首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular DNA is damaged by nitric oxide (NO), a multifunctional bioregulator and an environmental pollutant that has been implicated in diseases associated with cancer and chronic inflammation. 2'-Deoxyxanthosine (dX) is a major NO-derived DNA lesion. To explore the mutagenic potential of dX, a 38-mer oligodeoxynucleotide ((5')CATGCTGATGAATTCCTTCXCTTCTTTCCTCTCCCTTT) modified site-specifically with dX at the X position was prepared post-synthetically and used as a DNA template in primer extension reactions catalyzed by calf thymus DNA polymerase (pol) alpha and human DNA pol beta, eta, and kappa. Primer extension reactions catalyzed by pol alpha or beta in the presence of four dNTPs were retarded at the dX lesion while pol eta and kappa readily bypassed the lesion. The fully extended products were analyzed to quantify the miscoding specificity and frequency of dX using two-phase polyacrylamide gel electrophoresis (PAGE). With pol alpha, eta and kappa, incorrect dTMP was preferentially incorporated opposite the lesion, along with lesser amounts of dCMP, the correct base. When pol beta was used, direct incorporation of correct dCMP was primarily observed, accompanied by small amounts of misincorporation of dTMP, dAMP and dGMP. Steady-state kinetic analyses supported the results obtained from the two-phase PAGE assay. dX is a miscoding lesion capable of preferentially generating G-->A mutations. The miscoding frequency varied depending on DNA polymerase used.  相似文献   

2.
N2,3-Ethenoguanine (N2,3-ϵG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2′-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2′-fluoro-N2,3-ϵ-2′-deoxyarabinoguanosine to investigate the miscoding potential of N2,3-ϵG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N2,3-ϵG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N2,3-ϵG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N2,3-ϵG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N2,3-ϵG:dCTP base pair, whereas only one appears to be present in the case of the N2,3-ϵG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N2,3-ϵG.  相似文献   

3.
8-Nitro-2'-deoxyguanosine (8-NO(2)-dG) DNA adducts are induced by the reactive nitrogen species and may be associated with the development of cancer in inflammatory tissues. To explore the miscoding potential of 8-NO(2)-dG adduct, an oligodeoxynucleotide containing a single 8-NO(2)-dG adduct was prepared by photochemical synthesis and used as a template in primer extension reactions catalyzed by mammalian DNA polymerases (pol). Primer extension reactions catalyzed by pol alpha or beta were strongly retarded at the 8-NO(2)-dG lesion; a fraction of primers was extended past the lesion by incorporating preferentially dCMP, the correct base, opposite the lesion, accompanied by lesser amounts of dAMP and dGMP incorporation. In contrast, primer extension reactions catalyzed by pol eta or a truncated form of pol kappa (pol kappaDeltaC) readily extended past the 8-NO(2)-dG lesion. Pol eta and kappaDeltaC showed more broad miscoding spectra; direct incorporations of dCMP and dAMP were observed, along with lesser amounts of dGMP and dTMP incorporations and deletions. The miscoding frequencies induced by pol eta and kappaDeltaC were at least 8 times higher than that of pol alpha or beta. Miscoding frequency and specificity of 8-NO(2)-dG varied depending on the DNA polymerases used. These observations were supported by steady-state kinetic studies. 8-NO(2)-dG adduct may play an important role in initiating inflammation driven carcinogenesis.  相似文献   

4.
Chronic inflammation involving constant generation of nitric oxide (NO) by macrophages has been recognized as a factor related to carcinogenesis. At the site of inflammation, nitrosatively deaminated DNA adducts such as 2′-deoxyinosine (dI) and 2′-deoxyxanthosine are primarily formed by NO and may be associated with the development of cancer. In this study, we explored the miscoding properties of the dI lesion generated by Y-family DNA polymerases (pols) using a new fluorescent method for analyzing translesion synthesis. An oligodeoxynucleotide containing a single dI lesion was used as a template in primer extension reaction catalyzed by human DNA pols to explore the miscoding potential of the dI adduct. Primer extension reaction catalyzed by pol α was slightly retarded prior to the dI adduct site; most of the primers were extended past the lesion. Pol η and pol κΔC (a truncated form of pol κ) readily bypassed the dI lesion. The fully extended products were analyzed by using two-phased PAGE to quantify the miscoding frequency and specificity occurring at the lesion site. All pols, that is, pol α, pol η, and pol κΔC, promoted preferential incorporation of 2′-deoxycytidine monophosphate (dCMP), the wrong base, opposite the dI lesion. Surprisingly, no incorporation of 2′-deoxythymidine monophosphate, the correct base, was observed opposite the lesion. Steady-state kinetic studies with pol α, pol η, and pol κΔC indicated that dCMP was preferentially incorporated opposite the dI lesion. These pols bypassed the lesion by incorporating dCMP opposite the lesion and extended past the lesion. These relative bypass frequencies past the dC:dI pair were at least 3 orders of magnitude higher than those for the dT:dI pair. Thus, the dI adduct is a highly miscoding lesion capable of generating A → G transition. This NO-induced adduct may play an important role in initiating inflammation-driven carcinogenesis.  相似文献   

5.
REV1 functions in the DNA polymerase ζ mutagenesis pathway. To help understand the role of REV1 in lesion bypass, we have examined activities of purified human REV1 opposite various template bases and several different DNA lesions. Lacking a 3′→5′ proofreading exonuclease activity, purified human REV1 exhibited a DNA polymerase activity on a repeating template G sequence, but catalyzed nucleotide insertion with 6-fold lower efficiency opposite a template A and 19–27-fold lower efficiency opposite a template T or C. Furthermore, dCMP insertion was greatly preferred regardless of the specific template base. Human REV1 inserted a dCMP efficiently opposite a template 8-oxoguanine, (+)-trans-anti-benzo[a]pyrene-N 2-dG, (–)-trans-anti-benzo[a]pyrene-N 2-dG and 1,N 6-ethenoadenine adducts, very inefficiently opposite an acetylaminofluorene-adducted guanine, but was unresponsive to a template TT dimer or TT (6–4) photoproduct. Surprisingly, the REV1 specificity of nucleotide insertion was very similar in response to different DNA lesions with greatly preferred C insertion and least frequent A insertion. By combining the dCMP insertion activity of human REV1 with the extension synthesis activity of human polymerase κ, bypass of the trans-anti-benzo[a]pyrene-N 2 -dG adducts and the 1,N 6-ethenoadenine lesion was achieved by the two-polymerase two-step mechanism. These results suggest that human REV1 is a specialized DNA polymerase that may contribute to dCMP insertion opposite many types of DNA damage during lesion bypass.  相似文献   

6.
Human DNA polymerase kappa (pol kappa) has a sequence significantly homologous with that of Escherichia coli DNA polymerase IV (pol IV). We used a truncated form of human pol kappa (pol kappaDeltaC) and full-length pol IV to explore the miscoding properties of these enzymes. Oligodeoxynucleotides, modified site-specifically with N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-AF), were used as DNA templates in primer extension reactions that included all four dNTPs. Reactions catalyzed by pol kappaDeltaC were partially blocked one base prior to dG-AAF or dG-AF, and also opposite both lesions. At higher enzyme concentrations, a significant fraction of primer was extended. Analysis of the fully extended reaction product revealed incorporation of dTMP opposite dG-AAF, accompanied by much smaller amounts of dCMP, dAMP, and dGMP and some one- and two-base deletions. The product terminating 3' to the adduct site contained AMP misincorporated opposite dC. On templates containing dG-AF, dAMP, dTMP, and dCMP were incorporated opposite the lesion in approximately equal amounts, together with some one-base and two-base deletions. Steady-state kinetics analysis confirmed the results obtained from primer extension reactions catalyzed by pol kappa. In contract, primer extension reactions catalyzed by pol IV were blocked effectively by dG-AAF and dG-AF. At high concentrations of pol IV, full-length products were formed containing primarily one- or two-base deletions with dCMP, the correct base, incorporated opposite dG-AF. The miscoding properties of pol kappa observed in this study are consistent with mutational spectra observed when plasmid vectors containing dG-AAF or dG-AF are introduced into simian kidney cells [Shibutani, S., et al. (2001) Biochemistry 40, 3717-3722], supporting a model in which pol kappa plays a role in translesion synthesis past acetylaminofluorene-derived lesions in mammalian cells.  相似文献   

7.
4-Hydroxyequilenin (4-OHEN)-dC is a major, potentially mutagenic DNA adduct induced by equine estrogens used for hormone replacement therapy. To study the miscoding property of 4-OHEN-dC and the involvement of Y-family human DNA polymerases (pols) eta, kappa and iota in that process, we incorporated 4-OHEN-dC into oligodeoxynucleotides and used them as templates in primer extension reactions catalyzed by pol eta, kappa and iota. Pol eta inserted dAMP opposite 4-OHEN-dC, accompanied by lesser amounts of dCMP and dTMP incorporation and base deletion. Pol kappa promoted base deletions as well as direct incorporation of dAMP and dCMP. Pol iota worked in conjunction with pol kappa, but not with pol eta, at a replication fork stalled by the adduct, resulting in increased dTMP incorporation. Our results provide a direct evidence that Y-family DNA pols can switch with one another during synthesis past the lesion. No direct incorporation of dGMP, the correct base, was observed with Y-family enzymes. The miscoding potency of 4-OHEN-dC may be associated with the development of reproductive cancers observed in women receiving hormone replacement therapy.  相似文献   

8.
Hormone replacement therapy (HRT) increases the risk of developing breast, ovarian, and endometrial cancers. Equilin and equilenin are the major components of the widely prescribed drug used for HRT. 4-Hydroxyequilenin (4-OHEN), a major metabolite of equilin and equilenin, promotes 4-OHEN-modified dC, dA, and dG DNA adducts. These DNA adducts were detected in breast tumor and adjacent normal tissues of several patients receiving HRT. We have recently found that the 4-OHEN-dC DNA adduct is a highly miscoding lesion generating C --> T transitions and C --> G transversions. To explore the mutagenic potential of another major 4-OHEN-dA adduct, site-specifically modified oligodeoxynucleotides containing a single diastereoisomer of 4-OHEN-dA (Pk-1, Pk-2, and Pk-3) were prepared by a postsynthetic method and used as DNA templates for primer extension reactions catalyzed by human DNA polymerase (pol) eta and kappa that are highly expressed in the reproductive organs. Primer extension catalyzed by pol eta or pol kappa occurred rapidly on the unmodified template to form fully extended products. With the major 4-OHEN-dA-modified templates (Pk-2 and Pk-3), primer extension was retarded prior to the lesion and opposite the lesion; a fraction of the primers was extended past the lesion. Steady-state kinetic studies with pol eta and pol kappa indicated that dTMP, the correct base, was preferentially incorporated opposite the 4-OHEN-dA lesion. In addition, pol eta and pol kappa bypassed the lesion by incorporating dAMP and dCMP, respectively, opposite the lesion and extended past the lesion. The relative bypass frequency past the 4-OHEN-dA lesion with pol eta was at least 2 orders of magnitude higher than that observed with pol kappa. The bypass frequency past Pk-2 was more efficient than that past Pk-3. Thus, 4-OHEN-dA is a miscoding lesion generating A --> T transversions and A --> G transitions. The miscoding frequency and specificity of 4-OHEN-dA varied depending on the stereoisomer of the 4-OHEN-dA adduct and DNA polymerase used.  相似文献   

9.
Chronic inflammation is known to lead to an increased risk for the development of cancer. Under inflammatory condition, cellular DNA is damaged by hypobromous acid, which is generated by myeloperoxidase and eosinophil peroxidase. The reactive brominating species induced brominated DNA adducts such as 8-bromo-2′-deoxyguanosine (8-Br-dG), 8-bromo-2′-deoxyadenosine (8-Br-dA), and 5-bromo-2′-deoxycytidine (5-Br-dC). These DNA lesions may be implicated in carcinogenesis. In this study, we analyzed the miscoding properties of the brominated DNA adducts generated by human DNA polymerases (pols). Site-specifically modified oligodeoxynucleotides containing a single 8-Br-dG, 8-Br-dA, or 5-Br-dC were used as a template in primer extension reactions catalyzed by human pols α, κ, and η. When 8-Br-dG-modified template was used, pol α primarily incorporated dCMP, the correct base, opposite the lesion, along with a small amount of one-base deletion (4.8%). Pol κ also promoted one-base deletion (14.2%), accompanied by misincorporation of dGMP (9.5%), dAMP (8.0%), and dTMP (6.1%) opposite the lesion. Pol η, on the other hand, readily bypassed the 8-Br-dG lesion in an error-free manner. As for 8-Br-dA and 5-Br-dC, all the pols bypassed the lesions and no miscoding events were observed. These results indicate that only 8-Br-dG, and not 5-Br-dC and 8-Br-dA, is a mutagenic lesion; the miscoding frequency and specificity vary depending on the DNA pol used. Thus, hypobromous acid-induced 8-Br-dG adduct may increase mutagenic potential at the site of inflammation.  相似文献   

10.
Two novel dATP analogs for DNA photoaffinity labeling   总被引:1,自引:0,他引:1       下载免费PDF全文
Two new photoreactive dATP analogs, N6-[4-azidobenzoyl–(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (AB-dATP) and N6-[4-[3-(trifluoromethyl)-diazirin-3-yl]benzoyl-(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (DB-dATP), were synthesized from 2′-deoxyadenosine-5′-monophosphate in a six step procedure. Synthesis starts with aminoethylation of dAMP and continues with rearrangement of N1-(2-aminoethyl)-2′-deoxyadenosine-5′-monophosphate to N6-(2-aminoethyl)-2′-deoxyadenosine-5′-monophosphate (N6-dAMP). Next, N6-dAMP is converted into the triphosphate form by first protecting the N-6 primary amino group before coupling the pyrophosphate. After pyrophosphorylation, the material is deprotected to yield N6-(2-aminoethyl)-2′-deoxyadenosine-5′-triphosphate (N6-dATP). The N-6 amino group is subsequently used to attach either a phenylazide or phenyldiazirine and the photoreactive nucleotide is then enzymatically incorporated into DNA. N6-dATP and its photoreactive analogs AB-dATP and DB-dATP were successfully incorporated into DNA using the exonuclease-free Klenow fragment of DNA polymerase I in a primer extension reaction. UV irradiation of the primer extension reaction with AB-dATP or DB-dATP showed specific photocrosslinking of DNA polymerase I to DNA.  相似文献   

11.
N6-methyladenine (6mA), as a newly reported epigenetic marker, plays significant roles in regulation of various biological processes in eukaryotes. However, the effect of 6mA on human DNA replication remain elusive. In this work, we used Y-family human DNA polymerase η as a model to investigate the kinetics of bypass of 6mA by hPol η. We found 6mA and its intermediate hypoxanthine (I) on template partially inhibited DNA replication by hPol η. dTMP incorporation opposite 6mA and dCMP incorporation opposite I can be considered as correct incorporation. However, both 6mA and I reduced correct incorporation efficiency, next-base extension efficiency, and the priority in extension beyond correct base pair. Both dTMP incorporation opposite 6mA and dCTP opposite I showed fast burst phases. However, 6mA and I reduced the burst incorporation rates (kpol) and increased the dissociation constant (Kd,dNTP), compared with that of dTMP incorporation opposite unmodified A. Biophysical binding assays revealed that both 6mA and I on template reduced the binding affinity of hPol η to DNA in binary or ternary complex compared with unmodified A. All the results explain the inhibition effects of 6mA and I on DNA replication by hPol η, providing new insight in the effects of epigenetically modified 6mA on human DNA replication.  相似文献   

12.
Several recently discovered human DNA polymerases are associated with translesion synthesis past DNA adducts. These include human DNA polymerase kappa (pol kappa), a homologue of Escherichia coli pol IV, which enhances the frequency of spontaneous mutation. Using a truncated form of pol kappa (pol kappa Delta C), translesion synthesis past dG-(+)- or dG-(-)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene) adducts was explored. Site-specifically-modified oligodeoxynucleotides containing a single stereoisomeric dG-N(2)-BPDE lesion were used as DNA templates for primer extension reactions catalyzed by pol kappa Delta C. Primer extension was retarded one base prior to the dG-N(2)-BPDE lesion; when incubated for longer times or with higher concentration of enzyme, full primer extension was observed. Quantitative analysis of fully extended products showed preferential incorporation of dCMP, the correct base, opposite all four stereoisomeric dG-N(2)-BPDE lesions. (+)-trans-dG-N(2)-BPDE, a major BPDE-DNA adduct, promoted small amounts of dTMP, dAMP, and dGMP misincorporation opposite the lesion (total 2.7% of the starting primers) and deletions (1.1%). Although (+)-cis-dG-N(2)-BPDE was most effective in blocking translesion synthesis, its miscoding properties were similar to other dG-N(2)-BPDE isomers. Steady-state kinetic data indicate that dCMP is efficiently inserted opposite all dG-N(2)-BPDE adducts and extended past these lesions. The relative frequency of translesion synthesis (F(ins) x F(ext)) of dC.dG-N(2)-BPDE pairs was 2-6 orders of magnitude higher than that of other mismatched pairs. Pol kappa may play an important role in translesion synthesis by incorporating preferentially the correct base opposite dG-N(2)-BPDE. Its relatively low contribution to mutagenicity suggests that other newly discovered DNA polymerase(s) may be involved in mutagenic events attributed to dG-N(2)-BPDE adducts in human cells.  相似文献   

13.
Estrogen replacement therapy (ERT), composed of equilenin, is associated with increased risk of breast, ovarian, and endometrial cancers. Several diastereoisomers of unique dC and dA DNA adducts were derived from 4-hydroxyequilenin (4-OHEN), a metabolite of equilenin, and have been detected in women receiving ERT. To explore the miscoding property of 4-OHEN-dC adduct, site-specifically modified oligodeoxynucleotides (Pk-1, Pk-2, Pk-3, and Pk-4) containing a single diastereoisomer of 4-OHEN-dC were prepared by a postsynthetic method. Among them, major 4-OHEN-dC-modified oligodeoxynucleotides (Pk-3 and Pk-4) were used to prepare the templates for primer extension reactions catalyzed by DNA polymerase (pol) alpha, pol eta, and pol kappa. Primer extension was retarded one base prior to the lesion and opposite the lesion; stronger blockage was observed with pol alpha, while with human pol eta or pol kappa, a fraction of the primers was extended past the lesion. Steady-state kinetic studies showed that both pol kappa and pol eta inserted dCMP and dAMP opposite the 4-OHEN-dC and extended past the lesion. Never or less-frequently, dGMP, the correct base, was inserted opposite the lesion. The relative bypass frequency past the 4-OHEN-dC lesion with pol eta was at least 3 orders of magnitude higher than that for pol kappa, as observed for primer extension reactions. The bypass frequency past the dA.4-OHEN-dC adduct in Pk-4 was 2 orders of magnitude more efficient than that past the adduct in Pk-3. Thus, 4-OHEN-dC is a highly miscoding lesion capable of generating C --> T transitions and C --> G transversions. The miscoding frequency and specificity of 4-OHEN-dC were strikingly influenced by the adduct stereochemistry and DNA polymerase used.  相似文献   

14.
Humans are exposed to both endogenous and exogenous N-nitroso compounds (NOCs), and many NOCs can be metabolically activated to generate a highly reactive species, diazoacetate, which is capable of inducing carboxymethylation of nucleobases in DNA. Here we report, for the first time, the chemical syntheses of authentic N6-carboxymethyl-2′-deoxyadenosine (N6-CMdA) and N4-carboxymethyl-2′-deoxycytidine (N4-CMdC), liquid chromatography–ESI tandem MS confirmation of their formation in calf thymus DNA upon diazoacetate exposure, and the preparation of oligodeoxyribonucleotides containing a site-specifically incorporated N6-CMdA or N4-CMdC. Additionally, thermodynamic studies showed that the substitutions of a dA with N6-CMdA and dC with N4-CMdC in a 12-mer duplex increased Gibbs free energy for duplex formation at 25°C by 5.3 and 6.8 kcal/mol, respectively. Moreover, primer extension assay revealed that N4-CMdC was a stronger blockade to Klenow fragment-mediated primer extension than N6-CMdA. The polymerase displayed substantial frequency of misincorporation of dAMP opposite N6-CMdA and, to a lesser extent, misinsertion of dAMP and dTMP opposite N4-CMdC. The formation and the mutagenic potential of N6-CMdA and N4-CMdC suggest that these lesions may bear important implications in the etiology of NOC-induced tumor development.  相似文献   

15.
16.
Yasui M  Suzuki N  Laxmi YR  Shibutani S 《Biochemistry》2006,45(39):12167-12174
The long-term treatment of tamoxifen (TAM), widely used for adjuvant chemotherapy and chemoprevention for breast cancer, increases a risk of developing endometrial cancer. A high frequency of K-ras mutations has been observed in the endometrium of women treated with TAM. Human DNA polymerase (pol) eta and pol kappa are highly expressed in the reproductive organs and are associated with translesion synthesis past bulky DNA adducts. To explore the miscoding properties of alpha-(N2-deoxyguanosinyl)tamoxifen (dG-N2-TAM), a major TAM-DNA adduct, site-specifically modified oligodeoxynucleotides containing a single diastereoisomer of trans or cis forms of dG-N2-TAM were prepared by phosphoramidite chemical procedure and used as templates. The primer extension reaction catalyzed by pol kappa deltaC, a truncated form of pol kappa, extended more efficiently past the adduct than that of pol eta by incorporating dCMP, a correct base, opposite the adduct. With pol eta, all diastereoisomers of dG-N2-TAM promoted small amounts of direct incorporation of dAMP and deletions. With pol kappa deltaC, dG-N2-TAM promoted small amounts of dTMP and/or dAMP incorporations and deletions. The miscoding properties varied depending on the diastereoisomer of dG-N2-TAM adducts and the DNA pol used. Steady-state kinetic studies were also performed using either the nonspecific sequence or the K-ras gene sequence containing a single dG-N2-TAM at the second base of codon 12. With pol eta, the bypass frequency past the dA x dG-N2-TAM pair positioned in the K-ras sequence was only 2.3 times lower than that for the dC x dG-N2-TAM pair, indicating that dG-N2-TAM in the K-ras sequence has higher miscoding potential than that in the nonspecific sequence. However, with pol kappa deltaC, the bypass frequency past the dC x dG-N2-TAM pair was higher than that of the dT x dG-N2-TAM pair in both sequences. The properties of pol eta and pol kappa are consistent with the mutagenic events attributed to TAM-DNA adducts.  相似文献   

17.
The 1,N6-(2-Hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (1,N6-γ-HMHP-dA) adducts are formed upon bifunctional alkylation of adenine nucleobases in DNA by 1,2,3,4-diepoxybutane, the putative ultimate carcinogenic metabolite of 1,3-butadiene. The presence of a substituted 1,N6-propano group on 1,N6-γ-HMHP-dA is expected to block the Watson-Crick base pairing of the adducted adenine with thymine, potentially contributing to mutagenesis. In this study, the enzymology of replication past site-specific 1,N6-γ-HMHP-dA lesions in the presence of human DNA polymerases (hpols) β, η, κ, and ι and archebacterial polymerase Dpo4 was investigated. Run-on gel analysis with all four dNTPs revealed that hpol η, κ, and Dpo4 were able to copy the modified template. In contrast, hpol ι inserted a single base opposite 1,N6-γ-HMHP-dA but was unable to extend beyond the damaged site, and a complete replication block was observed with hpol β. Single nucleotide incorporation experiments indicated that although hpol η, κ, and Dpo4 incorporated the correct nucleotide (dTMP) opposite the lesion, dGMP and dAMP were inserted with a comparable frequency. HPLC-ESI-MS/MS analysis of primer extension products confirmed the ability of bypass polymerases to insert dTMP, dAMP, or dGMP opposite 1,N6-γ-HMHP-dA and detected large amounts of −1 and −2 deletion products. Taken together, these results indicate that hpol η and κ enzymes bypass 1,N6-γ-HMHP-dA lesions in an error-prone fashion, potentially contributing to A→T and A→C transversions and frameshift mutations observed in cells following treatment with 1,2,3,4-diepoxybutane.  相似文献   

18.
Oxanine (O) is a deamination product derived from guanine with the nitrogen at the N1 position substituted by oxygen. Cytosine, thymine, adenine, guanine as well as oxanine itself can be incorporated by Klenow Fragment to pair with oxanine in a DNA template with similar efficiency, indicating that oxanine in DNA may cause various mutations. As a nucleotide, deoxyoxanosine may substitute for deoxyguanosine to complete a primer extension reaction. Endonuclease V, an enzyme known for its enzymatic activity on uridine-, inosine- and xanthosine-containing DNA, can cleave oxanosine-containing DNA at the second phosphodiester bond 3′ to the lesion. Mg2+ or Mn2+, and to a small extent Co2+ or Ni2+, support the oxanosine-containing DNA cleavage activity. All four oxanosine-containing base pairs (A/O, T/O, C/O and G/O) were cleaved with similar efficiency. The cleavage of double-stranded oxanosine-containing DNA was ~6-fold less efficient than that of double-stranded inosine-containing DNA. Single-stranded oxanosine-containing DNA was cleaved with a lower efficiency as compared with double-stranded oxanosine-containing DNA. A metal ion enhances the binding of endonuclease V to double-stranded and single-stranded oxanosine-containing DNA 6- and 4-fold, respectively. Hypothetic models of oxanine-containing base pairs and deaminated base recognition mechanism are presented.  相似文献   

19.
Acetaldehyde, a major metabolite of ethanol, reacts with dG residues in DNA, resulting in the formation of the N(2)-ethyl-2'-deoxyguanosine (N(2)-Et-dG) adduct. This adduct has been detected in lymphocyte DNA of alcohol abusers. To explore the miscoding property of the N(2)-Et-dG DNA adduct, phosphoramidite chemical synthesis was used to prepare site-specifically modified oligodeoxynucleotides containing a single N(2)-Et-dG. These N(2)-Et-dG-modified oligodeoxynucleotides were used as templates for primer extension reactions catalyzed by the 3' --> 5' exonuclease-free (exo(-)) Klenow fragment of Escherichia coli DNA polymerase I. The primer extension was retarded one base prior to the N(2)-Et-dG lesion and opposite the lesion; however, when the enzyme was incubated for a longer time or with increased amounts of this enzyme, full extension occurred. Quantitative analysis of the fully extended products showed the preferential incorporation of dGMP and dCMP opposite the N(2)-Et-dG lesion, accompanied by a small amounts of dAMP and dTMP incorporation and one- and two-base deletions. Steady-state kinetic studies were also performed to determine the frequency of nucleotide insertion opposite the N(2)-Et-dG lesion and chain extension from the 3' terminus from the dN.N(2)-Et-dG (N is C, A, G, or T) pairs. These results indicate that the N(2)-Et-dG DNA adduct may generate G --> C transversions in living cells. Such a mutational spectrum has not been detected with other methylated dG adducts, including 8-methyl-2'-deoxyguanosine, O(6)-methyl-2'-deoxyguanosine, and N(2)-methyl-2'-deoxyguanosine. In addition, N(2)-ethyl-2'-deoxyguanosine triphosphate (N(2)-Et-dGTP) was efficiently incorporated opposite a template dC during DNA synthesis catalyzed by the exo(-) Klenow fragment. The utilization of N(2)-Et-dGTP was also determined by steady-state kinetic studies. N(2)-Et-dG DNA adducts are also formed by the incorporation of N(2)-Et-dGTP into DNA and may cause mutations, leading to the development of alcohol- and acetaldehyde-induced human cancers.  相似文献   

20.
The carcinogen 2-acetylaminofluorene is metabolically activated in cells and reacts with DNA to form N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF), N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF), and 3-(deoxyguanosin-N(2)()-yl)-2-acetylaminofluorene (dG-N(2)-AAF) DNA adducts. The dG-N(2)-AAF adduct is the least abundant of the three isomers, but it persists in the tissues of animals treated with this carcinogen. The miscoding and mutagenic properties of dG-C8-AAF and dG-C8-AF have been established; these adducts are readily excised by DNA repair enzymes engaged in nucleotide excision repair. In the present study, oligodeoxynucleotides modified site-specifically with dG-N(2)-AAF were used as DNA templates in primer extension reactions catalyzed by mammalian DNA polymerases. Reactions catalyzed by pol alpha were strongly blocked at a position one base before dG-N(2)-AAF and also opposite this lesion. In contrast, during translesion synthesis catalyzed by pol eta or pol kappa nucleotides were incorporated opposite the lesion. Both pol eta and pol kappa incorporated dCMP, the correct base, opposite dG-N(2)-AAF. In reactions catalyzed by pol eta, small amounts of dAMP misincorporation and one-base deletions were detected at the lesion site. With pol kappa, significant dTMP misincorporation was observed opposite the lesion. Steady-state kinetic analysis confirmed the results obtained from primer extension studies. Single-stranded shuttle vectors containing (5)(')TCCTCCTCXCCTCTC (X = dG-N(2)-AAF, dG-C8-AAF, or dG) were used to establish the frequency and specificity of dG-N(2)-AAF-induced mutations in simian kidney (COS-7) cells. Both lesions promote G --> T transversions overall, with dG-N(2)-AAF being less mutagenic than dG-C8-AAF (3.4% vs 12.5%). We conclude from this study that dG-N(2)-AAF, by virtue of its persistence in tissues, contributes significantly to the mutational spectra observed in AAF-induced mutagenesis and that pol eta, but not pol kappa, may play a role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号