to angiotensin II was increased in duration by meclofenamate in both the N and H. In contrast to the absence of an effect of meclofenamate on renal vascular resistance in the conscious dog, the synthesis inhibitor caused a consistent increase in RVR in the N and H when they were anesthetized in the terminal experiment. These results suggest the lack of an influence of prostaglandins on renal vascular resistance in the unaffected kidney in Goldblatt hypertension.  相似文献   

9.
Prostaglandin E2, when infused into the renal artery of the dog, is a vasodilator and increases both renal interstitial hydrostatic pressure and sodium excretion. Similar studies in the rat, however, have been inconclusive. The present study examined the effect of prostaglandin E2 infusion into the renal interstitium, by means of a chronically implanted matrix, on renal blood flow, renal interstitial hydrostatic pressure and sodium excretion in the rat. Prostaglandin E2 was continously infused directly into the kidney interstitium to minic endogenous prostaglandin E2 production by renal cells. The maximum change in each of these parameters occured when 10−5 M PGE2 was infused. Renal blood flow increased from 4.70±0.91 to 5.45±0.35 ml/min (p<0.05) while renal interstitial hydrostatic pressure decreased from 3.9±0.4 to 2.6±0.5 mmHg (p<0.05) and fractional excretion of sodium decreased from 1.02±0.20 to 0.61±0.12% (p<0.05. Thus, the present study demonstrates that renal interstitial infusion of prostaglandin E2 increases total renal blood flow but decreases both renal interstitial hydrostatic pressure and urinary sodium excretion in the rat.  相似文献   

10.
Effects of the cyclooxygenase inhibitors indomethacin, naproxen and the thromboxane synthetase inhibitor imidazole on renal sodium water and p-aminohippurate excretion were investigated in sodium loaded conscious rats of different ages. Renal and intrarenal blood flow were studied in anaesthetized adult rats. Indomethacin and naproxen reduced PAH excretion in 5- and 10-day-old rats but not in rats of older ages. Imidazole failed to influence PAH-excretion in young animals. The excretion of PAH was decreased in adult rats at 10 and 60 min following imidazole administration, but not after longer time interval (120 min). Following indomethacin and naproxen administration urine output was decreased in 5-, 10- and 15-day-old rats, but not in rats of older ages. Effects of imidazole on electrolyte excretion can be demonstrated in adult rats only. Cardiac output was not altered by the three drugs. Blood pressure was elevated after indomethacin, but remained unchanged after naproxen and imidazole treatment. Renal and cortical blood flow remained unaltered and no redistribution was seen in intrarenal blood flow after indomethacin, naproxen and imidazole administration. The experimental data suggest that prostaglandins and thromboxanes are involved in the regulation of kidney function, but prostaglandins in the rat--in contrast to the dog--do not seem to play a major role in the regulation of renal vascular tone in adult animals.  相似文献   

11.
Vasodilatory and natriuretic effects of captopril were studied in the isolated hog kidney perfused with modified Krebs-Ringer solution. Renal arterial infusion of captopril caused increases in releases of renin, prostaglandins (PGE2, 6-keto-PGF1 alpha and PGF2 alpha) and kinin, and was accompanied by a decrease in the renal vascular resistance and an increase in urinary sodium excretion. Indomethacin administered with captopril diminished the saluretic effect of captopril and evoked an increase in kinin, but was associated with a marked decrease in prostaglandin and renin releases, while renal vascular resistance remained decreased. Indomethacin alone did not alter vascular resistance and kinin; however, renin and prostaglandin releases were decreased. Aprotinin administered with captopril showed a decrease in releases of prostaglandins, renin and kinin without any change in vascular resistance. These results suggest that increased release of kinin induced by captopril contributes to a reduction in renal vascular resistance. Increased prostaglandin release after captopril administration may be caused by an increase in kinin without direct involvement of captopril in prostaglandin synthesis. Renal prostaglandins may enhance sodium excretion and mediate renin secretion in captopril perfusion.  相似文献   

12.
The objective of this study was to evaluate the renal actions of atrial natriuretic peptide (ANP) in the unilateral postischemic kidney of anesthetized dogs with a severe reduction in glomerular filtration rate. The dose of atrial natriuretic peptide (50 ng.kg-1.min-1) we gave did not alter the mean systemic arterial pressure, renal blood flow, and glomerular filtration rate in the normal kidney, as determined in foregoing studies. ANP was infused into the intrarenal artery continuously for 60 min after the release from 45 min of complete renal artery occlusion. In the vehicle-infused group, the glomerular filtration rate fell dramatically (6% of control), the renal blood flow decreased (60% of control), and the mean systemic arterial pressure tended to increase (136% of control). The urine flow rate and urinary excretion of sodium decreased significantly (25 and 25%, respectively) at 30 min after reflow in the postischemic period. Continuous renal artery infusion of ANP resulted in a marked increase in urine flow rate (246% of control) and the urinary excretion of sodium (286% of control). The administration of ANP led to an improvement in renal blood flow (99% of control) and glomerular filtration rate (40% of control), and attenuated the rise in mean systemic arterial pressure (109% of control), compared with findings in the vehicle-infused group. Plasma renin activity and prostaglandin E2 concentration in the renal venous blood were elevated after the release from complete renal artery occlusion in both groups. These results indicate that the vascular effects of ANP on the postischemic kidney were enhanced and that the peptide maintained the natriuretic effect.  相似文献   

13.
Studies were performed to assess the effect of alterations in prostaglandin biosynthesis on glomerular filtration rate in rabbits with normal renal function and after surgical reduction of renal mass. In normal animals, the administration of either of two cyclo-oxygenase inhibitors resulted in a 53% reduction in urine prostaglandin E excretion, but no change in creatinine clearance. Creatinine clearance rates were almost 71% lower in the uremic animals when compared to the animals with normal renal function. Despite the reduction in renal mass, urine prostaglandin E excretion rates in the uremic animals were over twice that seen in normal rabbits. When factored by either glomerular filtration rate or remaining renal mass, urine prostaglandin E excretion rates in uremic rabbits when compared to normal animals were increased more than 9-times and 4-times respectively. Administration of cyclo-oxygenase inhibitors in the uremic animals resulted in a 71% decrease in urine prostaglandin E excretion and, unlike the non-uremic animals, a 53% fall in creatinine clearance. These findings suggest that intact renal prostaglandin biosynthesis is a necessary factor in the homeostatic adaptive mechanisms which maintain the glomerular filtration rate in animals with decreased renal mass.  相似文献   

14.
The role of renal nerves in the effects of concomitant NO synthase and non-selective ET(A/)ET(B) receptor inhibition on renal function was investigated in conscious normotensive Wistar rats. NO synthase inhibition alone (10 mg/kg b. w. i.v. L-NAME) in sham-operated rats with intact renal nerves induced an increase in systolic, diastolic and mean arterial pressure, urine flow rate, sodium, chloride and calcium excretion (p<0.05). The effect of L-NAME was markedly reduced by bosentan (10 mg/kg b.w. i.v.) and the values of urine flow rate, sodium, chloride and calcium excretions returned to control level (p<0.05). L-NAME administration one week after a bilateral renal denervation increased blood pressure to a similar extent as in sham-operated rats but decreased urine flow rate (p<0.05) and did not change electrolyte excretion. ET(A/)ET(B) receptor inhibition with bosentan during NO synthase inhibition in the renal denervated rats did not produce changes in urine flow rate or electrolyte excretion. NO synthase inhibition as well as concurrent NO synthase and ET(A/)ET(B) receptor inhibition did not change clearance of inulin or paraaminohippuric acid in sham-operated or renal denervated rats. These results indicate that renal sympathetic nerves play an important modulatory role in NO and endothelin induced effects on renal excretory function.  相似文献   

15.
A comparison was made of the effect of prostaglandin synthesis inhibitors (PGSI) on systemic blood pressure and hindlimb muscle vascular resistance of anesthetized dogs under different experimental conditions. When muscle blood flow was monitored using an extracorporeal or noncannulating electromagnetic blood flow probe, indomethacin (5 mg/kg i.v.) increased blood pressure slightly, but did not change vascular resistance. Administration of PGSI (indomethacin, meclofenamate, or naproxen, 5 mg/kg i.v.) after 2 hr of pump perfusion of the hindlimb caused a 22% increase in blood pressure, and 39% increase in vascular resistance 30 min afterwards. When administered immediately after instituting pump perfusion, indomethacin caused no significant change in blood pressure or vascular resistance at the 30 min interval, but at 60 min vascular resistance was increased. A similar vasoconstrictor response to indomethacin was obtained when it was infused in a lower dose intraarterially to the hindlimb, or when given i.v. after ligation of the renal pedicles. The results indicate that pump perfusion results in elaboration of a nonrenal prostaglandin(s) which maintains a vasodilator influence on the skeletal muscle vascular bed.  相似文献   

16.
Pressure-flow autoregulation of the intact superior mesenteric artery (SMA) was demonstrated in the fasted, pentobarbital-anesthetized cat by use of a micrometer-controlled screw clamp to produce progressive decreases in vascular pressure. Administration (ia) of bolus doses of 8-phenyltheophylline (8-PT) were followed by infusion of adenosine to verify adenosine antagonism. 8-PT doses were progressively doubled until adenosine responses were blocked. If higher doses of 8-PT were used, SMA flow declined to very low levels and autoregulatory curves could not be obtained. Comparison of vasodilator responses to isoproterenol and adenosine before and after adenosine receptor blockade verified that, whereas adenosine responses were blocked, isoproterenol effects were not altered. The autoregulation was quantitated using three methods (the autoregulatory index, the percent decrease in vascular resistance, and the slope index) as blood pressure was reduced from a standardized control pressure of 110 mmHg (1 mmHg = 133.3 Pa). Maximal vasodilation appeared at a blood pressure of 56 +/- 5 mmHg (range 34-70). 8-PT resulted in dose-related antagonism of the dilator response to exogenous adenosine and autoregulation. All indices of autoregulation were significantly reduced by 8-PT. The data are compatible with the hypothesis that pressure-flow autoregulation in the SMA is not myogenic (responding to altered transmural pressure) but is dependent upon local concentrations of adenosine.  相似文献   

17.
The renal and proximal tubule response to contralateral kidney exclusion was studied in a variety of circumstances. Recollection micropuncture studies were performed to assess the response to contralateral kidney clamping in the normal or a remnant kidney of the dog. Acute clamping of the contralateral kidney for a normal and unilateral remnant kidney resulted in marked reduction in proximal TF/P inulin ratios in the experimental kidney reflecting a 15 percent reduction in fluid reabsorption. Mean fractional excretion of sodium, potassium and water increased significantly in remnant kidney dogs but no significant change was observed in normal dogs except for potassium excretion. The marked reduction in proximal reabsorption occurred as soon as 5-15 minutes after contralateral kidney clamping and was compensated by distal reabsorption. Acute obstruction of the contralateral ureter results in a similar markedly reduced proximal tubular reabsorption. The reduction in proximal reabsorption induced by contralateral clamping occurred in the presence of reduced perfusion pressure and volume expansion and to some extent with renal denervation. When prostaglandin E2 or acetycholine were infused prior to contralateral kidney clamping, proximal reabsorption remained at control levels and the contralateral clamping response was blocked. Similar blockade occurred after treatment with indomethacin. Acute reduction in nephron mass causes a marked depression of proximal tubular sodium and fluid absorption not obviously accounted for by hemodynamicphysical factors and humoral factors may be involved. The level of distal reabsorption to increased proximal delivery following contralateral clamping, determines the net urinary excretion.  相似文献   

18.
The interaction of arginine vasopressin (AVP) and endogenous prostaglandins on cAMP production was investigated in the dog. Cyclic AMP content of dog inner medullary tissue slices exposed to different concentrations of AVP in the presence and absence of various prostaglandin synthesis inhibitors was determined. If the slices were incubated in isotonic media with 95% O2 and 5% CO2 gas phase, inhibition of prostaglandin synthesis decreased cAMP accumulation. A significant correlation was found between the decrements in cAMP content and basal cAMP levels. AVP-induced increments in cAMP accumulation was, however, unaffected by prostaglandin synthesis inhibitors. If incubation was performed in a hypertonic medium and at low O2 concentration, basal cAMP content was significantly reduced and it was not altered by inhibition of prostaglandin synthesis. The cAMP response to AVP was practically identical in the presence and absence of prostaglandin synthesis inhibitors. In conscious dogs AVP and indomethacin in itself had no effect on urinary cAMP excretion, but there was a significant decrease if the two compounds were combined. These results fail to lend support the hypothesis that endogenous prostaglandins modulate AVP-induced cAMP accumulation in the inner medulla.  相似文献   

19.
Renal prostaglandins may be important in the modulation of compensatory renal growth. Reductions in renal mass are associated with increased synthesis of these substances by the remaining kidney, and inhibition of prostaglandin synthesis diminishes renal function in partially nephrectomized animals and in patients with reduced functioning renal mass. We examined the effects of uninephrectomy and treatment with indomethacin on renal prostaglandin E2 and 6-keto prostaglandin F1 alpha concentrations in adult male Sprague Dawley rats. The renal content of these prostaglandins was significantly increased in the remaining kidney two days following uninephrectomy (p less than 0.01). Treatment with 5 mg/kg/day of indomethacin over this period abolished the compensatory increase in renal prostaglandin synthesis and significantly attenuated compensatory increases in renal mass, protein and RNA concentrations (p less than 0.05). No alterations in kidney weight, protein or RNA concentrations were found in intact animals treated with the same dose of indomethacin. These findings suggest renal prostaglandins may participate in the biological events leading to compensatory renal growth.  相似文献   

20.
K P Patel 《Life sciences》1991,48(3):261-267
The relationship between the renal nerves and vasopressin in terms of the natriuretic and diuretic responses to atrial natriuretic factor (ANF--0.25 microgram/kg/min for 15 min), was investigated in unilaterally denervated anesthetized rats before and after the administration of a vasopressin V2 specific antagonist (AVPX)--(40 micrograms/kg bolus followed by 0.4 microgram/kg/min infusion). Administration of the AVPX or ANF did not alter the arterial pressure. Acute renal denervation or AVPX administration independently produced significant increases in sodium and water excretion. ANF infusion by itself produced a greater increase in urine flow and sodium excretion from the denervated kidney compared to the intact kidney before the administration of AVPX. However, after the administration of AVPX renal responses to ANF from the intact kidneys were enhanced such that they were not significantly different from the denervated kidneys. These results suggest that the full physiological response to ANF may be masked by tonic renal nerve activity or antidiuretic actions of vasopressin. Furthermore, since combined renal denervation and AVPX administration does not produce any greater potentiation of the renal responses to ANF than either of these manipulations alone, it is suggested that they may act via a common mechanism, possibly altering activity in the renal nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号