首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zonal organization of the mammalian main and accessory olfactory systems   总被引:2,自引:0,他引:2  
Zonal organization is one of the characteristic features observed in both main and accessory olfactory systems. In the main olfactory system, most of the odorant receptors are classified into four groups according to their zonal expression patterns in the olfactory epithelium. Each group of odorant receptors is expressed by sensory neurons distributed within one of four circumscribed zones. Olfactory sensory neurons in a given zone of the epithelium project their axons to the glomeruli in a corresponding zone of the main olfactory bulb. Glomeruli in the same zone tend to represent similar odorant receptors having similar tuning specificity to odorants. Vomeronasal receptors (or pheromone receptors) are classified into two groups in the accessory olfactory system. Each group of receptors is expressed by vomeronasal sensory neurons in either the apical or basal zone of the vomeronasal epithelium. Sensory neurons in the apical zone project their axons to the rostral zone of the accessory olfactory bulb and form synaptic connections with mitral tufted cells belonging to the rostral zone. Signals originated from basal zone sensory neurons are sent to mitral tufted cells in the caudal zone of the accessory olfactory bulb. We discuss functional implications of the zonal organization in both main and accessory olfactory systems.  相似文献   

2.
Mitral and tufted cells are the 2 types of output neurons of the main olfactory bulb. They are located in distinct layers, have distinct projection patterns of their dendrites and axons, and likely have distinct relationships with the intrabulbar inhibitory circuits. They could thus be functionally distinct and process different aspects of olfactory information. To examine this possibility, we compared the odor-evoked responses of identified single units recorded in the mitral cell layer (MCL units), in the core of the external plexiform layer (not at the glomerular border tufted cells), or at the glomerular border of this layer (GB tufted cells) of the entire olfactory bulb. Differences between mitral and tufted cells were observed only when subtle aspects of the responses were explored, such as the firing rate per respiratory cycle or the distribution of firing activity along the respiratory cycle. By contrast, more clear differences were found when the 2 subtypes of tufted cells were examined separately. GB units were significantly more responsive, had significantly higher firing activity, and showed greater activity at the transition between inspiration and expiration. The projection-type tufted cells situated closer to the entrance of the olfactory bulb may thus form a distinct physiological class of output neurons and differ from mitral cells and other tufted cells in the manner of processing olfactory information.  相似文献   

3.
The spontaneous activity and impulse conduction velocities of mitral and tufted cells were compared in the entire main olfactory bulb of freely breathing, anesthetized rats. Single units in the mitral cell body layer (MCL) and external plexiform layer (EPL) were identified by antidromic activation from the lateral olfactory tract (LOT), electrode track reconstructions based on dye marking, and the waveform of LOT-evoked field potentials. Using the track reconstructions, EPL units were further subdivided into glomerular border (GB) and not at the glomerular border (notGB) cells. For conduction velocity, significant differences were only found between MCL and GB units and not between MCL and all EPL units or between MCL and notGB units. For spontaneous activity, no significant differences were found between the different unit groups regarding the mean, maximum, or relative maximum rate per 100-ms bin. By contrast, they showed a differential modulation of their firing activity by respiration. GB but not notGB units had a significantly higher mean rate during the respiratory cycle than MCL units with significantly more activity during inspiration. Thus, mitral and tufted cells are similar in their impulse conduction velocity and spontaneous activity, though the more superficially placed GB cells exhibit differences. A comparison of odor responses in these cell types in the companion paper also points to differences between mitral and superficial projection tufted cells.  相似文献   

4.
Lin DM  Wang F  Lowe G  Gold GH  Axel R  Ngai J  Brunet L 《Neuron》2000,26(1):69-80
Olfactory neurons expressing the same odorant receptor converge to a small number of glomeruli in the olfactory bulb. In turn, mitral and tufted cells receive and relay this information to higher cortical regions. In other sensory systems, correlated neuronal activity is thought to refine synaptic connections during development. We asked whether the pattern of connections between olfactory sensory axons and mitral cell dendrites is affected when odor-evoked signaling is eliminated in mice lacking functional olfactory cyclic nucleotide-gated (CNG) channels. We demonstrate that olfactory sensory axons converge normally in the CNG channel mutant background. We further show that the pruning of mitral cell dendrites, although slowed during development, is ultimately unperturbed in mutant animals. Thus, the olfactory CNG channel-and by inference correlated neural activity--is not required for generating synaptic specificity in the olfactory bulb.  相似文献   

5.
Koulakov AA  Rinberg D 《Neuron》2011,72(1):124-136
Mitral/tufted cells of the olfactory bulb receive odorant information from receptor neurons and transmit this information to the cortex. Studies in awake behaving animals have found that sustained responses of mitral cells to odorants are rare, suggesting sparse combinatorial representation of the odorants. Careful alignment of mitral cell firing with the phase of the respiration cycle revealed brief transient activity in the larger population of mitral cells, which respond to odorants during a small fraction of the respiration cycle. Responses of these cells are therefore temporally sparse. Here, we propose a mathematical model for the olfactory bulb network that can reproduce both combinatorially and temporally sparse mitral cell codes. We argue that sparse codes emerge as a result of the balance between mitral cells' excitatory inputs and inhibition provided by the granule cells. Our model suggests functional significance for the dendrodendritic synapses mediating interactions between mitral and granule cells.  相似文献   

6.
Patterned neural activity helps to establish neuronal connectivity, produce coding of sensory information, and shape synaptic strengths. Here we demonstrate that normal olfactory bulb development might rely on spatial and temporal patterns of afferent neural activity. Neonatal naris occlusion profoundly impacts the development of the ipsilateral olfactory bulb, including reduced bulb volume, decreased protein synthesis, and increased cell death. Relatively few morphologic changes occur if closure is performed postweaning. We examined the immediate electrophysiological consequences of occlusion across this developmentally sensitive period by recording spontaneous and odor-driven mitral/tufted cell responses while the naris was open, closed, and then reopened. In 1-week-old animals, occlusion severely attenuated spontaneous activity, and presentation of the broad-spectrum odorant amyl acetate failed to evoke responses. In 2- and 4-week old rats, spontaneous activity was also reduced by naris closure. However, some cells remained responsive to concentrated odors, even in animals with transected anterior commissures, suggesting passage of odors across the septal window or retronasal pathways. In all age groups, cellular activity became uncoupled from the respiratory cycle. Approximately 47% (18 of 38) of the mitral/tufted cells exhibited activity that was correlated with respiration in the open-naris state, while only 5% (2 of 38) were coupled during naris closure. These data (a) indicate that naris closure reduces both spontaneous and odor-evoked responses, and (b) provide an electrophysiological correlate to a sensitive period in bulb development. The loss of respiration-related synchrony and the reduced activity of mitral/tufted cells may synergistically contribute to the divers consequences of naris closure on bulb development. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 374–386, 1997  相似文献   

7.
Fletcher ML 《PloS one》2011,6(12):e29360
Odors are rarely composed of a single compound, but rather contain a large and complex variety of chemical components. Often, these mixtures are perceived as having unique qualities that can be quite different than the combination of their components. In many cases, a majority of the components of a mixture cannot be individually identified. This synthetic processing of odor information suggests that individual component representations of the mixture must interact somewhere along the olfactory pathway. The anatomical nature of sensory neuron input into segregated glomeruli with the bulb suggests that initial input of odor information into the bulb is analytic. However, a large network of interneurons within the olfactory bulb could allow for mixture interactions via mechanisms such as lateral inhibition. Currently in mammals, it is unclear if postsynaptic mitral/tufted cell glomerular mixture responses reflect the analytical mixture input, or provide the initial basis for synthetic processing with the olfactory system. To address this, olfactory bulb glomerular binary mixture representations were compared to representations of each component using transgenic mice expressing the calcium indicator G-CaMP2 in olfactory bulb mitral/tufted cells. Overall, dorsal surface mixture representations showed little mixture interaction and often appeared as a simple combination of the component representations. Based on this, it is concluded that dorsal surface glomerular mixture representations remain largely analytical with nearly all component information preserved.  相似文献   

8.
Olfactory sensory function declines with age; though, the underlying molecular changes that occur in the olfactory bulb (OB) are relatively unknown. An important cellular signaling molecule involved in the processing, modulation, and formation of olfactory memories is nitric oxide (NO). However, excess NO can result in the production of peroxynitrite to cause oxidative and nitrosative stress. In this study, we assessed whether changes in the expression of 3-nitrotyrosine (3-NT), a neurochemical marker of peroxynitrite and thus oxidative damage, exists in the OB of young, adult, middle-aged, and aged mice. Our results demonstrate that OB 3-NT levels increase with age in normal C57BL/6 mice. Moreover, in aged mice, 3-NT immunoreactivity was found in some blood vessels and microglia throughout the OB. Notably, large and strongly immunoreactive puncta were found in mitral and tufted cells, and these were identified as lipofuscin granules. Additionally, we found many small-labeled puncta within the glomeruli of the glomerular layer and in the external plexiform layer, and these were localized to mitochondria and discrete segments of mitral and tufted dendritic plasma membranes. These results suggest that mitral and tufted cells are potential cellular targets of nitration, along with microglia and blood vessels, in the OB during aging.  相似文献   

9.
Stereotypical connections between olfactory sensory neuron axons and mitral cell dendrites in the olfactory bulb establish the first synaptic relay for olfactory perception. While mechanisms of olfactory sensory axon targeting are reported, molecular regulation of mitral cell dendritic growth and refinement are unclear. During embryonic development, mitral cell dendritic distribution overlaps with olfactory sensory axon terminals in the olfactory bulb. In this study, we investigate whether olfactory sensory neurons in the olfactory epithelium influence mitral cell dendritic outgrowth in vitro. We report a soluble trophic activity in the olfactory epithelium conditioned medium which promotes mitral/tufted cell neurite outgrowth. While the trophic activity is present in both embryonic and postnatal olfactory epithelia, only embryonic but not postnatal mitral/tufted cells respond to this activity. We show that BMP2, 5 and 7 promote mitral/tufted cells neurite outgrowth. However, the BMP antagonist, Noggin, fails to neutralize the olfactory epithelium derived neurite growth promoting activity. We provide evidence that olfactory epithelium derived activity is a protein factor with molecular weight between 50–100 kD. We also observed that Follistatin can effectively neutralize the olfactory epithelium derived activity, suggesting that TGF-beta family proteins are involved to promote mitral/tufted dendritic elaboration.  相似文献   

10.
A physiological simulation of 2.5% of the input and inhibitory neurons and 25% of the primary mitral/tufted cells in a single mammalian olfactory bulb glomerulus was constructed. This physiological simulation used the integrate-and-fire paradigm with realistic activation curves and synaptic delays. The dendritic integration incorporated non-linear interactive effects of individual cell excitatory and inhibitory post-synaptic potentials (PSPs) from both axodendritic and dendrodendritic synaptic contacts. Refractory periods for granule-cell inhibition of mitral/tufted cell activity lead to relatively fixed-frequency rhythmic activity in the glomerulus, independent of the input frequency from the olfactory nerve. Though the frequency of mitral/ tufted cell firing in bulb was approximately independent of input frequency, the number of cells active in the glomerulus was a roughly-linear function of input frequency to the glomerulus, indicating the mechanism's ability to function as a frequency-to-spatial encoder.  相似文献   

11.
Early olfactory experience with a specific odorant enhances the subsequent response of the glomerular layer of the rat olfactory bulb to that same odorant. Because different odorants activate different glomerular layer regions, it seemed plausible that experience with a large number of odorants might result in enhanced glomerular activation during subsequent exposure to both the previously experienced odorants and the novel odorants evoking activity in regions that overlapped with those previously stimulated by different odorants. To this end, 7 odorants were selected using our glomerular response data archive that together stimulated much of the glomerular layer (alpha-phellandrene, benzaldehyde, L-carvone, decanal, pentanol, santalol, and valeric acid). Young rats were exposed to a different odorant each day for 7 days, and this cycle was repeated 3 times from postnatal days 1-21. The [(14)C]2-deoxyglucose technique was used to measure neural activity in response to both previously experienced and novel odorants. The 2 novel odorants (alpha-ionone and L-menthone) activate regions of the glomerular layer that overlap with those stimulated by the 7 enrichment odorants. Our results indicate that early experience with multiple odorants results in increased responsiveness both to previously experienced odorants and to novel odorants that stimulate previously activated regions of the bulb.  相似文献   

12.
D A Wilson 《Chemical senses》2001,26(5):577-584
Current models of odor discrimination in mammals involve molecular feature detection by a large family of diverse olfactory receptors, refinement of molecular feature extraction through precise projections of olfactory receptor neurons to the olfactory bulb to form an odor-specific spatial map of molecular features across glomerular layer, and synthesis of these features into odor objects within the piriform cortex. This review describes our recent work on odor and spatial receptive fields within the anterior piriform cortex and compares these fields with receptive fields of their primary afferent, olfactory bulb mitral/tufted cells. The results suggest that receptive fields in the piriform cortex are ensemble in nature, highly dynamic, and may contribute to odor discrimination and odor memory.  相似文献   

13.
While the timing of neuronal activity in the olfactory bulb (OB) relative to sniffing has been the object of many studies, the behavioral relevance of timing information generated by patterned activation within the bulbar response has not been explored. Here we show, using sniff-triggered, dynamic, 2-D, optogenetic stimulation of mitral/tufted cells, that virtual odors that differ by as little as 13 ms are distinguishable by mice. Further, mice are capable of discriminating a virtual odor movie based on an optically imaged OB odor response versus the same virtual odor devoid of temporal dynamics—independently of the sniff-phase. Together with studies showing the behavioral relevance of graded glomerular responses and the response timing relative to odor sampling, these results imply that the mammalian olfactory system is capable of very high transient information transmission rates.  相似文献   

14.
This paper proposes a neural network model for prediction of olfactory glomerular activity aimed at future application to the evaluation of odor qualities. The model's input is the structure of an odorant molecule expressed as a labeled graph, and it employs the graph kernel method to quantify structural similarities between odorants and the function of olfactory receptor neurons. An artificial neural network then converts odorant molecules into glomerular activity expressed in Gaussian mixture functions. The authors also propose a learning algorithm that allows adjustment of the parameters included in the model using a learning data set composed of pairs of odorants and measured glomerular activity patterns. We observed that the defined similarity between odorant structure has correlation of 0.3-0.9 with that of glomerular activity. Glomerular activity prediction simulation showed a certain level of prediction ability where the predicted glomerular activity patterns also correlate the measured ones with middle to high correlation in average for data sets containing 363 odorants.  相似文献   

15.
In adult rats, repeated exposure to an odorant, in absence of any experimentally delivered reinforcement, leads to a drastic decrease in mitral/tufted (M/T) cell responsiveness, not only for the familiar odor but also for other novel odors. In the present study, using two different and complementary in situ hybridization methods, we analyzed the effect of familiarization with an odorant on c-fos and arg 3.1 mRNA expression levels, and we examined the odor specificity of this effect. Odor exposure induces a specific increase in c-fos and arg 3.1 expression in some particular olfactory bulb quadrants. Previous familiarization with the test odor results in a decreased expression of both IEGs in these quadrants, leading to the alteration of the odor-specific pattern of c-fos and arg 3.1 expression. In contrast, this odor-specific pattern is not affected when different odors are used for familiarization and test. Similarly, an odor-specific familiarization effect leading to a reduced c-fos and arg 3.1 expression was also detected in the cingulate cortex and in the anterior piriform cortex. These results support our hypothesis that the decrease in M/T cell responsiveness following a preceding familiarization with an odorant may be related to a particular form of synaptic plasticity involving changes at the genomic level, and reveals further insight in olfactory information processing and the cellular mechanisms underlying familiarization in the olfactory system.  相似文献   

16.
Optical imaging of odorant representations in the mammalian olfactory bulb.   总被引:27,自引:0,他引:27  
B D Rubin  L C Katz 《Neuron》1999,23(3):499-511
We adapted the technique of intrinsic signal imaging to visualize how odorant concentration and structure are represented spatially in the rat olfactory bulb. Most odorants activated one or more glomeruli in the imaged region of the bulb; these optically imaged responses reflected the excitation of underlying neurons. Odorant-evoked patterns were similar across animals and symmetrical in the two bulbs of the same animal. The variable sensitivity of individual glomeruli produced distinct maps for different odorant concentrations. Using a series of homologous aldehydes, we found that glomeruli were tuned to detect particular molecular features and that maps of similar molecules were highly correlated. These characteristics suggest that odorants and their concentrations can be encoded by distinct spatial patterns of glomerular activation.  相似文献   

17.

Background

A slow respiration-related rhythm strongly shapes the activity of the olfactory bulb. This rhythm appears as a slow oscillation that is detectable in the membrane potential, the respiration-related spike discharge of the mitral/tufted cells and the bulbar local field potential. Here, we investigated the rules that govern the manifestation of membrane potential slow oscillations (MPSOs) and respiration-related discharge activities under various afferent input conditions and cellular excitability states.

Methodology and Principal Findings

We recorded the intracellular membrane potential signals in the mitral/tufted cells of freely breathing anesthetized rats. We first demonstrated the existence of multiple types of MPSOs, which were influenced by odor stimulation and discharge activity patterns. Complementary studies using changes in the intracellular excitability state and a computational model of the mitral cell demonstrated that slow oscillations in the mitral/tufted cell membrane potential were also modulated by the intracellular excitability state, whereas the respiration-related spike activity primarily reflected the afferent input. Based on our data regarding MPSOs and spike patterns, we found that cells exhibiting an unsynchronized discharge pattern never exhibited an MPSO. In contrast, cells with a respiration-synchronized discharge pattern always exhibited an MPSO. In addition, we demonstrated that the association between spike patterns and MPSO types appeared complex.

Conclusion

We propose that both the intracellular excitability state and input strength underlie specific MPSOs, which, in turn, constrain the types of spike patterns exhibited.  相似文献   

18.
The structure of the olfactory bulb in tadpoles of Xenopus laevis (stages 54-56) was studied using axon tracing (with biocytin or low-weight dextran) and immunocytochemical techniques. Filling the olfactory nerve with biocytin made the nerve layer and the glomeruli visible. Dye injections into the glomerular layer labeled the lateral olfactory tract. Vice versa, dye injections into the lateral olfactory tract made mitral cells and their glomerular branching patterns visible. Anti-GABA antiserum stained periglomerular and granule cells, while the olfactory nerve and mitral cells were labeled by antiglutamate antiserum. We describe the layering, the numbers of cells and glomeruli, and their localization in both the main and the accessory olfactory bulb.  相似文献   

19.
Khan AG  Thattai M  Bhalla US 《Neuron》2008,57(4):571-585
Many species of mammals are very good at categorizing odors. One model for how this is achieved involves the formation of "attractor" states in the olfactory processing pathway, which converge to stable representations for the odor. We analyzed the responses of rat olfactory bulb mitral/tufted (M/T) cells using stimuli "morphing" from one odor to another through intermediate mixtures. We then developed a phenomenological model for the representation of odors and mixtures by M/T cells and show that >80% of odorant responses to different concentrations and mixtures can be expressed in terms of smoothly summing responses to air and the two pure odorants. Furthermore, the model successfully predicts M/T cell responses to odor mixtures when respiration dependence is eliminated. Thus, odor mixtures are represented in the bulb through summation of components, rather than distinct attractor states. We suggest that our olfactory coding model captures many aspects of single and mixed odor representation in M/T cells.  相似文献   

20.
Odorant sampling behaviors such as sniffing bring odorant molecules into contact with olfactory receptor neurons (ORNs) to initiate the sensory mechanisms of olfaction. In rodents, inspiratory airflow through the nose is structured and laminar; consequently, the spatial distribution of adsorbed odorant molecules during inspiration is predictable. Physicochemical properties such as water solubility and volatility, collectively called sorptiveness, interact with behaviorally regulable variables such as inspiratory flow rate to determine the pattern of odorant deposition along the inspiratory path. Populations of ORNs expressing the same odorant receptor are distributed in strictly delimited regions along this inspiratory path, enabling different deposition patterns of the same odorant to evoke different patterns of neuronal activation across the olfactory epithelium and in the olfactory bulb. We propose that both odorant sorptive properties and the regulation of sniffing behavior may contribute to rodents' olfactory capacities by this mechanism. In particular, we suggest that the motor regulation of sniffing behavior is substantially utilized for purposes of "zonation" or the direction of odorant molecules to defined intranasal regions and hence toward distinct populations of receptor neurons, pursuant to animals' sensory goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号