共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sakamoto A Tsukamoto S Yamamoto H Ueda-Hashimoto M Takahashi M Suzuki H Morikawa H 《The Plant journal : for cell and molecular biology》2003,33(5):841-851
The importance of nitric oxide (NO) as a signaling molecule to various plant physiological and pathophysiological processes is becoming increasingly evident. However, little is known about how plants protect themselves from nitrosative and oxidative damage mediated by NO and NO-derived reactive nitrogen species (RNS). Peroxynitrite, the product of the reaction between NO and superoxide anion, is considered to play a central role in RNS-induced cytotoxicity, as a result of its potent ability to oxidize diverse biomolecules. Employing heterologous expression in bacteria and yeast, we investigated peroxynitrite-scavenging activity in plants of 2-Cys peroxiredoxin (2CPRX), originally identified as a hydroperoxide-reducing peroxidase that is ubiquitously distributed among organisms. The putative mature form of a chloroplast-localized 2CPRX from Arabidopsis thaliana was overproduced in Escherichia coli as an amino-terminally hexahistidine-tagged fusion protein. The purified recombinant 2CPRX, which was catalytically active as peroxidase, efficiently prevented the peroxynitrite-induced oxidation of a sensitive compound. We also examined in vivo the ability of the Arabidopsis 2CPRX to complement the 2CPRX deficiency of a Saccharomyces cerevisiae mutant. Functional expression in the mutant strain of the Arabidopsis 2CPRX not only increased cellular tolerance to hydrogen peroxide, but also complemented the hypersensitive growth defect induced by nitrite-mediated cytotoxicity. The complemented cells significantly enhanced the capacity to reduce RNS-mediated oxidative damages. The results presented here demonstrate a new role of plant 2CPRX as a critical determinant of the resistance to RNS, and support the existence of a plant enzymatic basis for RNS metabolism. 相似文献
3.
The present study was undertaken to investigate the involvement of nitric oxide in the augmentation of benzo(a)pyrene induced cellular injury in polymorphonuclear leukocytes (PMNs). Polymorphs were isolated from the blood collected from Wistar rats treated with and without benzo(a)pyrene (50mg/kg, i.p.) through cardiac puncture. Catalase, superoxide dismutase (SOD), glutathione-s-transferase (GST), myeloperoxidase (MPO) and nitrite content were estimated in PMNs using standard procedures. Inducible nitric oxide synthase (iNOS) and cytochrome P-4501A1 (CYP1A1) expression in PMNs were also analyzed in presence or absence of nitric oxide synthase (NOS) inhibitors, aminoguanidine (AG, 5mM) and L-NG nitro L-arginine methyl ester (L-NAME, 1mM). A significant augmentation was observed in the nitrite content, activities of superoxide dismutase, MPO and GST and the expressions of iNOS and CYP1A1, however, catalase activity was attenuated in PMNs of benzo(a)pyrene treated rats as compared with their respective controls. AG and L-NAME resulted in a significant attenuation in nitrite content, MPO activity and iNOS expression; however, no significant alteration was observed in CYP1A1 expression. CYP1A1 inhibitor alpha-naphthoflavone inhibited the expression of iNOS in PMNs of benzo(a)pyrene treated animals significantly. The results obtained thus suggest that CYP1A1 induces iNOS expression leading to the generation of endogenous nitric oxide (NO) that could be responsible for the augmentation of myeloperoxidase-mediated benzo(a)pyrene-induced injury in PMNs. 相似文献
4.
Proteasome activation and nNOS down-regulation in neuroblastoma cells expressing a Cu,Zn superoxide dismutase mutant involved in familial ALS 总被引:3,自引:0,他引:3
Reactive oxygen and nitrogen species have emerged as predominant effectors of neurodegeneration. We demonstrated that expression of the fully active G93A Cu,Zn superoxide dismutase mutant in neuroblastoma cells is associated with an increased level of oxidatively modified proteins, in terms of carbonylated residues. A parallel increase in proteasome activity was detected and this was mandatory in order to assure cell viability. In fact, proteasome inhibition by lactacystin or MG132 resulted in programmed cell death. Nitrosative stress was not involved in the oxidative unbalance, as a decrease in neuronal nitric oxide production and down-regulation of neuronal nitric oxide synthase (nNOS) level were detected. The nNOS down-regulation was correlated to increased proteolytic degradation by proteasome, because comparable levels of nNOS were detected in G93A and parental cells upon treatment with lactacystin. The altered rate of proteolysis observed in G93A cells was specific for nNOS as Cu,Zn superoxide dismutase (Cu,Zn SOD) degradation by proteasome was influenced neither by its mutation nor by increased proteasome activity. Treatment with the antioxidant 5,5'-dimethyl-1-pyrroline N-oxide resulted in inhibition of protein oxidation and decrease in proteasome activity to the basal levels. Overall these results confirm the pro-oxidant activity of G93A Cu,Zn SOD mutant and, at the same time, suggest a cross-talk between reactive oxygen and nitrogen species via the proteasome pathway. 相似文献
5.
Role of mitochondrial dysfunction and oxidative stress in the pathogenesis of selective neuronal loss in Wernicke’s encephalopathy 总被引:4,自引:0,他引:4
Thiamine deficiency results in Wernicke’s encephalopathy and is commonly encountered in chronic alcoholism, gastrointestinal
diseases, and HIV AIDS. The earliest metabolic consequence of thiamine deficiency is a selective loss in activity of the thiamine
diphosphate-dependent enzyme α-ketoglutarate dehydrogenase (α-KGDH), a rate-limiting tricarboxylic acid cycle enzyme. Thiamine
deficiency is characterized neuropathologically by selective neuronal cell death in the thalamus, pons, and cerebellum. The
cause of this region-selective neuronal loss is unknown, but mechanisms involving cellular energy failure, focal lactic acidosis,
and NMDA receptor-mediated excitotoxicity have classically been implicated. More recently, evidence supports a role for oxidative
stress. Evidence includes increased endothelial nitric oxide synthase, nitrotyrosine deposition, microglial activation, and
lipid peroxidation. Reactive oxygen species production results in decreased expression of astrocytic glutamate transporters
and decreased activities of α-KGDH, resulting in an amplification of cell death mechanisms in thiamine deficiency. 相似文献
6.
Michael J. Considine Luisa María Sandalio Christine Helen Foyer 《Annals of botany》2015,116(4):469-473
Background and Aims Reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as nitric oxide (NO), play crucial roles in the signal transduction pathways that regulate plant growth, development and defence responses, providing a nexus of reduction/oxidation (redox) control that impacts on nearly every aspect of plant biology. Here we summarize current knowledge and concepts that lay the foundations of a new vision for ROS/RNS functions – particularly through signalling hubs – for the next decade.Scope Plants have mastered the art of redox control using ROS and RNS as secondary messengers to regulate a diverse range of protein functions through redox-based, post-translational modifications that act as regulators of molecular master-switches. Much current focus concerns the impact of this regulation on local and systemic signalling pathways, as well as understanding how such reactive molecules can be effectively used in the control of plant growth and stress responses.Conclusions The spectre of oxidative stress still overshadows much of our current philosophy and understanding of ROS and RNS functions. While many questions remain to be addressed – for example regarding inter-organellar regulation and communication, the control of hypoxia and how ROS/RNS signalling is used in plant cells, not only to trigger acclimation responses but also to create molecular memories of stress – it is clear that ROS and RNS function as vital signals of living cells. 相似文献
7.
《Bioscience, biotechnology, and biochemistry》2013,77(4):792-793
In the course of our search for new indophenol-reducing substances, a strain of Streptomyces was found to produce USF-142A, a novel 1,3-dicarbonyl compound which reduces 2,6-dichlorophenol in-dophenol and exists in keto-enol tautomers in solution. This compound showed antioxidative activity by the Rhodan iron method. 相似文献
8.
Influence of antioxidants on NO-dependent induction of heme oxygenase-1 in U937 monocytes 总被引:1,自引:0,他引:1
D. Yu. Litvinov V. S. Prasolov S. Bouton J. C. Drapier K. T. Turpaev 《Molecular Biology》2005,39(1):77-83
Thiol antioxidants are known to inhibit the nitric oxide-dependent induction of the hemoxygenase-1 gene (HOX-1). To estimate the degree to which the inhibitory effect of thiol antioxidants is accounted for by them scavenging oxidized NO derivatives or their precursors, the reactive oxygen and nitrogen species (ROS and RNS), we studied the inhibitory effect of nonthiol antioxidants: dimethyl sulfoxide, dimethylthiourea, sodium salicylate, sodium formate, uric acid, catalase, and superoxide dismutase. Partial inhibition of NO-dependent HOX-1 induction was observed in the presence of the nonpolar HO scavengers dimethyl sulfoxide and dimethylthiourea. The antioxidants which selectively bind other ROS had no effect on HOX-1 expression. To reveal the role of RNS in NO-dependent HOX-1 induction, cells were treated with the NO-generating compound DPTA-NO in the presence of 2-phenyl-4,4,5,5,-tetramethylimidazole-1-oxyl 3 oxide (PTIO), which oxidizes NO to NO2. PTIO proved to significantly enhance NO-dependent HOX-1 induction. Thiol antioxidants completely inhibited the stimulating effect of PTIO, which is evidence that their inhibitory effect is explained by RNS scavenging. The results of this study indicate that antioxidants can be used to modulate the cell response to NO.Translated from Molekulyarnaya Biologiya, Vol. 39, No. 1, 2005, pp. 89–95.Original Russian Text Copyright © 2005 by Litvinov, Prasolov, Bouton, Drapier, Turpaev. 相似文献
9.
Bordetella bronchiseptica can establish prolonged airway infection consistent with a highly developed ability to evade mammalian host immune responses. Upon initial interaction with the host upper respiratory tract mucosa, B. bronchiseptica are subjected to antimicrobial reactive nitrogen species (RNS) and reactive oxygen species (ROS), effector molecules of the innate immune system. However, the responses of B. bronchiseptica to redox species at physiologically relevant concentrations (nM-microM) have not been investigated. Using predicted physiological concentrations of nitric oxide (NO), superoxide and hydrogen peroxide (H2O2) on low numbers of CFU of B. bronchiseptica, all redox active species displayed dose-dependent antimicrobial activity. Susceptibility to individual redox active species was significantly increased upon introduction of a second species at subantimicrobial concentrations. An increased bacteriostatic activity of NO was observed relative to H2O2. The understanding of Bordetella responses to physiologically relevant levels of exogenous RNS and ROS will aid in defining the role of endogenous production of these molecules in host innate immunity against Bordetella and other respiratory pathogens. 相似文献
10.
Zhi-Hui Wang Jun-Wei Zhang Xiao-Hua Qiu Ai-Bin Cheng Li Tian 《Journal of receptor and signal transduction research》2016,36(1):72-78
Background: Carnosol is an ortho-diphenolic diterpene with excellent antioxidant potential. The present study was designed to identify the protective role of carnosol against spinal cord injury (SCI)-induced oxidative stress and inflammation in Wistar rats. Methods: In the present study, oxidative stress status was determined through estimating total antioxidant capacity, total oxidant status, lipid peroxide content, protein carbonyl and sulfhydryl levels, reactive oxygen species (ROS), antioxidant status (superoxide-dismutase, catalase, glutathione, glutathione peroxidase, glutathione-S-transferase). Inflammatory effects were determined by analyzing the expression of NF-κB and COX-2 through Western blot analysis. Further, carnosol-mediated redox homeostasis was analyzed by determining p-AKT and Nrf-2 levels. Results: SCI resulted in a significant increase in oxidative stress status through increased ROS generation, total oxidant levels, lipid peroxide content, protein carbonyl and sulfhydryl levels. The antioxidant status in SCI rats was significantly reduced, indicating imbalance in redox status. In addition, the expression of NF-κB and COX-2 was significantly upregulated, while p-AKT and Nrf-2 levels were downregulated in SCI rats. However, treatment with carnosol showed a significant enhancement in the antioxidant status with concomitant decline in oxidative stress parameters. Further, carnosol treatment regulated the key proteins in inflammation and redox status through significant downregulation of NF-κB and COX-2 levels and upregulation of p-AKT and Nrf-2 expression. Conclusion: Thus, the present study shows for the first time on the protective role of carnosol against SCI-induced oxidative stress and inflammation through modulating NF-κB, COX-2 and Nrf-2 levels in Wistar rats. 相似文献
11.
The cyanobacterial small CAB-like proteins (SCPs) are single-helix membrane proteins mostly associated with the photosystem II (PSII) complex that accumulate under stress conditions. Their function is still ambiguous although they are assumed to regulate chlorophyll (Chl) biosynthesis and/or to protect PSII against oxidative damage. In this study, the effect of SCPs on the PSII-specific light-induced damage and generation of singlet oxygen ((1)O(2)) was assessed in the strains of the cyanobacterium Synechocystis sp. PCC 6803 lacking PSI (PSI-less strain) or lacking PSI together with all SCPs (PSI-less/scpABCDE(-) strain). The light-induced oxidative modifications of the PSII D1 protein reflected by a mobility shift of the D1 protein and by generation of a D1-cytochrome b-559 adduct were more pronounced in the PSI-less/scpABCDE(-) strain. This increased protein oxidation correlated with a faster formation of (1)O(2) as detected by the green fluorescence of Singlet Oxygen Sensor Green assessed by a laser confocal scanning microscopy and by electron paramagnetic resonance spin-trapping technique using 2, 2, 6, 6-tetramethyl-4-piperidone (TEMPD) as a spin trap. In contrast, the formation of hydroxyl radicals was similar in both strains. Our results show that SCPs prevent (1)O(2) formation during PSII damage, most probably by the binding of free Chl released from the damaged PSII complexes. 相似文献
12.
Current and previous year needles from three 16 years-old populations of Scots pine (Pinus sylvestris L.) trees were seasonally collected at the three experimental areas: Luboń- close to the phosphate fertiliser factory, Głogów
— close to the copper foundry and Kórnik — control site. Głogów is the most polluted site, where at 1998 monthly mean daily
concentrations of different pollutants were: SO2 - 17 μg·m−3, NOx - 12 μg·m−3 and dust containing heavy metals as Cu, Pb, Cd - 29 μg·m−3. Trees growing in Luboń were influenced for many years by high concentration of SO2 and fluor compounds. A few years ago emissions were markedly reduced, but low pH of soil and high concentration of aluminium
ions still influence the growth of trees. Seasonal changes of ascorbate and thiol content were observed in each needle class
and population, with the maximum in the winter and minimum in the summer. In needles from trees growing on polluted sites
higher level of ascorbic acid and thiols comparing to control site was observed. Significant differences appeared in each
population of Scots pine growing under higher pollution stress in the Głogów site. In needles from trees growing in Luboń
significant differences in ascorbic acid and thiols content were evidently less numerous. Needles from polluted sites in some
seasons contained significantly more malondialdehyde (MDA) and those was more frequent in Głogów than in Luboń. The results
indicated that in the Głogów site trees are more influenced by pollution stress than in Luboń and the defense reaction measured
as an increase of the antioxidant level is more evident. 相似文献
13.
一氧化氮(nitric oxide,NO)作为重要的信号分子,调控植物的种子萌发、根形态建成和花器官发生等许多生长发育过程,并参与气孔运动的调节以及植物对多种非生物胁迫和病原体侵染的应答过程。已经知道,精氨酸依赖的NOS途径和亚硝酸盐依赖的NR途径是植物细胞NO产生的主要酶促合成途径。NO及其衍生物能够直接修饰底物蛋白的金属基团、半胱氨酸和酪氨酸残基,通过金属亚硝基化、巯基亚硝基化和Tyr.硝基化等化学修饰方式,调节靶蛋白的活性,并影响cGMP和Ca2+信使系统等下游信号途径,调控相应的生理过程。最新的一些研究结果也显示,MAPK级联系统与NO信号转导途径之间存在复杂的交叉调控。此外,作为活跃的小分子信号,NO和活性氧相互依赖并相互影响,共同介导了植物的胁迫应答和激素响应过程。文章综述了植物NO信号转导研究领域中一些新的研究进展,对NO与活性氧信号途径间的交叉作用等也作了简要介绍。 相似文献
14.
一氧化氮对盐胁迫下小麦幼苗根生长和氧化损伤的影响 总被引:45,自引:2,他引:45
0.05和0.10 mmol/L一氧化氮(NO)供体硝普钠(sodium mtropmsside,SNP)处理明显减轻NaCl浓度为150 mmo1/L左右的盐胁迫对小麦幼苗根生长的抑制效应,其中0.05mmol/L的SNP效果最明显;0.30mmol/L以上的SNP处理对根抑制无明显缓解作用;当NaCl浓度大于300 mmol/L时,各种浓度的SNP均不能减轻盐胁迫对根生长的抑制.以N O清除剂血红蛋白(hemoglobin,Hb)以及NOx-,K3Fe(CN)6等为对照,观察到0.05 mmol/L的SNP能不同程度地提高150mmo/L盐胁迫下小麦幼苗根尖细胞中超氧化物歧化酶(SOD)、过氧化物酶(POD)和抗坏血酸过氧化物酶(ascorbateperoxidase,APX)活性,明显降低MDA、H2O2和O2-.的积累,阻断盐胁迫诱导的根尖细胞DNA片段化,表明NO能有效缓解盐胁迫引起的小麦幼苗根尖细胞的氧化损伤. 相似文献
15.
Oxidative stress is a damaging process resulting from an imbalance between excessive generation of oxidant compounds and insufficient
antioxidant defence mechanisms. Oxidative stress plays a crucial role in the initiation and progression of cigarette smoke-induced
lung injury, deterioration in lung functions, and development of chronic obstructive pulmonary disease (COPD). In smokers
and in patients with COPD, the increased oxidant burden derives from cigarette smoke per se, and from activated inflammatory cells releasing enhanced amounts of reactive oxygen and nitrogen species (ROS, RNS, respectively).
Although mild oxidative stress resulting from cigarette smoking leads to the upregulation of the antioxidative enzymes synthesis
in the lungs, high levels of ROS and RNS observed in patients with COPD overwhelm the antioxidant enzymes capacities, resulting
in oxidant-mediated lung injury and cell death. In addition, depletion of antioxidative systems in the systemic circulation
was consistently observed in such patients. The imbalance between the generation of ROS/RNS and antioxidant capacities — the
state of “oxidative stress” — is one of the major pathophysiologic hallmarks in the development of COPD. Detrimental effects
of oxidative stress include impairment of membrane functions, inactivation of membrane-bound receptors and enzymes, and increased
tissue permeability. In addition, oxidative stress aggravates the inflammatory processes in the lungs, and contributes to
the worsening of the protease-antiprotease imbalance. Several markers of oxidative stress, such as increases in lipid peroxidation
products and reductions in glutathione peroxidase activity, have been shown to be related to the reductions in pulmonary functions.
In the present article we review the current knowledge about the vicious cycle of cigarette smoking, oxidative stress, and
inflammation in the pathogenesis of COPD. 相似文献
16.
《Free radical research》2013,47(10):1163-1169
AbstractOxygen and nitrogen radicals are frequently produced during viral infections. These radicals are not only a physiological mechanism for pathogen clearance but also result in many pathological consequences. Low concentrations of radicals can promote viral replication; however, high concentrations of radicals can also inhibit viral replication and are detrimental to the cell due to their mitogenic activity. We reviewed the detailed mechanisms behind oxygen and nitrogen radical production and focused on how viruses induce radical production. In addition, we examined the effects of oxygen and nitrogen radicals on both the virus and host. We also reviewed enzymatic and chemical detoxification mechanisms and recent advances in therapeutic antioxidant applications. Many molecules that modulate the redox balance have yielded promising results in cell and animal models of infection. This encourages their use in clinical practice either alone or with existing therapies. However, since the redox balance also plays an important role in host defence against pathogens, carefully designed clinical trials are needed to assess the therapeutic benefits and secondary effects of these molecules and whether these effects differ between different types of viral infections. 相似文献
17.
18.
以自由基为代表的小分子活性物质对于维持生物体正常的生理功能起着不可或缺的作用,但在包括中风的多种病理状态下,过量的小分子活性物质由于其高活性、强氧化性可对人体内的组织器官造成严重损伤.活性氧和活性氮是两种重要的小分子活性物质,并且活性氮在中风的发病机制中的作用备受关注,是近年研究的热点之一.本文就近年来活性氮在中风中的生理性与病理性的作用进行综述及展望. 相似文献
19.
Changes in the level of oxidative damage to proteins in CD1 outbred mice γ irradiated with a dose of 3 Gy have been studied. The changes were estimated from the amount of carbonyl groups (CG) in the proteins. It was found that two hours after exposure to γ radiation, the amount of CG in the cytoplasmic and nuclear fractions of the liver, heart, brain, and spleen sharply increased. Two months after irradiation, the level of CG in the cytoplasmic and nuclear subcellular fractions of the liver and brain decreased to the level of CG in the control animals, which were not exposed to radiation. In the subcellular fractions of the heart and spleen, the increase in the degree of damage was more significant and a high level of damage was observed even two months after irradiation. An enhancement of the antigenic properties of proteins from the liver, heart, and spleen in the postirradiation period was found. Spleen proteins were most immunogenic. A comparison of the antigenic properties of proteins isolated from the tissues 60 days after irradiation revealed a correlation between the level of oxidative damage and the immunogenicity of the total protein fraction. 相似文献
20.
Nitric oxide (NO) and polyamines play essential roles in many developmental processes and abiotic stress responses in plants. NO and polyamines are metabolized from arginine through NO synthase (NOS) and arginine decarboxylase (ADC), respectively. Function of arginase, another important enzyme involved in arginine metabolism, in abiotic stress remains largely unknown. In the recent study, we have dissected the impact of arginase on arginine metabolism and abiotic stress responses through manipulating AtARGAHs expression. The results suggested that manipulation of arginase expression modulated accumulation of arginine and direct downstream products of arginine catabolism. AtARGAHs knockout lines exhibited increased accumulation of polyamines and NO and enhanced abiotic stress tolerance, while AtARGAHs overexpressing lines displayed the opposite results. Notably, we highlighted that Arabidopsis arginase plays distinctive and dual roles in the crosstalk between polyamines and NO signaling during abiotic stress responses, mediating both arginine metabolism and reactive oxygen species (ROS) accumulation. It is likely that accumulation of both NO and polyamines might activate abiotic stress responses in the plant. 相似文献