共查询到20条相似文献,搜索用时 0 毫秒
1.
Mino K Yamanoue T Sakiyama T Eisaki N Matsuyama A Nakanishi K 《Bioscience, biotechnology, and biochemistry》1999,63(1):168-179
Incubation of serine acetyltransferase (SAT) from Escherichia coli at 25 degrees C in the absence of protease inhibitors yielded a truncated SAT. The truncated SAT was much less sensitive to feedback inhibition than the wild-type SAT. Analyses of the N- and C-terminal amino acid sequences found that the truncated SAT designated as SAT delta C20 was a resultant form of the wild-type SAT cleaved between Ser 253 and Met 254, deleting 20 amino acid residues from the C-terminus. Based on these findings, we constructed a plasmid containing an altered cysE gene encoding the truncated SAT. SAT delta C20 was produced using the cells of E. coli JM70 transformed with the plasmid and purified to be homogeneous on an SDS-polyacrylamide gel. Properties of the purified SAT delta C20 were investigated in comparison with those of the wild-type SAT and Met-256-Ile mutant SAT, which was isolated by Denk and B?ck but not purified (J. Gen. Microbiol., 133, 515-525 (1987)). SAT delta C20 was composed of four identical subunits like the wild-type SAT and Met-256-Ile mutant SAT. Specific activity, optimum pH for reaction, thermal stability, and stability to reagents for SAT delta C20 were similar those for the wild-type SAT and Met-256-Ile mutant SAT. However, SAT delta C20 did not form a complex with O-acetylserine sulfhydrylase-A (OASS-A), a counterpart of the cysteine synthetase and did not reduce OASS activity in contrast to the wild-type SAT and Met-256-Ile mutant SAT. 相似文献
2.
The chaperone SecB from Escherichia coli is primarily involved in passing precursor proteins into the Sec system via specific interactions with SecA. The crystal structure of SecB from E. coli has been solved to 2.35 A resolution. The structure shows flexibility in the crossover loop and the helix-connecting loop, regions that have been implicated to be part of the SecB substrate-binding site. Moreover conformational variability of Trp36 is observed as well as different loop conformations for the different monomers. Based on this, we speculate that SecB can regulate the access or extent of its hydrophobic substrate-binding site, by modulating the conformation of the crossover loop and the helix-connecting loop. The structure also clearly explains why the tetrameric equilibrium is shifted towards the dimeric state in the mutant SecBCys76Tyr. The buried cysteine residue is crucial for tight packing, and mutations are likely to disrupt the tetramer formation but not the dimer formation. 相似文献
3.
Safo MK Musayev FN Hunt S di Salvo ML Scarsdale N Schirch V 《Journal of bacteriology》2004,186(23):8074-8082
The crystal structure of Escherichia coli PdxY, the protein product of the pdxY gene, has been determined to a 2.2-A resolution. PdxY is a member of the ribokinase superfamily of enzymes and has sequence homology with pyridoxal kinases that phosphorylate pyridoxal at the C-5' hydroxyl. The protein is a homodimer with an active site on each monomer composed of residues that come exclusively from each respective subunit. The active site is filled with a density that fits that of pyridoxal. In monomer A, the ligand appears to be covalently attached to Cys122 as a thiohemiacetal, while in monomer B it is not covalently attached but appears to be partially present as pyridoxal 5'-phosphate. The presence of pyridoxal phosphate and pyridoxal as ligands was confirmed by the activation of aposerine hydroxymethyltransferase after release of the ligand by the denaturation of PdxY. The ligand, which appears to be covalently attached to Cys122, does not dissociate after denaturation of the protein. A detailed comparison (of functional properties, sequence homology, active site and ATP-binding-site residues, and active site flap types) of PdxY with other pyridoxal kinases as well as the ribokinase superfamily in general suggested that PdxY is a member of a new subclass of the ribokinase superfamily. The structure of PdxY also permitted an interpretation of work that was previously published about this enzyme. 相似文献
4.
5.
Sohi M Alexandrovich A Moolenaar G Visse R Goosen N Vernede X Fontecilla-Camps JC Champness J Sanderson MR 《FEBS letters》2000,465(2-3):161-164
A crystal structure of the C-terminal domain of Escherichia coli UvrB (UvrB') has been solved to 3.0 A resolution. The domain adopts a helix-loop-helix fold which is stabilised by the packing of hydrophobic side-chains between helices. From the UvrB' fold, a model for a domain of UvrC (UvrC') that has high sequence homology with UvrB' has been made. In the crystal, a dimerisation of UvrB domains is seen involving specific hydrophobic and salt bridge interactions between residues in and close to the loop region of the domain. It is proposed that a homologous mode of interaction may occur between UvrB and UvrC. This interaction is likely to be flexible, potentially spanning > 50 A. 相似文献
6.
Urusova DV Isupov MN Antonyuk S Kachalova GS Obmolova G Vagin AA Lebedev AA Burenkov GP Dauter Z Bartunik HD Lamzin VS Melik-Adamyan WR Mueller TD Schnackerz KD 《Biochimica et biophysica acta》2012,1824(3):422-432
D-Serine dehydratase from Escherichia coli is a member of the β-family (fold-type II) of the pyridoxal 5'-phosphate-dependent enzymes, catalyzing the conversion of D-serine to pyruvate and ammonia. The crystal structure of monomeric D-serine dehydratase has been solved to 1.97?-resolution for an orthorhombic data set by molecular replacement. In addition, the structure was refined in a monoclinic data set to 1.55? resolution. The structure of DSD reveals a larger pyridoxal 5'-phosphate-binding domain and a smaller domain. The active site of DSD is very similar to those of the other members of the β-family. Lys118 forms the Schiff base to PLP, the cofactor phosphate group is liganded to a tetraglycine cluster Gly279-Gly283, and the 3-hydroxyl group of PLP is liganded to Asn170 and N1 to Thr424, respectively. In the closed conformation the movement of the small domain blocks the entrance to active site of DSD. The domain movement plays an important role in the formation of the substrate recognition site and the catalysis of the enzyme. Modeling of D-serine into the active site of DSD suggests that the hydroxyl group of D-serine is coordinated to the carboxyl group of Asp238. The carboxyl oxygen of D-serine is coordinated to the hydroxyl group of Ser167 and the amide group of Leu171 (O1), whereas the O2 of the carboxyl group of D-serine is hydrogen-bonded to the hydroxyl group of Ser167 and the amide group of Thr168. A catalytic mechanism very similar to that proposed for L-serine dehydratase is discussed. 相似文献
7.
Gordon E Flouret B Chantalat L van Heijenoort J Mengin-Lecreulx D Dideberg O 《The Journal of biological chemistry》2001,276(14):10999-11006
UDP-N-acetylmuramoyl-l-alanyl-d-glutamate:meso-diaminopimelate ligase is a cytoplasmic enzyme that catalyzes the addition of meso-diaminopimelic acid to nucleotide precursor UDP-N-acetylmuramoyl-l-alanyl-d-glutamate in the biosynthesis of bacterial cell-wall peptidoglycan. The crystal structure of the Escherichia coli enzyme in the presence of the final product of the enzymatic reaction, UDP-MurNAc-l-Ala-gamma-d-Glu-meso-A(2)pm, has been solved to 2.0 A resolution. Phase information was obtained by multiwavelength anomalous dispersion using the K shell edge of selenium. The protein consists of three domains, two of which have a topology reminiscent of the equivalent domain found in the already established three-dimensional structure of the UDP-N-acetylmuramoyl-l-alanine: D-glutamate-ligase (MurD) ligase, which catalyzes the immediate previous step of incorporation of d-glutamic acid in the biosynthesis of the peptidoglycan precursor. The refined model reveals the binding site for UDP-MurNAc-l-Ala-gamma-d-Glu-meso-A(2)pm, and comparison with the six known MurD structures allowed the identification of residues involved in the enzymatic mechanism. Interestingly, during refinement, an excess of electron density was observed, leading to the conclusion that, as in MurD, a carbamylated lysine residue is present in the active site. In addition, the structural determinant responsible for the selection of the amino acid to be added to the nucleotide precursor was identified. 相似文献
8.
In an attempt to characterize the mechanism of co-operativity in the allosteric enzyme phosphofructokinase from Escherichia coli, crystals were grown in the absence of activating ligands. The crystal structure was determined to a resolution of 2.4 A by the method of molecular replacement, using the known structure of the liganded active state as a starting model, and has been refined to a crystallographic R-factor of 0.168 for all data. Although the crystallization solution would be expected to contain the enzyme in its inactive conformation, with a low affinity for the co-operative substrate fructose 6-phosphate, the structure in these crystals does not show the change in quaternary structure seen in the inactive form of the Bacillus stearothermophilus enzyme (previously determined at low resolution), nor does it show any substantial change in the fructose 6-phosphate site from the structure seen in the liganded form. Compared to the liganded form, there are considerable changes around the allosteric effector site, including the disordering of the last 19 residues of the chain. It seems likely that the observed conformation corresponds an active unliganded form, in which the absence of ligand in the effector site induces structural changes that spread through much of the subunit, but cause only minor changes in the active site. It is not clear why the crystals should contain the enzyme in a high-affinity conformation, which presumably represents only a small fraction of the molecules in the crystallizing solution. However, this structure does identify the conformational changes involved in binding of the allosteric effectors. 相似文献
9.
Aldehyde dehydrogenases catalyze the oxidation of aldehyde substrates to the corresponding carboxylic acids. Lactaldehyde dehydrogenase from Escherichia coli (aldA gene product, P25553) is an NAD(+)-dependent enzyme implicated in the metabolism of l-fucose and l-rhamnose. During the heterologous expression and purification of taxadiene synthase from the Pacific yew, lactaldehyde dehydrogenase from E. coli was identified as a minor (=5%) side-product subsequent to its unexpected crystallization. Accordingly, we now report the serendipitous crystal structure determination of unliganded lactaldehyde dehydrogenase from E. coli determined by the technique of multiple isomorphous replacement using anomalous scattering at 2.2 A resolution. Additionally, we report the crystal structure of the ternary enzyme complex with products lactate and NADH at 2.1 A resolution, and the crystal structure of the enzyme complex with NADPH at 2.7 A resolution. The structure of the ternary complex reveals that the nicotinamide ring of the cofactor is disordered between two conformations: one with the ring positioned in the active site in the so-called hydrolysis conformation, and another with the ring extended out of the active site into the solvent region, designated the out conformation. This represents the first crystal structure of an aldehyde dehydrogenase-product complex. The active site pocket in which lactate binds is more constricted than that of medium-chain dehydrogenases such as the YdcW gene product of E. coli. The structure of the binary complex with NADPH reveals the first view of the structural basis of specificity for NADH: the negatively charged carboxylate group of E179 destabilizes the binding of the 2'-phosphate group of NADPH sterically and electrostatically, thereby accounting for the lack of enzyme activity with this cofactor. 相似文献
10.
Serine acetyltransferase (SAT) catalyzes the first step of cysteine synthesis in microorganisms and higher plants. Here we present the 2.2 A crystal structure of SAT from Escherichia coli, which is a dimer of trimers, in complex with cysteine. The SAT monomer consists of an amino-terminal alpha-helical domain and a carboxyl-terminal left-handed beta-helix. We identify His(158) and Asp(143) as essential residues that form a catalytic triad with the substrate for acetyl transfer. This structure shows the mechanism by which cysteine inhibits SAT activity and thus controls its own synthesis. Cysteine is found to bind at the serine substrate site and not the acetyl-CoA site that had been reported previously. On the basis of the geometry around the cysteine binding site, we are able to suggest a mechanism for the O-acetylation of serine by SAT. We also compare the structure of SAT with other left-handed beta-helical structures. 相似文献
11.
G F Powell 《Biochemistry》1973,12(8):1592-1595
12.
The flavoprotein WrbA, originally described as a tryptophan (W) repressor-binding protein in Escherichia coli, has recently been shown to exhibit the enzymatic activity of a NADH:quinone oxidoreductase. This finding points toward a possible role in stress response and in the maintenance of a supply of reduced quinone. We have determined the three-dimensional structure of the WrbA holoprotein from E. coli at high resolution (1.66 Å), and we observed a characteristic, tetrameric quaternary structure highly similar to the one found in the WrbA homologs of Deinococcus radiodurans and Pseudomonas aeruginosa. A similar tetramer was originally observed in an iron-sulfur flavoprotein involved in the reduction of reactive oxygen species. Together with other, recently characterized proteins such as YhdA or YLR011wp (Lot6p), these tetrameric flavoproteins may constitute a large family with diverse functions in redox catalysis. WrbA binds substrates at an active site that provides an ideal stacking environment for aromatic moieties, while providing a pocket that is structured to stabilize the ADP part of an NADH molecule in its immediate vicinity. Structures of WrbA in complex with benzoquinone and NADH suggest a sequential binding mechanism for both molecules in the catalytic cycle. 相似文献
13.
14.
We have determined the crystal structure of the Escherichia coli ribosome recycling factor (RRF), which catalyzes the disassembly of the termination complex in protein synthesis. The L-shaped molecule consists of two domains: a triple-stranded antiparallel coiled-coil and an alpha/beta domain. The coil domain has a cylindrical shape and negatively charged surface, which are reminiscent of the anticodon arm of tRNA and domain IV of elongation factor EF-G. We suggest that RRF binds to the ribosomal A-site through its coil domain, which is a tRNA mimic. The relative position of the two domains is changed about an axis along the hydrophobic cleft in the hinge where the alkyl chain of a detergent molecule is bound. The tRNA mimicry and the domain movement observed in RRF provide a structural basis for understanding the role of RRF in protein synthesis. 相似文献
15.
Crystal structure of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase from Escherichia coli. 总被引:2,自引:0,他引:2 下载免费PDF全文
J A Bertrand G Auger E Fanchon L Martin D Blanot J van Heijenoort O Dideberg 《The EMBO journal》1997,16(12):3416-3425
UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD) is a cytoplasmic enzyme involved in the biosynthesis of peptidoglycan which catalyzes the addition of D-glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). The crystal structure of MurD in the presence of its substrate UMA has been solved to 1.9 A resolution. Phase information was obtained from multiple anomalous dispersion using the K-shell edge of selenium in combination with multiple isomorphous replacement. The structure comprises three domains of topology each reminiscent of nucleotide-binding folds: the N- and C-terminal domains are consistent with the dinucleotide-binding fold called the Rossmann fold, and the central domain with the mononucleotide-binding fold also observed in the GTPase family. The structure reveals the binding site of the substrate UMA, and comparison with known NTP complexes allows the identification of residues interacting with ATP. The study describes the first structure of the UDP-N-acetylmuramoyl-peptide ligase family. 相似文献
16.
Alcohol dehydrogenase E (AdhE) is an Fe-enzyme that, under anaerobic conditions, is involved in dissimilation of glucose. The enzyme is also present under aerobic conditions, its amount is about one-third and its activity is only one-tenth of the values observed under anaerobic conditions. Nevertheless, its function in the presence of oxygen remained ignored. The data presented in this paper led us to propose that the enzyme has a protective role against oxidative stress. Our results indicated that cells deleted in adhE gene could not grow aerobically in minimal media, were extremely sensitive to oxidative stress and showed division defects. In addition, compared with wild type, mutant cells displayed increased levels of internal peroxides (even higher than those found in a Delta katG strain) and increased protein carbonyl content. This pleiotropic phenotype disappeared when the adhE gene was reintroduced into the defective strain. The purified enzyme was highly reactive with hydrogen peroxide (with a Ki of 5 microM), causing inactivation due to a metal-catalyzed oxidation reaction. It is possible to prevent this reactivity to hydrogen peroxide by zinc, which can replace the iron atom at the catalytic site of AdhE. This can also be achieved by addition of ZnSO4 to cell cultures. In such conditions, addition of hydrogen peroxide resulted in reduced cell viability compared with that obtained without the Zn treatment. We therefore propose that AdhE acts as a H2O2 scavenger in Escherichia coli cells grown under aerobic conditions. 相似文献
17.
18.
Zoetewey DL Tripet BP Kutateladze TG Overduin MJ Wood JM Hodges RS 《Journal of molecular biology》2003,334(5):1063-1076
Bacteria respond to increasing medium osmolality by accumulating organic solutes that are compatible with cellular functions. Transporter ProP of Escherichia coli, a proton symporter and a member of the major facilitator superfamily, senses osmotic shifts and responds by importing osmolytes such as glycine betaine. ProP contains a cytoplasmic, C-terminal extension that is essential for its activity. A peptide corresponding to the C-terminal extension of ProP forms a homodimeric alpha-helical coiled-coil even though some of its heptad a positions are not occupied by hydrophobic amino acid residues. Unexpectedly, amino acid replacement R488I, occurring at a heptad a position, destabilized the coiled-coil formed by the ProP peptide and attenuated the response of the intact transporter to osmotic upshifts in vivo. Thus, ProP was proposed to dimerize via an antiparallel coiled-coil. We used nuclear magnetic resonance (NMR) spectroscopy to determine the structure of the synthetic peptide corresponding to residues 468-497 of ProP. This region did form an antiparallel coil-coil in which critical residue R488 specifies the antiparallel coiled-coil orientation by forming stabilizing salt-bridges. Charged residues (both acidic and basic) are clustered on the c/g surface of the coiled-coil whereas polar residues are distributed on the b/e surface. This causes the structure to be bent, in contrast to other known antiparallel coiled-coils (those from the hepatitis delta antigen (PDB ID code 1A92) and the bovine F(1) ATPase inhibitor protein (PDB ID code 1HF9)). The coiled-coil and its possible importance for osmosensing are discussed. 相似文献
19.
The thiamine-dependent E1o component (EC 1.2.4.2) of the 2-oxoglutarate dehydrogenase complex catalyses a rate-limiting step of the tricarboxylic acid cycle (TCA) of aerobically respiring organisms. We describe the crystal structure of Escherichia coli E1o in its apo and holo forms at 2.6 A and 3.5 A resolution, respectively. The structures reveal the characteristic fold that binds thiamine diphosphate and resemble closely the alpha(2)beta(2) hetero-tetrameric E1 components of other 2-oxo acid dehydrogenase complexes, except that in E1o, the alpha and beta subunits are fused as a single polypeptide. The extended segment that links the alpha-like and beta-like domains forms a pocket occupied by AMP, which is recognised specifically. Also distinctive to E1o are N-terminal extensions to the core fold, and which may mediate interactions with other components of the 2-oxoglutarate dehydrogenase multienzyme complex. The active site pocket contains a group of three histidine residues and one serine that appear to confer substrate specificity and the capacity to accommodate the TCA metabolite oxaloacetate. Oxaloacetate inhibits E1o activity at physiological concentrations, and we suggest that the inhibition may allow coordinated activity within the TCA cycle. We discuss the implications for metabolic control in facultative anaerobes, and for energy homeostasis of the mammalian brain. 相似文献
20.
Osawa T Sugiura N Shimada H Hirooka R Tsuji A Shirakawa T Fukuyama K Kimura M Kimata K Kakuta Y 《Biochemical and biophysical research communications》2009,378(1):10-29034
Elongation of glycosaminoglycan chains, such as heparan and chondroitin, is catalyzed by bi-functional glycosyltransferases, for which both 3-dimensional structures and reaction mechanisms remain unknown. The bacterial chondroitin polymerase K4CP catalyzes elongation of the chondroitin chain by alternatively transferring the GlcUA and GalNAc moiety from UDP-GlcUA and UDP-GalNAc to the non-reducing ends of the chondroitin chain. Here, we have determined the crystal structure of K4CP in the presence of UDP and UDP-GalNAc as well as with UDP and UDP-GlcUA. The structures consisted of two GT-A fold domains in which the two active sites were 60 Å apart. UDP-GalNAc and UDP-GlcUA were found at the active sites of the N-terminal and C-terminal domains, respectively. The present K4CPstructures have provided the structural basis for further investigating the molecular mechanism of biosynthesis of chondroitin chain. 相似文献