共查询到20条相似文献,搜索用时 0 毫秒
1.
Chatterjee P Basu S Kundu M Nasipuri M Plewczynski D 《Journal of molecular modeling》2011,17(9):2191-2201
Secondary structure prediction is a crucial task for understanding the variety of protein structures and performed biological
functions. Prediction of secondary structures for new proteins using their amino acid sequences is of fundamental importance
in bioinformatics. We propose a novel technique to predict protein secondary structures based on position-specific scoring
matrices (PSSMs) and physico-chemical properties of amino acids. It is a two stage approach involving multiclass support vector
machines (SVMs) as classifiers for three different structural conformations, viz., helix, sheet and coil. In the first stage, PSSMs obtained from PSI-BLAST and five specially selected physicochemical properties
of amino acids are fed into SVMs as features for sequence-to-structure prediction. Confidence values for forming helix, sheet and coil that are obtained from the first stage SVM are then used
in the second stage SVM for performing structure-to-structure prediction. The two-stage cascaded classifiers (PSP_MCSVM) are trained with proteins from RS126 dataset. The classifiers
are finally tested on target proteins of critical assessment of protein structure prediction experiment-9 (CASP9). PSP_MCSVM
with brainstorming consensus procedure performs better than the prediction servers like Predator, DSC, SIMPA96, for randomly
selected proteins from CASP9 targets. The overall performance is found to be comparable with the current state-of-the art. PSP_MCSVM source code, train-test datasets and supplementary files are available freely in public domain at: and 相似文献
2.
Malik Yousef Mohamed Ketany Larry Manevitz Louise C Showe Michael K Showe 《BMC bioinformatics》2009,10(1):337
Background
Classification using microarray datasets is usually based on a small number of samples for which tens of thousands of gene expression measurements have been obtained. The selection of the genes most significant to the classification problem is a challenging issue in high dimension data analysis and interpretation. A previous study with SVM-RCE (Recursive Cluster Elimination), suggested that classification based on groups of correlated genes sometimes exhibits better performance than classification using single genes. Large databases of gene interaction networks provide an important resource for the analysis of genetic phenomena and for classification studies using interacting genes. 相似文献3.
4.
Classification of multiple cancer types by multicategory support vector machines using gene expression data 总被引:11,自引:0,他引:11
MOTIVATION: High-density DNA microarray measures the activities of several thousand genes simultaneously and the gene expression profiles have been used for the cancer classification recently. This new approach promises to give better therapeutic measurements to cancer patients by diagnosing cancer types with improved accuracy. The Support Vector Machine (SVM) is one of the classification methods successfully applied to the cancer diagnosis problems. However, its optimal extension to more than two classes was not obvious, which might impose limitations in its application to multiple tumor types. We briefly introduce the Multicategory SVM, which is a recently proposed extension of the binary SVM, and apply it to multiclass cancer diagnosis problems. RESULTS: Its applicability is demonstrated on the leukemia data (Golub et al., 1999) and the small round blue cell tumors of childhood data (Khan et al., 2001). Comparable classification accuracy shown in the applications and its flexibility render the MSVM a viable alternative to other classification methods. SUPPLEMENTARY INFORMATION: http://www.stat.ohio-state.edu/~yklee/msvm.htm 相似文献
5.
This paper proposes a new power spectral-based hybrid genetic algorithm-support vector machines (SVMGA) technique to classify five types of electrocardiogram (ECG) beats, namely normal beats and four manifestations of heart arrhythmia. This method employs three modules: a feature extraction module, a classification module and an optimization module. Feature extraction module extracts electrocardiogram's spectral and three timing interval features. Non-parametric power spectral density (PSD) estimation methods are used to extract spectral features. Support vector machine (SVM) is employed as a classifier to recognize the ECG beats. We investigate and compare two such classification approaches. First they are specified experimentally by the trial and error method. In the second technique the approach optimizes the relevant parameters through an intelligent algorithm. These parameters are: Gaussian radial basis function (GRBF) kernel parameter σ and C penalty parameter of SVM classifier. Then their performances in classification of ECG signals are evaluated for eight files obtained from the MIT–BIH arrhythmia database. Classification accuracy of the SVMGA approach proves superior to that of the SVM which has constant and manually extracted parameter. 相似文献
6.
Background
Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated. 相似文献7.
Summary. The support vector machine, a machine-learning method, is used to predict the four structural classes, i.e. mainly α, mainly
β, α–β and fss, from the topology-level of CATH protein structure database. For the binary classification, any two structural
classes which do not share any secondary structure such as α and β elements could be classified with as high as 90% accuracy.
The accuracy, however, will decrease to less than 70% if the structural classes to be classified contain structure elements
in common. Our study also shows that the dimensions of feature space 202 = 400 (for dipeptide) and 203 = 8 000 (for tripeptide) give nearly the same prediction accuracy. Among these 4 structural classes, multi-class classification
gives an overall accuracy of about 52%, indicating that the multi-class classification technique in support of vector machines
may still need to be further improved in future investigation. 相似文献
8.
MOTIVATION: With the development of DNA microarray technology, scientists can now measure the expression levels of thousands of genes simultaneously in one single experiment. One current difficulty in interpreting microarray data comes from their innate nature of 'high-dimensional low sample size'. Therefore, robust and accurate gene selection methods are required to identify differentially expressed group of genes across different samples, e.g. between cancerous and normal cells. Successful gene selection will help to classify different cancer types, lead to a better understanding of genetic signatures in cancers and improve treatment strategies. Although gene selection and cancer classification are two closely related problems, most existing approaches handle them separately by selecting genes prior to classification. We provide a unified procedure for simultaneous gene selection and cancer classification, achieving high accuracy in both aspects. RESULTS: In this paper we develop a novel type of regularization in support vector machines (SVMs) to identify important genes for cancer classification. A special nonconvex penalty, called the smoothly clipped absolute deviation penalty, is imposed on the hinge loss function in the SVM. By systematically thresholding small estimates to zeros, the new procedure eliminates redundant genes automatically and yields a compact and accurate classifier. A successive quadratic algorithm is proposed to convert the non-differentiable and non-convex optimization problem into easily solved linear equation systems. The method is applied to two real datasets and has produced very promising results. AVAILABILITY: MATLAB codes are available upon request from the authors. 相似文献
9.
Li HD Liang YZ Xu QS Cao DS Tan BB Deng BC Lin CC 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2011,8(6):1633-1641
Selecting a small number of informative genes for microarray-based tumor classification is central to cancer prediction and treatment. Based on model population analysis, here we present a new approach, called Margin Influence Analysis (MIA), designed to work with support vector machines (SVM) for selecting informative genes. The rationale for performing margin influence analysis lies in the fact that the margin of support vector machines is an important factor which underlies the generalization performance of SVM models. Briefly, MIA could reveal genes which have statistically significant influence on the margin by using Mann-Whitney U test. The reason for using the Mann-Whitney U test rather than two-sample t test is that Mann-Whitney U test is a nonparametric test method without any distribution-related assumptions and is also a robust method. Using two publicly available cancerous microarray data sets, it is demonstrated that MIA could typically select a small number of margin-influencing genes and further achieves comparable classification accuracy compared to those reported in the literature. The distinguished features and outstanding performance may make MIA a good alternative for gene selection of high dimensional microarray data. (The source code in MATLAB with GNU General Public License Version 2.0 is freely available at http://code.google.com/p/mia2009/). 相似文献
10.
Discriminating thermophilic lipases from their similar thermostable counterparts is a challenging task and it would help to design stable proteins. In this study, the distributions of N (N=2, 3) neighboring amino acids and the non-adjacent di-residue coupling patterns in the sequences of 65 thermostable and 77 thermophilic lipases had been systematically analyzed. It was found that the hydrophobic residues Leu, Pro, Met, Phe, Trp, as well as the polar residue Tyr had higher occurrence in thermophilic lipases than thermostable ones. The occurrence frequencies of KC EE KE RE, VE, YI, EK, VK, EV, YV, EY, KY, VY and YY in thermophilic proteins were significantly higher, while the occurrence frequencies of QC, QH, QN, HQ, MQ, NQ, QQ, TQ, QS and QT were significantly lower. CXP or CPX showed significantly positive to lipase thermostability, while XXQ or QXX showed significantly negative to lipase thermostability. Non-adjacent di-residue coupling patterns of PR14, RY32, YR47, LE53, LE64, PP64, RP70 and PP101 were significantly different in thermophilic lipases and their thermostable counterparts. The composition of dipeptide, tripeptide and non-adjacent di-residue patterns contained more information than amino acid composition. A statistical method based on support vector machines (SVMs) was developed for discriminating thermophilic and thermostable lipases. The accuracy of this method for the training dataset was 97.17?. Furthermore, the highest accuracy of the method for testing datasets was 98.41?. The influence of some specific patterns on lipase thermostability was also discussed. 相似文献
11.
12.
13.
14.
Jahandideh S Sarvestani AS Abdolmaleki P Jahandideh M Barfeie M 《Journal of theoretical biology》2007,249(4):785-790
Recently, two different models have been developed for predicting gamma-turns in proteins by Kaur and Raghava [2002. An evaluation of beta-turn prediction methods. Bioinformatics 18, 1508-1514; 2003. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923-929]. However, the major limitation of previous methods is inability in predicting gamma-turns types. Thus, there is a need to predict gamma-turn types using an approach which will be useful in overall tertiary structure prediction. In this work, support vector machines (SVMs), a powerful model is proposed for predicting gamma-turn types in proteins. The high rates of prediction accuracy showed that the formation of gamma-turn types is evidently correlated with the sequence of tripeptides, and hence can be approximately predicted based on the sequence information of the tripeptides alone. 相似文献
15.
16.
Background
Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation, as these proteins play a crucial role in gene-regulation. In this paper, we developed various SVM modules for predicting DNA-binding domains and proteins. All models were trained and tested on multiple datasets of non-redundant proteins. 相似文献17.
Jaiswal K 《In silico biology》2007,7(6):559-568
Ubiquitin functions to regulate protein turnover in a cell by closely regulating the degradation of specific proteins. Such a regulatory role is very important, and thus I have analyzed the proteins that are ubiquitin-like, using an artificial neural network, support vector machines and a hidden Markov model (HMM). The methods were trained and tested on a set of 373 ubiquitin proteins and 373 non-ubiquitin proteins, obtained from Entrez protein database. The artificial neural network and support vector machine are trained and tested using both the physicochemical properties and PSSM matrices generated from PSI-BLAST, while in the HMM based method direct sequences are used for training-testing procedures. Further, the performance measures of the methods are calculated for test sequences, i.e. accuracy, specificity, sensitivity and Matthew's correlation coefficients of the methods are calculated. The highest accuracy of 90.2%, specificity of 87.04% and sensitivity of 94.08% was achieved using the support vector machine model with PSSM matrices. While accuracies of 86.82%, 83.37%, 80.18% and 72.11% were obtained for the support vector machine with physicochemical properties, neural network with PSSM matrices, neural networks with physicochemical properties, and hidden Markov model, respectively. As the accuracy for SVM model is better both using physicochemical properties and the PSSM matrices, it is concluded that kernel methods such as SVM outperforms neural networks and hidden Markov models. 相似文献
18.
Doran M Raicu DS Furst JD Settimi R Schipma M Chandler DP 《Bioinformatics (Oxford, England)》2007,23(4):487-492
The capability of a custom microarray to discriminate between closely related DNA samples is demonstrated using a set of Bacillus anthracis strains. The microarray was developed as a universal fingerprint device consisting of 390 genome-independent 9mer probes. The genomes of B. anthracis strains are monomorphic and therefore, typically difficult to distinguish using conventional molecular biology tools or microarray data clustering techniques. Using support vector machines (SVMs) as a supervised learning technique, we show that a low-density fingerprint microarray contains enough information to discriminate between B. anthracis strains with 90% sensitivity using a reference library constructed from six replicate arrays and three replicates for new isolates. 相似文献
19.
Background
PDZ domains mediate protein-protein interactions involved in important biological processes through the recognition of short linear motifs in their target proteins. Two recent independent studies have used protein microarray or phage display technology to detect PDZ domain interactions with peptide ligands on a large scale. Several computational predictors of PDZ domain interactions have been developed, however they are trained using only protein microarray data and focus on limited subsets of PDZ domains. An accurate predictor of genomic PDZ domain interactions would allow the proteomes of organisms to be scanned for potential binders. Such an application would require an accurate and precise predictor to avoid generating too many false positive hits given the large amount of possible interactors in a given proteome. Once validated these predictions will help to increase the coverage of current PDZ domain interaction networks and further our understanding of the roles that PDZ domains play in a variety of biological processes. 相似文献20.
A support vector machine (SVM) modeling approach for short-term load forecasting is proposed. The SVM learning scheme is applied to the power load data, forcing the network to learn the inherent internal temporal property of power load sequence. We also study the performance when other related input variables such as temperature and humidity are considered. The performance of our proposed SVM modeling approach has been tested and compared with feed-forward neural network and cosine radial basis function neural network approaches. Numerical results show that the SVM approach yields better generalization capability and lower prediction error compared to those neural network approaches. 相似文献