首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conserved Lipoprotein-17 domain of membrane-associated protein Q9PRA0_UREPA from Ureaplasma parvum was selected for structure determination by the Northeast Structural Genomics Consortium, as part of the Protein Structure Initiative's program on structure-function analysis of protein domains from large domain sequence families lacking structural representatives. The 100-residue Lipoprotein-17 domain is a "domain of unknown function" (DUF) that is a member of Pfam protein family PF04200, a large domain family for which no members have characterized biochemical functions. The three-dimensional structure of the Lipoprotein-17 domain of protein Q9PRA0_UREPA was determined by both solution NMR and by X-ray crystallography at 2.5 ?. The two structures are in good agreement with each other. The domain structure features three α-helices, α1 through α3, and five β-strands. Strands β1/β2, β3/β4, β4/β5 are anti-parallel to each other. Strands β1and β2 are orthogonal to strands β3, β4, β5, while helix α3 is formed between the strands β3 and β4. One-turn helix α2 is formed between the strands β1 and β2, while helix α1 occurs in the N-terminal polypeptide segment. Searches of the Protein Data Bank do not identify any other protein with significant structural similarity to Lipoprotein-17 domain of Q9PRA0_UREPA, indicating that it is a novel protein fold.  相似文献   

2.
The human HSPC280 protein belongs to a new family of low molecular weight proteins, which is only present in eukaryotes, and is absent in fungi. The solution structure of HSPC280 was determined using multidimensional NMR spectroscopy. The overall structure consists of three α-helices and four antiparallel β-strands and has a winged helix-like fold. However, HEPC280 is not a typical DNA-binding winged helix protein in that it lacks DNA-binding activity. Unlike most winged-helix proteins, HSPC280 has an unusually long 13-residue (P62-V74) wing 1 loop connecting the β3 and β4 strands of the protein. Molecules of HSPC280 have a positively charged surface on one side and a negatively charged surface on the other side of the protein structure. Comparisons with the C-terminal 80-residue domain of proteins in the Abra family reveal a conserved hydrophobic groove in the HSPC280 family, which may allow HSPC280 to interact with other proteins.  相似文献   

3.
The ribosome consists of small and large subunits each composed of dozens of proteins and RNA molecules. However, the functions of many of the individual protomers within the ribosome are still unknown. In this article, we describe the solution NMR structure of the ribosomal protein RP-L35Ae from the archaeon Pyrococcus furiosus. RP-L35Ae is buried within the large subunit of the ribosome and belongs to Pfam protein domain family PF01247, which is highly conserved in eukaryotes, present in a few archaeal genomes, but absent in bacteria. The protein adopts a six-stranded anti-parallel β-barrel analogous to the "tRNA binding motif" fold. The structure of the P. furiosus RP-L35Ae presented in this article constitutes the first structural representative from this protein domain family.  相似文献   

4.
Human CA125, encoded by the MUC16 gene, is an ovarian cancer antigen widely used for a serum assay. Its extracellular region consists of tandem repeats of SEA domains. In this study we determined the three-dimensional structure of the SEA domain from the murine MUC16 homologue using multidimensional NMR spectroscopy. The domain forms a unique alpha/beta sandwich fold composed of two alpha helices and four antiparallel beta strands and has a characteristic turn named the TY-turn between alpha1 and alpha2. The internal mobility of the main chain is low throughout the domain. The residues that form the hydrophobic core and the TY-turn are fully conserved in all SEA domain sequences, indicating that the fold is common in the family. Interestingly, no other residues are conserved throughout the family. Thus, the sequence alignment of the SEA domain family was refined on the basis of the three-dimensional structure, which allowed us to classify the SEA domains into several subfamilies. The residues on the surface differ between these subfamilies, suggesting that each subfamily has a different function. In the MUC16 SEA domains, the conserved surface residues, Asn-10, Thr-12, Arg-63, Asp-75, Asp-112, Ser-115, and Phe-117, are clustered on the beta sheet surface, which may be functionally important. The putative epitope (residues 58-77) for anti-MUC16 antibodies is located around the beta2 and beta3 strands. On the other hand the tissue tumor marker MUC1 has a SEA domain belonging to another subfamily, and its GSVVV motif for proteolytic cleavage is located in the short loop connecting beta2 and beta3.  相似文献   

5.
EMSY is a recently discovered gene encoding a BRCA2-associated protein and is amplified in some sporadic breast and ovarian cancers. The EMSY sequence contains no known domain except for a conserved approximately 100 residue segment at the N terminus. This so-called ENT domain is unique in the human genome, although multiple copies are found in Arabidopsis proteins containing members of the Royal family of chromatin remodelling domains. Here, we report the crystal structure of the ENT domain of EMSY, consisting of a unique arrangement of five alpha-helices that fold into a helical bundle arrangement. The fold shares regions of structural homology with the DNA-binding domain of homeodomain proteins. The ENT domain forms a homodimer via the anti-parallel packing of the extended N-terminal alpha-helix of each molecule. It is stabilized mainly by hydrophobic residues at the dimer interface and has a dissociation constant in the low micromolar range. The dimerisation of EMSY mediated by the ENT domain could provide flexibility for it to bind two or more different substrates simultaneously.  相似文献   

6.
Around 80 enzymes are implicated in the generic starch and sucrose pathways. One of these enzymes is sucrose phosphorylase, which reversibly catalyzes the conversion of sucrose and orthophosphate to d-Fructose and alpha-d-glucose 1-phosphate. Here, we present the crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis (BiSP) refined at 1.77 A resolution. It represents the first 3D structure of a sucrose phosphorylase and is the first structure of a phosphate-dependent enzyme from the glycoside hydrolase family 13. The structure of BiSP is composed of the four domains A, B, B', and C. Domain A comprises the (beta/alpha)(8)-barrel common to family 13. The catalytic active-site residues (Asp192 and Glu232) are located at the tips of beta-sheets 4 and 5 in the (beta/alpha)(8)-barrel, as required for family 13 members. The topology of the B' domain disfavors oligosaccharide binding and reduces the size of the substrate access channel compared to other family 13 members, underlining the role of this domain in modulating the function of these enzymes. It is remarkable that the fold of the C domain is not observed in any other known hydrolases of family 13. BiSP was found as a homodimer in the crystal, and a dimer contact surface area of 960 A(2) per monomer was calculated. The majority of the interactions are confined to the two B domains, but interactions between the loop 8 regions of the two barrels are also observed. This results in a large cavity in the dimer, including the entrance to the two active sites.  相似文献   

7.
With the aim of elucidating the biological function of hypothetical proteins unique amongst the Actynomyces sub-group of bacteria, we have solved the crystal structure of the conserved hypothetical protein Rv1155 from Mycobacterium tuberculosis at 1.8 A resolution. Rv1155 is a homodimer both in the crystal structure and in solution and folds into two separate domains consisting of a six-stranded anti-parallel beta-barrel fold flanked by two alpha-helices and a helix-turn-helix domain. Both domains contribute to the formation of two deep clefts at the dimer interface. The overall fold of Rv1155 strikingly resembles that of flavin mononucleotide-binding protein and pyridoxamine 5'-phosphate oxydase, but the architecture of the putative binding pocket is markedly different, consistent with the lack of color of Rv1155 and its inability to bind FMN. Rv1155 thus appears to belong to a group of proteins with stringent conservation of the binding cleft, having evolved towards a new binding function.  相似文献   

8.
9.
The X-ray crystallographic structure of osmotically inducible Protein C from the thermophilic bacterium, Thermus thermophilus HB8, was solved to 1.6A using the multiple wavelength anomalous dispersion method and a selenomethionine incorporated protein (Se-MAD). The crystal space group was P1 with cell dimensions of a=37.58 A, b=40.95 A, c=48.14 A, alpha=76.9 degrees, beta=74.0 degrees and gamma=64.1 degrees. The two tightly interacting monomers in the asymmetric unit are related by a non-crystallographic 2-fold. The dimer structure is defined primarily by two very long anti-parallel, over-lapping alpha-helices at the core, with a further six-stranded anti-parallel beta-sheet on the outside of the structure. With respect to the beta-sheets, both A and B monomers contribute three strands each resulting in an intertwining of the structure. The active site consists of two cysteine residues from one monomer and an arginine and glutamic acid from the other. Enzymatic assays have revealed that T.thermophilus OsmC has a hydroperoxide peroxidase activity.  相似文献   

10.
Obtaining atomic resolution structural models of amyloid fibrils is currently impossible, yet crucial for our understanding of the amyloid mechanism. Different pathways in the transformation of a native globular domain to an amyloid fibril invariably involve domain destabilization. Hence, locating the unstable segments of a domain is important for understanding its amyloidogenic transformation and possibly control it. Since relative conservation is suggested to relate to local stability [H. Benyamini, K. Gunasekaran, H. Wolfson, R. Nussinov, Conservation and amyloid formation: a study of the gelsolin-like family, Proteins 51 (2003) 266–282. [24]], we performed an extensive, sequence and structure conservation analysis of the β2-microglobulin (β2-m) domain. Our dataset include 51 high resolution structures belonging to the “C1 set domain” family and 132 clustered PSI-BLAST search results. Segments of the β2-m domain corresponding to strands A (residues 12–18), D (45–55) and G (91–95) were found to be less conserved and stable, while the central strands B (residues 22–28), C (36–41), E (62–70) and F (78–83) were found conserved and stable. Our findings are supported by accumulating observations from various experimental methods, including urea denaturation, limited proteolysis, H/D exchange and structure determination by both NMR and X-ray crystallography. We used our conservation findings together with experimental literature information to suggest a structural model for the polymerized unit of β2-m. Pairwise protein docking and subsequent monomer stacking in the same manner suggest a fibril model consistent with the cross-β structure.  相似文献   

11.
MTH1859 from Methanobacterium thermoautotrophicum is a 77 residue protein representing a conserved family of functionally uncharacterized proteins. We solved the crystal structure of MTH1859 by single wavelength anomalous diffraction phasing using selenomethionine labeled protein. MTH1859 adopts a mainly anti-parallel all-beta-fold. The beta-sheet is heavily bent to form a U-structure that is closed through a loop. The monomer structure possesses similarities to the photoreaction center (PRC) domain fold, but the protein employs a unique oligomerization scheme. Two monomers of MTH1859 occupy the asymmetric unit and dimerize in a head-to-head fashion. Crystal packing interactions identify a second protein-protein interaction interface at the MTH1859 tails which can simultaneously bind two partner molecules. These interactions lead to the formation of a honeycomb structure and suggest that the family of MTH1859-like proteins might function as adapters for protein complex assembly.  相似文献   

12.
The mammalian COP9 signalosome is an eight-subunit (CSN1–CSN8) complex that plays essential roles in multiple cellular and physiological processes. CSN5 and CSN6 are the only two MPN (Mpr1-Pad1-N-terminal) domain-containing subunits in the complex. Unlike the CSN5 MPN domain, CSN6 lacks a metal-binding site and isopeptidase activity. Here, we report the crystal structure of the human CSN6 MPN domain. Each CSN6 monomer contains nine β sheets surrounded by three helices. Two forms of dimers are observed in the crystal structure. Interestingly, a domain swapping of β8 and β9 strands occurs between two neighboring monomers to complete a typical MPN fold. Analyses of the pseudo metal-binding motif in CSN6 suggest that the loss of two key histidine residues may contribute to the lack of catalytic activity in CSN6. Comparing the MPN domain of our CSN6 with that in the CSN complex shows that apart from the different β8–β9 conformation, they have minor conformational differences at two insertion regions (Ins-1 and Ins-2). Besides, the interacting mode of CSN6–CSN6 in our structure is distinct from that of CSN5–CSN6 in the CSN complex structure. Moreover, the functional implications for Ins-1 and Ins-2 are discussed.  相似文献   

13.
Buchko GW  Robinson H 《FEBS letters》2012,586(4):350-355
The crystal structure for cce_0566 (171 aa, 19.4 kDa), a DUF269 annotated protein from the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142, was determined to 1.60 Å resolution. Cce_0566 is a homodimer with each molecule composed of eight α-helices folded on one side of a three strand anti-parallel β-sheet. Hydrophobic interactions between the side chains of largely conserved residues on the surface of each β-sheet hold the dimer together. The fold observed for cce_0566 may be unique to proteins in the DUF269 family, hence, the protein may also have a function unique to nitrogen fixation. A solvent accessible cleft containing conserved charged residues near the dimer interface could represent the active site or ligand-binding surface for the protein’s biological function.Structured summary of protein interactionsDUF269 and DUF269 bind by x-ray crystallography (View interaction)  相似文献   

14.
Members of the LSm family of proteins share the Sm fold--a closed barrel comprising five anti-parallel beta strands with an alpha helix stacked on the top. The fold forms a subunit of hexameric or heptameric rings of approximately 7nm in diameter. Interactions between neighboring subunits center on an anti-parallel interaction of the fourth and fifth beta strands. In the lumen of the ring, the subunits have the same spacing as nucleotides in RNA, enabling the rings to bind to single-stranded RNA via a repeating motif. Eubacteria and archaea build homohexamers and homoheptamers, respectively, whereas eukaryotes use >18 LSm paralogs to build at least six different heteroheptameric rings. The four different rings in the nucleus that permanently bind small nuclear RNAs and function in pre-mRNA maturation are called Sm rings. The two different rings that transiently bind to RNAs and, thereby, assist in the degradation of mRNA in the cytoplasm and the maturation of a wide spectrum of RNAs in the nucleus are called LSm rings.  相似文献   

15.
Rv2118c belongs to the class of conserved hypothetical proteins from Mycobacterium tuberculosis H37Rv. The crystal structure of Rv2118c in complex with S-adenosyl-l-methionine (AdoMet) has been determined at 1.98 A resolution. The crystallographic asymmetric unit consists of a monomer, but symmetry-related subunits interact extensively, leading to a tetrameric structure. The structure of the monomer can be divided functionally into two domains: the larger catalytic C-terminal domain that binds the cofactor AdoMet and is involved in the transfer of methyl group from AdoMet to the substrate and a smaller N-terminal domain. The structure of the catalytic domain is very similar to that of other AdoMet-dependent methyltransferases. The N-terminal domain is primarily a beta-structure with a fold not found in other methyltransferases of known structure. Database searches reveal a conserved family of Rv2118c-like proteins from various organisms. Multiple sequence alignments show several regions of high sequence similarity (motifs) in this family of proteins. Structure analysis and homology to yeast Gcd14p suggest that Rv2118c could be an RNA methyltransferase, but further studies are required to establish its functional role conclusively. Copyright 12001 Academic Press.  相似文献   

16.
Porcine testicular carbonyl reductase (PTCR) belongs to the short chain dehydrogenases/reductases (SDR) superfamily and catalyzes the NADPH-dependent reduction of ketones on steroids and prostaglandins. The enzyme shares nearly 85% sequence identity with the NADPH-dependent human 15-hydroxyprostaglandin dehydrogenase/carbonyl reductase. The tertiary structure of the enzyme at 2.3 A reveals a fold characteristic of the SDR superfamily that uses a Tyr-Lys-Ser triad as catalytic residues, but exhibits neither the functional homotetramer nor the homodimer that distinguish all SDRs. It is the first known monomeric structure in the SDR superfamily. In PTCR, which is also active as a monomer, a 41-residue insertion immediately before the catalytic Tyr describes an all-helix subdomain that packs against interfacial helices, eliminating the four-helix bundle interface conserved in the superfamily. An additional anti-parallel strand in the PTCR structure also blocks the other strand-mediated interface. These novel structural features provide the basis for the scaffolding of one catalytic site within a single molecule of the enzyme.  相似文献   

17.
The type II secretion system of Gram-negative bacteria is important for bacterial pathogenesis and survival; it is composed of 12 mostly multimeric core proteins, which build a sophisticated secretion machine spanning both bacterial membranes. OutC is the core component of the inner membrane subcomplex thought to be involved in both recognition of substrate and interaction with the outer membrane secretin OutD. Here, we report the solution structure of the HR domain of OutC and explore its interaction with the secretin. The HR domain adopts a β-sandwich-like fold consisting of two β-sheets each composed of three anti-parallel β-strands. This structure is strikingly similar to the periplasmic region of PilP, an inner membrane lipoprotein from the type IV pilus system highlighting the common evolutionary origin of these two systems and showing that all the core components of the type II secretion system have a structural or sequence ortholog within the type IV pili system. The HR domain is shown to interact with the N0 domain of the secretin. The importance of this interaction is explored in the context of the functional secretion system.  相似文献   

18.
The solution structure of domain III from the New York West Nile virus strain 385-99 (WN-rED3) has been determined by NMR methods. The West Nile domain III structure is a beta-barrel structure formed from seven anti-parallel beta-strands in two beta-sheets. One anti-parallel beta-sheet consists of beta-strands beta1 (Phe(299)-Asp(307)), beta2 (Val(313)-Tyr(319)), beta4 (Arg(354)-Leu(355)), and beta5 (Lys(370)-Glu(376)) arranged so that beta2 is flanked on either side by beta1 and beta5. The short beta4 flanks the end of the remaining side of beta5. The remaining anti-parallel beta-sheet is formed from strands beta3 (Ile(340)-Val(343)), beta6 (Gly(380)-Arg(388)), and beta7 (Gln(391)-Lys(399)) arranged with beta6 at the center. Residues implicated in antigenic differences between different West Nile virus strains (and other flaviviruses) and neutralization are located on the outer surface of the protein. Characterization of the binding of monoclonal antibodies to WN-rED3 mutants, which were identified through neutralization escape experiments, indicate that antibody neutralization directly correlates with binding affinities. These studies provide an insight into theoretical virus-receptor interaction points, structure of immunogenic determinants, and potential targets for antiviral agents against West Nile virus and highlight differences between West Nile virus and other flavivirus structures that may represent critical determinants of virulence.  相似文献   

19.
Acylpeptide hydrolases (APH; also known as acylamino acid releasing enzyme) catalyze the removal of an N-acylated amino acid from blocked peptides. The crystal structure of an APH from the thermophilic archaeon Aeropyrum pernix K1 to 2.1 A resolution confirms it to be a member of the prolyl oligopeptidase family of serine proteases. The structure of apAPH is a symmetric homodimer with each subunit comprised of two domains. The N-terminal domain is a regular seven-bladed beta-propeller, while the C-terminal domain has a canonical alpha/beta hydrolase fold and includes the active site and a conserved Ser445-Asp524-His556 catalytic triad. The complex structure of apAPH with an organophosphorus substrate, p-nitrophenyl phosphate, has also been determined. The complex structure unambiguously maps out the substrate binding pocket and provides a basis for substrate recognition by apAPH. A conserved mechanism for protein degradation from archaea to mammals is suggested by the structural features of apAPH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号