首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent studies provided strong support for the view that ubiquitin-specific protease 22 (USP22) plays a central role in cell-cycle progression and also in pathological processes such as oncogenesis. We have recently shown that USP22 levels are elevated in colorectal carcinoma with associated increase in the expression of several cell-cycle-related genes. However, the precise mechanism for these functions of USP22 at molecular level has not been fully elucidated. Currently, we investigated the role of USP22 in human colorectal cancer (CRC). We observed that USP22 expression was statistically significantly correlated positively with that of BMI-1, c-Myc and both, pAkt (Ser473), and pAkt (Thr308), in primary tumor tissues from 43 CRC patients. Down-regulation of USP22 expression in HCT116 colorectal cancer cells by siRNA resulted in the accumulation of cells in the G1 phase of the cell cycle. RNAi-knockdown of USP22 in HCT16 cells also led to the repression of BMI-1 and was accompanied by the up-regulation of p16INK4a and p14ARF, with a consequent decrease in E2F1 and p53 levels. In addition, down-regulation of c-Myc-targeted cyclin D2 was also noticed in cells treated with USP22-siRNA. Furthermore, our results showed that USP22 deletion also caused down-regulation of Akt/GSK3β activity, which can also contribute to the reduction of cyclin D2. Collectively, our current results suggest that USP22 may act as an oncogene in CRC as it positively regulates cell cycle via both BMI-1-mediated INK4a/ARF pathway and Akt signaling pathway.  相似文献   

3.
The deubiquitinating enzyme USP2a has shown oncogenic properties in many cancer types by impairing ubiquitination of FASN, MDM2, MDMX or Aurora A. Aberrant expression of USP2a has been linked to progression of human tumors, particularly prostate cancer. However, little is known about the role of USP2a or its mechanism of action in bladder cancer. Here, we provide evidence that USP2a is an oncoprotein in bladder cancer cells. Enforced expression of USP2a caused enhanced proliferation, invasion, migration and resistance to several chemotherapeutic reagents, while USP2a loss resulted in slower proliferation, greater chemosensitivity and reduced migratory/invasive capability compared with control cells. USP2a, but not a catalytically inactive mutant, enhanced proliferation in immortalized TRT-HU1 normal human bladder epithelial cells. USP2a bound to cyclin A1 and prevented cyclin A1 ubiquitination, leading to accumulation of cyclin A1 by a block in degradation. Enforced expression of wild type USP2a, but not an inactive USP2a mutant, resulted in cyclin A1 accumulation and increased cell proliferation. We conclude that USP2a impairs ubiquitination and stabilizes an important cell cycle regulator, cyclin A1, raising the possibility of USP2a targeting as a therapeutic strategy against bladder tumors in combination with chemotherapy.  相似文献   

4.
The deubiquitinating enzyme USP2a has shown oncogenic properties in many cancer types by impairing ubiquitination of FASN, MDM2, MDMX or Aurora A. Aberrant expression of USP2a has been linked to progression of human tumors, particularly prostate cancer. However, little is known about the role of USP2a or its mechanism of action in bladder cancer. Here, we provide evidence that USP2a is an oncoprotein in bladder cancer cells. Enforced expression of USP2a caused enhanced proliferation, invasion, migration and resistance to several chemotherapeutic reagents, while USP2a loss resulted in slower proliferation, greater chemosensitivity and reduced migratory/invasive capability compared with control cells. USP2a, but not a catalytically inactive mutant, enhanced proliferation in immortalized TRT-HU1 normal human bladder epithelial cells. USP2a bound to cyclin A1 and prevented cyclin A1 ubiquitination, leading to accumulation of cyclin A1 by a block in degradation. Enforced expression of wild-type USP2a, but not an inactive USP2a mutant, resulted in cyclin A1 accumulation and increased cell proliferation. We conclude that USP2a impairs ubiquitination and stabilizes an important cell cycle regulator, cyclin A1, raising the possibility of USP2a targeting as a therapeutic strategy against bladder tumors in combination with chemotherapy.Key words: USP2a, cyclin A1, bladder cancer, cisplatin resistance, deubiquitination  相似文献   

5.
Nek6 is an NIMA-related kinase that plays a critical role in mitotic cell cycle progression. Recent studies have shown that Nek6 is upregulated in various human cancers, but the function of Nek6 in tumorigenesis is largely unknown. Here, we examined the role of Nek6 in cellular senescence. Our data revealed that Nek6 expression is decreased both in both the replicative senescence of human normal fibroblasts and premature senescence induced by p53 expression in EJ human bladder cancer cells and H1299 human lung cancer cells. Interestingly, the enforced expression of Nek6 in EJ and H1299 cells completely suppresses p53-induced senescence, whereas the expression of kinase-dead Nek6 did not affect p53-induced senescence. Mechanistic studies revealed that cell cycle arrest in the G1 and G2/M phases, as well as the reduction of cyclin B and cdc2 protein level upon p53 expression were significantly reduced by Nek6 overexpression. In addition, p53-induced increases in intracellular levels of ROS were also inhibited in cells overexpressing Nek6. These results suggest that the downregulation of Nek6 expression is required for the onset of p53-induced cellular senescence and imply a possible role of Nek6 in tumorigenesis.  相似文献   

6.
7.
The involvement of p53 and p21 signal pathway in the G2/M cell cycle progression of zinc-supplemented normal human bronchial epithelial (NHBE) cells was examined using the small interferring RNA (siRNA) approach. Cells were cultured for one passage in a different concentration of zinc: <0.4 microM (ZD) as zinc deficient; 4 microM as normal zinc level (ZN) in culture medium; 16 microM (ZA) as normal human plasma zinc level; and 32 microM (ZS) as the high end of plasma zinc attainable by oral supplementation. Nuclear p21 protein and mRNA levels as well as promoter activity in ZS cells, but not in ZD cells, were markedly elevated to almost twofold compared with ZN control cells. G2/M blockage in ZS cells was coupled with the observation of elevated p21 gene expression. In ZS cells, the abrogation of p21 protein induction by the transfection of p21 siRNA was shown to alleviate the G2/M blockage, demonstrating the positive linkage of p21 elevation and G2/M blockage. Abolishment of the increase in p53 protein in ZS cells with transfection of p53 siRNA normalized the elevated p21 protein to a similar level as in ZN control cells, which demonstrated that the p21 induction is p53 dependent. Furthermore, the normalization of p53 protein by siRNA treatment in ZS cells alleviated cell growth depression and G2/M blockage, which demonstrated that p53 was involved in the high zinc status-induced G2/M blockage and growth depression. Thus high zinc status in NHBE cells upregulates p53 expression which in turn elevates p21 that eventually induces G2/M blockage.  相似文献   

8.
Mdm2 is an E3 ubiquitin ligase that promotes its own ubiquitination and also ubiquitination of the p53 tumour suppressor. In a bacterial two-hybrid screen, using Mdm2 as bait, we identified an Mdm2-interacting peptide that bears sequence similarity to the deubiquitinating enzyme USP2a. We have established that full-length USP2a associates with Mdm2 in cells where it can deubiquitinate Mdm2 while demonstrating no deubiquitinating activity towards p53. Ectopic expression of USP2a causes accumulation of Mdm2 in a dose-dependent manner and consequently promotes Mdm2-mediated p53 degradation. This differs from the behaviour of HAUSP, which deubiquitinates p53 in addition to Mdm2 and thus protects p53 from Mdm2-mediated degradation. We further demonstrate that suppression of endogenous USP2a destabilises Mdm2 and causes accumulation of p53 protein and activation of p53. Our data identify the deubiquitinating enzyme USP2a as a novel regulator of the p53 pathway that acts through its ability to selectively target Mdm2.  相似文献   

9.
10.
The pro-apoptotic function of p53 has been well defined in preventing genomic instability and cell transformation. However, the intriguing fact that p53 contributes to a pro-survival advantage of tumor cells under DNA damage conditions raises a critical question in radiation therapy for the 50% human cancers with intact p53 function. Herein, we reveal an anti-apoptotic role of mitochondrial p53 regulated by the cell cycle complex cyclin B1/Cdk1 in irradiated human colon cancer HCT116 cells with p53+/+ status. Steady-state levels of p53 and cyclin B1/Cdk1 were identified in the mitochondria of many human and mouse cells, and their mitochondrial influx was significantly enhanced by radiation. The mitochondrial kinase activity of cyclin B1/Cdk1 was found to specifically phosphorylate p53 at Ser-315 residue, leading to enhanced mitochondrial ATP production and reduced mitochondrial apoptosis. The improved mitochondrial function can be blocked by transfection of mutant p53 Ser-315-Ala, or by siRNA knockdown of cyclin B1 and Cdk1 genes. Enforced translocation of cyclin B1 and Cdk1 into mitochondria with a mitochondrial-targeting-peptide increased levels of Ser-315 phosphorylation on mitochondrial p53, improved ATP production and decreased apoptosis by sequestering p53 from binding to Bcl-2 and Bcl-xL. Furthermore, reconstitution of wild-type p53 in p53-deficient HCT116 p53−/− cells resulted in an increased mitochondrial ATP production and suppression of apoptosis. Such phenomena were absent in the p53-deficient HCT116 p53−/− cells reconstituted with the mutant p53. These results demonstrate a unique anti-apoptotic function of mitochondrial p53 regulated by cyclin B1/Cdk1-mediated Ser-315 phosphorylation in p53-wild-type tumor cells, which may provide insights for improving the efficacy of anti-cancer therapy, especially for tumors that retain p53.  相似文献   

11.
Expression of low molecular weight (LMW) isoforms of cyclin E is a strong predictor of poor outcome in patients with breast cancer. The purpose of this study was to examine the expression of full-length and LMW cyclin E in bladder cancer cell lines and patient tumors. We used western blotting, immunoprecipitation and kinase assays to examine the expression and activity of key cell cycle-regulatory proteins in various human bladder cell lines, both tumorigenic and non-tumorigenic. We also analyzed cyclin E expression, kinase activity and immune complex binding partners in 43 tissue samples from grade 2 and 3 transitional cell carcinomas. Cyclin E was overexpressed and LMW isoforms were present only in bladder cancer cells. Overexpression of LMW isoforms of cyclin E and increased cyclin E kinase activity were both significantly associated with tumorigenicity of the bladder cell lines (p = 0.005 and 0.022, respectively). Binding of the cyclin-dependent kinase inhibitors p21 and p27 to LMW cyclin E did not inhibit the kinase activity of cyclin E and cyclin-dependent kinase 2 in primary tumor samples overexpressing LMW cyclin E. Full-length and LMW cyclin E were significantly overexpressed in grade 3 tumors compared with grade 2 tumors (p = 0.004). Finally, LMW cyclin E levels were significantly associated with a non-papillary growth pattern (p = 0.031) and invasiveness (p = 0.021) of the bladder tumors and poor overall survival (p = 0.06). These results suggest that LMW cyclin E can be used as a new prognostic marker for bladder cancer.Key words: cyclin E, p27, Cdk2 kinase, bladder cancer, cell cycle  相似文献   

12.
Expression of low molecular weight (LMW) isoforms of cyclin E is a strong predictor of poor outcome in patients with breast cancer. The purpose of this study was to examine the expression of full-length and LMW cyclin E in bladder cancer cell lines and patient tumors. We used western blotting, immunoprecipitation and kinase assays to examine the expression and activity of key cell cycle-regulatory proteins in various human bladder cell lines, both tumorigenic and non-tumorigenic. We also analyzed cyclin E expression, kinase activity and immune complex binding partners in 43 tissue samples from grade 2 and 3 transitional cell carcinomas. Cyclin E was overexpressed and LMW isoforms were present only in bladder cancer cells. Overexpression of LMW isoforms of cyclin E and increased cyclin E kinase activity were both significantly associated with tumorigenicity of the bladder cell lines (p = 0.005 and 0.022, respectively). Binding of the cyclin-dependent kinase inhibitors p21 and p27 to LMW cyclin E did not inhibit the kinase activity of cyclin E and cyclin-dependent kinase 2 in primary tumor samples overexpressing LMW cyclin E. Full-length and LMW cyclin E were significantly overexpressed in grade 3 tumors compared with grade 2 tumors (p = 0.004). Finally, LMW cyclin E levels were significantly associated with a non-papillary growth pattern (p = 0.031) and invasiveness (p = 0.021) of the bladder tumors and poor overall survival (p = 0.06). These results suggest that LMW cyclin E can be used as a new prognostic marker for bladder cancer.  相似文献   

13.
Cyclin G1 is a p53-responsive gene that is induced in alternative reading frame (ARF)-arrested cells, yet its role in growth control is unclear. We tested its effects on growth and involvement in the ARF-Mdm2-p53 tumor suppressor pathway. We show that cyclin G1 interacts with ARF, Mdm2, and p53 in vitro and in vivo. At high levels, cyclin G1 induces a G(1)-phase arrest in mammalian cells that coincides with p53 activation. Conversely, lower levels of cyclin G1 lack intrinsic growth inhibitory effects yet potentiate ARF-mediated growth arrest. Notably, cyclin G1 is down-regulated by Mdm2 through proteasome-mediated degradation. These data suggest that cyclin G1 is a positive feedback regulator of p53 whose expression is restrained by Mdm2. Interestingly, growth inhibition by cyclin G1 does not require p53 but instead exhibits partial retinoblastoma protein (pRb) dependence. These findings reveal that cyclin G1 has growth inhibitory activity that is mechanistically linked to ARF-p53 and pRb tumor suppressor pathways.  相似文献   

14.
15.
Biphenolic components in the Magnolia family have shown several pharmacological activities such as antitumor effects. This study investigated the effects of 4-O-methylhonokiol (MH), a constituent of Magnolia officinalis, on human colon cancer cell growth and its action mechanism. 4-O-methylhonokiol (0–30 μM) decreased constitutive activated nuclear factor (NF)-κB DNA binding activity and inhibited growth of human colon (SW620 and HCT116) cancer cells. It also caused G0–G1 phase cell cycle arrest followed by an induction of apoptotic cell death. However, knockdown with small interfering RNA (siRNA) of p21 or transfection with cyclin D1/Cdk4 binding site-mutated p21 abrogated MH-induced cell growth inhibition, inhibition of NF-κB activity as well as expression of cyclin D1 and Cdk4. Conversely, inhibition of NF-κB with specific inhibitor or siRNA augmented MH-induced apoptotic cell death. 4-O-methylhonokiol inhibited tumor growth, NF-κB activity and expression of antiapoptotic proteins; however, it increased the expression of apoptotic proteins as well as p21 in xenograft nude mice bearing SW620 cancer cells. The present study reveals that MH causes p21-mediated human colon cancer cell growth inhibition through suppression of NF-κB and indicates that this compound by itself or in combination with other anticancer agents could be useful for the treatment of cancer.  相似文献   

16.
Cyclin G recruits PP2A to dephosphorylate Mdm2   总被引:10,自引:0,他引:10  
The function of cyclin G, a commonly induced p53 target, has remained elusive. We show that cyclin G forms a quaternary complex in vivo and in vitro with enzymatically active phosphatase 2A (PP2A) holoenzymes containing B' subunits. Interestingly, cyclin G also binds in vivo and in vitro to Mdm2 and markedly stimulates the ability of PP2A to dephosphorylate Mdm2 at T216. Consistent with these data, cyclin G null cells have both Mdm2 that is hyperphosphorylated at T216 and markedly higher levels of p53 protein when compared to wild-type cells. Cyclin G expression also results in reduced phosphorylation of human Hdm2 at S166. Thus, our data suggest that cyclin G recruits PP2A in order to modulate the phosphorylation of Mdm2 and thereby to regulate both Mdm2 and p53.  相似文献   

17.
18.
Down-regulation of p53 expression has been found in a broad range of human cancers and cell proliferation disorders, indicating that p53 plays a key role in cell cycle regulation and tumor suppression. In our current study, we transfected human embryonic lung fibroblast (HELF) cells with pcDNA3-wild-type p53 (pcDNA3-wtp53) plasmid, or pcDNA3-H179Y-mutated p53 (pcDNA3-mtp53) plasmid that mimics the mutation found in some human lung tumors, and further studied the role of p53 in the regulation of cell proliferation. Over expression of wild-type p53 caused cell cycle arrest at G1 phase with reduced cell size, decreased expression of cyclin D3, cyclin E, Cdk2 and Cdk4, and increased expression of p21. In contrast, over expression of H179Y-mutant p53 promoted G1 to S phase transition with enlarged cell size and increased cyclin A1 and Cdk4 expression in HELF cells. These results indicate that mutation at the p53 H179Y residue up-regulates cyclin A1 and Cdk4 expression, and promotes HELF cell proliferation.  相似文献   

19.
20.
Successful viral replication entails elimination or bypass of host antiviral mechanisms. Here, we show that shRNA-mediated knockdown of murine double minute (Mdm2) and its paralog Mdm4 enhanced the expression of early and late viral gene products during adenovirus (HAdV) infection. Remarkably, whereas the expression of HAdV genes was low in p53-deficient mouse embryonic fibroblasts (p53KO MEFs), the HAdV early gene products were efficiently expressed in Mdm2/p53 double-knockout (DKO) and Mdm4/p53 DKO MEFs, and viral capsid proteins were produced in Mdm2/p53 DKO MEFs. Thus, Mdm2 and Mdm4 seem to have potent antiviral property. In cells infected with wt HAdV or a mutant virus lacking the E1B-55K gene (dl1520), both Mdm2 and Mdm4 were rapidly depleted, whereas replication-deficient mutant viruses (Ad-GFP) or ΔpTP with deletions within the coding sequence of preterminal binding protein failed to induce their downregulation. Reduced expression of Mdm2 and Mdm4 was not due to general shutoff of host protein synthesis. Additionally, expression of a dominant-negative mutant of Cul5 did not affect Mdm2/Mdm4 downregulation. Thus, viral replication but not the presence of E1B-55K is required for Mdm2/Mdm4 degradation. Surprisingly, treatment of HAdV-infected cells with proteasome inhibitor MG132 only partially restored the protein levels of Mdm2 and Mdm4, suggesting that they may also be downregulated through an additional mechanism independent of proteasome. Interestingly, cyclin D1 and p21 appear to be downregulated similarly during HAdV infection. Collectively, our work provides the first biochemical evidence for antiviral function of Mdm2 and Mdm4 and that viruses employ efficient countermeasure to ensure viral replication.Key words: adenovirus (HAdV), antiviral mechanism, virus-host interaction, Mdm2, Mdm4, mouse embryonic fibroblast (MEF), DNA-damage response, cell cycle, p21, cyclin D1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号