首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epidermis is a very active site of lipid metabolism, and all peroxisome proliferator-activated receptor (PPAR) and liver X receptor (LXR) isoforms are expressed in the epidermis. Activation of PPARalpha, -beta/delta, or -gamma or LXRs stimulates keratinocyte differentiation. Additionally, activation of these receptors also improves permeability barrier homeostasis by a number of mechanisms, including stimulating epidermal lipid synthesis, increasing lamellar body formation and secretion, and increasing the activity of enzymes required for the extracellular processing of lipids in the stratum corneum, leading to the formation of lamellar membranes that mediate permeability barrier function. The stimulation of keratinocyte differentiation and permeability barrier formation also occurs during fetal development, resulting in accelerated epidermal development. PPAR and LXR activation regulates keratinocyte proliferation and apoptosis, and studies have shown that these receptors play a role in cutaneous carcinogenesis. Lastly, PPAR and LXR activation is anti-inflammatory, reducing inflammation in animal models of allergic and irritant contact dermatitis. Because of their broad profile of beneficial effects on skin homeostasis, PPAR and LXR have great potential to serve as drug targets for common skin diseases such as psoriasis, atopic dermatitis, and skin cancer.  相似文献   

2.
Liver X receptors (LXRalpha and -beta) are liposensors that exert their metabolic effects by orchestrating the expression of macrophage genes involved in lipid metabolism and inflammation. LXRs are also expressed in other tissues, including skin, where their natural oxysterol ligands induce keratinocyte differentiation and improve epidermal barrier function. To extend the potential use of LXR ligands to dermatological indications, we explored the possibility of using LXR as a target for skin aging. We demonstrate that LXR signaling is down-regulated in cell-based models of photoaging, i.e. UV-activated keratinocytes and TNFalpha-activated dermal fibroblasts. We show that a synthetic LXR ligand inhibits the expression of cytokines and metalloproteinases in these in vitro models, thus indicating its potential in decreasing cutaneous inflammation associated with the etiology of photoaging. Furthermore, a synthetic LXR ligand induces the expression of differentiation markers, ceramide biosynthesis enzymes, and lipid synthesis and transport genes in keratinocytes. Remarkably, LXRbeta-null mouse skin showed some of the molecular defects that are observed in chronologically aged human skin. Finally, we demonstrate that a synthetic LXR agonist inhibits UV-induced photodamage and skin wrinkle formation in a murine model of photoaging. Therefore, the ability of an LXR ligand to modulate multiple pathways underlying the etiology of skin aging suggests that LXR is a novel target for developing potential therapeutics for photoaging and chronological skin aging indications.  相似文献   

3.
The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs and correlate with an LXR-dependent hepatic induction of lipogenic genes. To further investigate the roles of RXR and LXR in the regulation of hepatic gene expression, we have mapped the ligand-regulated genome-wide binding of these factors in mouse liver. We find that the RXR agonist bexarotene primarily increases the genomic binding of RXR, whereas the LXR agonist T0901317 greatly increases both LXR and RXR binding. Functional annotation of putative direct LXR target genes revealed a significant association with classical LXR-regulated pathways as well as peroxisome proliferator-activated receptor (PPAR) signaling pathways, and subsequent chromatin immunoprecipitation-sequencing (ChIP-seq) mapping of PPARα binding demonstrated binding of PPARα to 71 to 88% of the identified LXR-RXR binding sites. The combination of sequence analysis of shared binding regions and sequential ChIP on selected sites indicate that LXR-RXR and PPARα-RXR bind to degenerate response elements in a mutually exclusive manner. Together, our findings suggest extensive and unexpected cross talk between hepatic LXR and PPARα at the level of binding to shared genomic sites.  相似文献   

4.
5.
6.
7.
Keratinocyte terminal differentiation is the process that ultimately forms the epidermal barrier that is essential for mammalian survival. This process is controlled, in part, by signal transduction and gene expression mechanisms, and the epidermal growth factor receptor (EGFR) is known to be an important regulator of multiple epidermal functions. Using microarray analysis of a confluent cell density-induced model of keratinocyte differentiation, we identified 2,676 genes that are regulated by epidermal growth factor (EGF), a ligand of the EGFR. We further discovered, and separately confirmed by functional assays, that EGFR activation abrogates all of the known essential processes of keratinocyte differentiation by 1) decreasing the expression of lipid matrix biosynthetic enzymes, 2) regulating numerous genes forming the cornified envelope, and 3) suppressing the expression of tight junction proteins. In organotypic cultures of skin, EGF acted to impair epidermal barrier integrity, as shown by increased transepidermal water loss. As defective epidermal differentiation and disruption of barrier function are primary features of many human skin diseases, we used bioinformatic analyses to identify genes that are known to be associated with skin diseases. Compared with non-EGF-regulated genes, EGF-regulated genes were significantly enriched for skin disease genes. These results provide a systems-level understanding of the actions of EGFR signaling to inhibit keratinocyte differentiation, providing new insight into the role of EGFR imbalance in skin pathogenesis.  相似文献   

8.
9.
The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression.  相似文献   

10.
11.
12.
LXRs, which are nuclear receptors, have 2 isoforms—LXRα and LXRβ. Generally, LXRα is expressed in the liver, kidney, and a limited number of other organs, whereas LXRβ is thought to be expressed ubiquitously. Nevertheless, no clear consensus has been reached on the role of each in kidney lipid metabolism.Many researchers have reported that lipids accumulate in renal tubular epithelial cells during nephrosis. The nephrosis model we used showed the presence of urinary protein 4 days after the induction of illness. Additionally, the model maintained high levels of urinary protein from day 7–14. Lipid accumulation was clearly verified at day 4 and extreme accumulation was observed at day 7. We observed increased expression of LXRα from an early stage of nephrosis. To explore the role of increased LXRα in diseased kidney in vitro, NRK52E, normal kidney tubular epithelial cells, were forced to overexpress LXRα. These cells showed significantly lower lipid accumulation than mock cells did. In contrast, LXRβ knockdown lead to increased lipid accumulation in mock cells, and constancy in overexpressing cells.In normal kidneys, LXRβ is expressed stably to control mainly the intracellular lipids. However, with increasing intracellular lipid accumulation, expression of LXRα and its downstream gene, ABCA1, was upregulated, followed by lipid excretion in an LXRα-dependent manner. This phenomenon strongly suggests the importance of LXRα in lipid metabolism in the diseased kidney.  相似文献   

13.
14.
The Liver X receptors (LXRs) are members of the nuclear receptor family, that play fundamental roles in cholesterol transport, lipid metabolism and modulation of inflammatory responses. In recent years, the synthetic steroid N,N-dimethyl-3β-hydroxycholenamide (DMHCA) arised as a promising LXR ligand. This compound was able to dissociate certain beneficial LXRs effects from those undesirable ones involved in triglyceride metabolism. Here, we synthetized a series of DMHCA analogues with different modifications in the steroidal nucleus involving the A/B ring fusion, that generate changes in the overall conformation of the steroid. The LXRα and LXRβ activity of these analogues was evaluated by using a luciferase reporter assay in BHK21 cells. Compounds were tested in both the agonist and antagonist modes. Results indicated that the agonist/antagonist profile is dependent on the steroid configuration at the A/B ring junction. Notably, in contrast to DMHCA, the amide derived from lithocholic acid (2) with an A/B cis configuration and its 6,19-epoxy analogue 4 behaved as LXRα selective agonists, while the 2,19-epoxy analogues with an A/B trans configuration were antagonists of both isoforms. The binding mode of the analogues to both LXR isoforms was assessed by using 50?ns molecular dynamics (MD) simulations. Results revealed conformational differences between LXRα- and LXRβ-ligand complexes, mainly in the hydrogen bonding network that involves the C-3 hydroxyl. Overall, these results indicate that the synthetized DMHCA analogues could be interesting candidates for a therapeutic modulation of the LXRs.  相似文献   

15.
We investigated the effect of cineole on the expression of genes related to reverse cholesterol transport and hepatic fatty acid metabolism. Cineole, a small aroma compound in teas and herbs, significantly stimulated the transactivation of liver X receptor modulator (LXR)-α and LXR-β. The mRNA and protein expression of LXRs and their target genes, including ABCA1 and ABCG1, was significantly increased in macrophages stimulated with cineole. This led to the subsequent removal of cholesterol from the cells. Interestingly, cineole showed tissue-selective LXR induction: hepatocytes stimulated with cineole showed significantly reduced expression of LXR-α and LXR-α-responsive genes, including FAS and SCD-1 (P <0.05). Accordingly, hepatocytes treated with cineole displayed reduced cellular lipid accumulation compared with control cells, as assessed by Oil Red O lipid staining and cholesterol quantification. These results suggest that cineole is a selective LXR modulator that regulates the expression of key genes in reverse cholesterol transport in macrophages without inducing lipogenesis in hepatocytes. This selective LXR modulator may have practical implications for the development of hypocholesterolemic or anti-atherosclerotic agents and also suggests.  相似文献   

16.
Keratinocyte differentiation is the process of cellular maturation from a mitotic state to a terminally differentiated state during which skin builds up a tough yet soft skin barrier to protect the body. Its irreversibility also allows the shedding of excessive keratinocytes, thereby maintaining skin homeostasis and preventing skin diseases. Although the entire journey of keratinocyte differentiation is intricate and not well understood, it is known that Ras is able to block keratinocyte terminal differentiation and instead induce keratinocyte proliferation and transformation. It appears that uncontrolled proliferation actually interrupts differentiation.

However, it has been unclear whether there are any innate surveillants that would be able to induce terminal differentiation by antagonizing excessive mitotic activities. Inhibitor of nuclear factor κB kinase-α (IKKα, previously known as Chuk) emerges as a master regulator in the coordinative control of keratinocyte differentiation and proliferation and as a major tumor suppressor in human and mouse skin squamous cell carcinomas. IKKα does so largely by integrating into the epidermal growth factor receptor (EGFR)/Ras/extracellular signal-regulated kinase (Erk)/EGFR ligand pathways during mitosis and differentiation. We discuss these findings herein to extend our understanding of how IKKα-mediated terminal differentiation serves as an innate surveillant in skin.  相似文献   

17.
18.
19.
Full thickness models (FTMs) are 3D-cultured human skin models that mimic many aspects of native human skin (NHS). However, their stratum corneum (SC) lipid composition differs from NHS causing a reduced skin barrier. The most pronounced differences in lipid composition are a reduction in lipid chain length and increased monounsaturated lipids. The liver-X-receptor (LXR) activates the monounsaturated lipid synthesis via stearoyl-CoA desaturase-1 (SCD-1). Therefore, the aim was to improve the SC lipid synthesis of FTMs by LXR deactivation. This was achieved by supplementing culture medium with LXR antagonist GSK2033. LXR agonist T0901317 was added for comparison. Subsequently, epidermal morphogenesis, lipid composition, lipid organization and the barrier functionality of these FTMs were assessed. We demonstrate that LXR deactivation resulted in a lipid composition with increased overall chain lengths and reduced levels of monounsaturation, whereas LXR activation increased the amount of monounsaturated lipids and led to a reduction in the overall chain length. However, these changes did not affect the barrier functionality. In conclusion, LXR deactivation led to the development of FTMs with improved lipid properties, which mimic the lipid composition of NHS more closely. These novel findings may contribute to design interventions to normalize SC lipid composition of atopic dermatitis patients.  相似文献   

20.
Disrupted skin barrier due to altered keratinocyte differentiation is common in pathologic conditions such as atopic dermatitis, ichthyosis and psoriasis. However, the molecular cascades governing keratinocyte terminal differentiation are poorly understood. We have previously demonstrated that a dominant mutation in ZNF750 leads to a clinical phenotype reminiscent of psoriasis and seborrheic dermatitis. Here we show that ZNF750 is a nuclear protein bearing a functional C-terminal nuclear localization signal. ZNF750 was specifically expressed in the epidermal suprabasal layers and its expression was augmented during differentiation, both in human skin and in-vitro, peaking in the granular layer. Silencing of ZNF750 in Ca2+-induced HaCaT keratinocytes led to morphologically apparent arrest in the progression of late differentiation, as well as diminished apoptosis and sustained proliferation. ZNF750 knockdown cells presented with markedly reduced expression of epidermal late differentiation markers, including gene subsets of epidermal differentiation complex and skin barrier formation such as FLG, LOR, SPINK5, ALOX12B and DSG1, known to be mutated in various human skin diseases. Furthermore, overexpression of ZNF750 in undifferentiated cells induced terminal differentiation genes. Thus, ZNF750 is a regulator of keratinocyte terminal differentiation and with its downstream targets can serve in future elucidation of therapeutics for common diseases of skin barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号