首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SH3 domains are small, modular domains that are found in many proteins, especially signal transduction proteins such as tyrosine kinases. While much is known about the sequences and tertiary structures of SH3 domains, far less is known about their solution dynamics. A slow, partial unfolding event that occurs under physiological conditions was previously identified in the Hck SH3 domain using hydrogen exchange (HX) mass spectrometry (MS). To determine if this unfolding was unique to Hck SH3, HX MS was used to analyze 11 other SH3 domains: seven SH3 domains from Src-family kinases and five SH3 domains from various proteins. A wide variety of unfolding rates were found, with unfolding half-lives ranging from 1s to 1h. The Lyn and alpha-spectrin SH3 domains exhibited slow, partial unfolding in beta strands D and E and part of the RT-loop. Hck SH3 also underwent partial unfolding in the same region, implying that a unique feature in this area of the domains is responsible for the partial unfolding. Partial unfolding was, however, not a function of sequence conservation. Although the Fyn and Yes SH3 domains are very similar to Hck SH3 in sequence, they exhibited no evidence of partial unfolding. Overall, the results suggest that while the tertiary structure of SH3 domains is highly conserved, the dynamics of SH3 domains are variable.  相似文献   

2.
The ability of proteins to regulate their own enzymatic activity can be facilitated by changes in structure or protein dynamics in response to external regulators. Because many proteins contain SH2 and SH3 domains, transmission of information between the domains is a potential method of allosteric regulation. To determine if ligand binding to one modular domain may alter structural dynamics in an adjacent domain, allowing potential transmission of information through the protein, we used hydrogen exchange and mass spectrometry to measure changes in protein dynamics in the SH3 and SH2 domains of hematopoietic cell kinase (Hck). Ligand binding to either domain had little or no effect on hydrogen exchange in the adjacent domain, suggesting that changes in protein structure or dynamics are not a means of SH2/SH3 crosstalk. Furthermore, ligands of varying affinity covalently attached to SH3/SH2 altered dynamics only in the domain to which they bind. Such results demonstrate that ligand binding may not structurally alter adjacent SH3/SH2 domains and implies that other aspects of protein architecture contribute to the multiple levels of regulation in proteins containing SH3 and SH2 domains.  相似文献   

3.
Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a “conformational switch” that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that “fine-tune” their sensitivities to activation by SH3-based ligands.  相似文献   

4.
SH3 Domains provide interesting targets for investigations of protein structure and dynamics because of their compact size and importance for signal transduction. The present review summarizes recent research investigating SH3 domain structure and dynamics, the discovery of novel SH3 domains, the role of SH3 domains in disease, and progress in targeting SH3 domains for the development of novel therapeutics. Particular emphasis is placed on the unfolding/refolding characteristics of SH3 domains and the potential importance of these processes for regulation of signal transduction.  相似文献   

5.
The Src Homology 3 (SH3) domain is an important regulatory domain found in many signaling proteins. X‐ray crystallography and NMR structures of SH3 domains are generally conserved but other studies indicate that protein flexibility and dynamics are not. We previously reported that based on hydrogen exchange mass spectrometry (HX MS) studies, there is variable flexibility and dynamics among the SH3 domains of the Src‐family tyrosine kinases and related proteins. Here we have extended our studies to the SH3 domains of the Tec family tyrosine kinases (Itk, Btk, Tec, Txk, Bmx). The SH3 domains of members of this family augment the variety in dynamics observed in previous SH3 domains. Txk and Bmx SH3 were found to be highly dynamic in solution by HX MS and Bmx was unstructured by NMR. Itk and Btk SH3 underwent a clear EX1 cooperative unfolding event, which was localized using pepsin digestion and mass spectrometry after hydrogen exchange labeling. The unfolding was localized to peptide regions that had been previously identified in the Src‐family and related protein SH3 domains, yet the kinetics of unfolding were not. Sequence alignment does not provide an easy explanation for the observed dynamics behavior, yet the similarity of location of EX1 unfolding suggests that higher‐order structural properties may play a role. While the exact reason for such dynamics is not clear, such motions can be exploited in intra‐ and intermolecular binding assays of proteins containing the domains.  相似文献   

6.
Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that the NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears to be important for locking the SH3 and SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydrogen exchange (HX) and mass spectrometry (MS) were used to determine if the NCap contributes to intramolecular interactions involving the Abl SH3 domain. Under physiological conditions, the Abl SH3 domain underwent partial unfolding and its unfolding half-life was slowed during binding to the SH2 kinase linker, providing a unique assay for testing NCap-induced stabilization of the SH3 domain in various constructs. The results showed that the NCap stabilizes the dynamics of the SH3 domain in certain constructs but does not increase the relative affinity of the SH3 domain for the native SH2 kinase linker. The stabilization effect was absent in constructs of just the NCap and SH3 but was obvious when the SH2 domain and the SH2 kinase linker were present. These results suggest that interactions between the NCap and the SH3 domain can contribute to c-Abl stabilization in constructs that contain at least the SH2 domain, an effect that may partially compensate for the absence of the negative regulatory C-terminal tail found in the related Src family of kinases.  相似文献   

7.
The effect of C-terminal tyrosine phosphorylation on molecular motions in the Src kinases Hck and c-Src is investigated by molecular dynamics simulations. The SH2 and SH3 domains of the inactive kinases are seen to be tightly coupled by the connector between them, impeding activation. Dephosphorylation of the tail reduces the coupling between the SH2 and SH3 domains in the simulations, as does replacement of connector residues with glycine. A mutational analysis of c-Src expressed in Schizosaccharomyces pombe demonstrates that replacement of residues in the SH2-SH3 connector with glycine activates c-Src. The SH2-SH3 connector appears to be an inducible "snap lock" that clamps the SH2 and SH3 domains upon tail phosphorylation, but which allows flexibility when the tail is released.  相似文献   

8.
The Tip protein from Herpesvirus saimiri interacts with the SH3 domain from the Src-family kinase Lck via a proline-containing sequence termed LBD1. Src-family kinase SH3 domains related to Lck have been shown to be dynamic in solution and partially unfold under physiological conditions. The rate of such partial unfolding is reduced by viral protein binding. To determine if the Lck SH3 domain displayed similar behavior, the domain was investigated with hydrogen exchange and mass spectrometry. Lck SH3 was found to be highly dynamic in solution. While other SH3 domains require as much as 10,000 sec to become totally deuterated, Lck SH3 became almost completely labeled within 200 sec. A partial unfolding event involving 8-10 residues was observed with a half-life of approximately 10 sec. Tip LBD1 binding did not cause gross structural changes in Lck SH3 but globally stabilized the domain and reduced the rate of partial unfolding by a factor of five. The region of partial unfolding in Lck SH3 was found to be similar to that identified for other SH3 domains that partially unfold. Although the sequence conservation between Lck SH3 and other closely related SH3 domains is high, the dynamics do not appear to be conserved.  相似文献   

9.
The regulatory domains of Src family kinases SH3 and SH2 suppress Src activity when bound to the catalytic domain. Here, the isolated SH3-SH2 fragment from the Src family member Fyn (FynSH32) is studied by NMR. The properties of this fragment are expected to be similar to the domains in the active state, where they are dissociated from the catalytic domain. Crosscommunication between SH3 and SH2 of FynSH32, measured by chemical shift perturbation, was found to be small. Diffusion and alignment anisotropy measurements showed that SH3 and SH2 of peptide-bound FynSH32 are significantly coupled but still exhibit some interdomain flexibility. The observed average domain orientation indicates that a large SH3-SH2 domain closure is required to reach the inactive state. The implications of these results for Src regulation are discussed.  相似文献   

10.
Src family protein-tyrosine kinase activity is suppressed by two intramolecular interactions. These involve binding of the SH2 domain to the phosphorylated C-terminal tail and association of the SH3 domain with a polyproline type II helix formed by the SH2-kinase linker. Here we show that SH3-dependent activation of the Src family member Hck by HIV-1 Nef binding or by SH2-kinase linker mutation does not affect tail tyrosine phosphorylation in fibroblasts. Surprisingly, replacement of the wild type Hck tail with a high-affinity SH2 domain-binding sequence did not affect Hck activation or downstream signaling by these SH3-dependent mechanisms, suggesting that activation through SH3 occurs without SH2-tail dissociation. These results identify SH3-linker interaction as an independent mode of Hck kinase regulation in vivo and suggest that different mechanisms of Src kinase activation may generate distinct output signals because of differences in SH2 or SH3 domain accessibility.  相似文献   

11.
SH3 domains are a conserved feature of many nonreceptor protein tyrosine kinases, such as Hck, and often function in substrate recruitment and regulation of kinase activity. SH3 domains modulate kinase activity by binding to polyproline helices (PPII helix) either intramolecularly or in target proteins. The preponderance of bimolecular and distal interactions between SH3 domains and PPII helices led us to investigate whether proximal placement of a PPII helix relative to an SH3 domain would result in tight, intramolecular binding. We have fused the PPII helix region of human GAP to the C-terminus of Hck SH3 and expressed the recombinant fusion protein in Eschericheria coli. The fusion protein, SH3Hck: PPIIhGAP, folded spontaneously into a structure in which the PPII helix was bound intramolecularly to the hydrophobic crevice of the SH3 domain. The SH3Hck: PPIIhGAP fusion protein is useful for investigating SH3: PPII helix interactions, for studying concepts in protein folding and design, and may represent a protein structural motif that is widely distributed in nature.  相似文献   

12.
The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.  相似文献   

13.
Signal transduction events are often mediated by small protein domains such as SH2 (Src homology 2) domains that recognize phosphotyrosines (pY) and flanking sequences. In case of the SHP-2 receptor tyrosine phosphatase an N-terminal SH2 domain binds and inactivates the phosphatase (PTP) domain. The pY-peptide-binding site on the N-terminal SH2 domain does not overlap with the PTP binding region. Nevertheless, pY-peptide binding causes domain dissociation and phosphatase activation. Comparative multi-nanosecond molecular dynamics simulations on the N-SH2 domain in ligand-bound and free states have been performed to study the allosteric mechanism that leads to domain dissociation upon pY-peptide binding. Significant ligand-dependent differences in the conformational flexibility of regions that are involved in SH2-PTP domain association have been observed. The results support a mechanism of signal transduction where SH2-peptide binding modulates the domain flexibility and reduces its capacity to fit into the entrance of the PTP catalytic domain of SHP-2.  相似文献   

14.
In order to further elucidate structural and dynamic principles of protein self-organization and protein-ligand interactions, a new chimeric protein was designed and a genetically engineered construct was created. SH3-F2 amino acid sequence consists of polyproline ligand mgAPPLPPYSA, GG linker, and the sequence of spectrin SH3 domain circular permutant S19-P20s. Structural and dynamic properties of the protein were studied with high-resolution NMR. According to NMR data, the tertiary structure of the chimeric protein SH3-F2 has a topology that is typical for SH3 domains in the complex with the ligand forming polyproline type II helix located in the conservative region of binding in the orientation II. The polyproline ligand closely adjoins with the protein globule and is stabilized by hydrophobic interactions. However, the interactions of the ligand and the part of globule related to SH3 domain is not too large, because the analysis of protein dynamical characteristics points to the low amplitude, high-frequency ligand tumbling relative to the slow intramolecular motions of the main globule. The constructed chimera allows carrying out further structural and thermodynamic investigations of polyproline helix properties and its interaction with regulatory domains.  相似文献   

15.
Growth factor receptor-bound protein 2 (Grb2) is an extensively studied adaptor protein involved in cell signaling. Grb2 is a highly flexible protein composed of a single SH2 domain flanked by two SH3 domains. Here we report on the structural dynamic effects upon interaction of a phosphopeptide ligand derived from the recognition sequence of the Shc adaptor protein with (i) the isolated SH2 domain of Grb2 (Grb2 SH2) and (ii) the full-length Grb2 protein. From kinetic studies using surface plasmon resonance, it was deduced that a conformation change occurred in the SH2 protein as well as the full-length Grb2 after binding. Measurements of hydrogen/deuterium exchange (HDX) in the isolated SH2 domain and full-length Grb2 protein as monitored by electrospray mass spectrometry, showed that binding reduces the overall flexibility of the proteins, possibly via slightly different mechanisms for the single SH2 domain and the full-length Grb2 protein.  相似文献   

16.
We have used in vitro mutagenesis to examine in detail the roles of two modular protein domains, SH2 and SH3, in the regulation of the Abl tyrosine kinase. As previously shown, the SH3 domain suppresses an intrinsic transforming activity of the normally nontransforming c-Abl product in vivo. We show here that this inhibitory activity is extremely position sensitive, because mutants in which the position of the SH3 domain within the protein is subtly altered are fully transforming. In contrast to the case in vivo, the SH3 domain has no effect on the in vitro kinase activity of the purified protein. These results are consistent with a model in which the SH3 domain binds a cellular inhibitory factor, which in turn must physically interact with other parts of the kinase. Unlike the SH3 domain, the SH2 domain is required for transforming activity of activated Abl alleles. We demonstrate that SH2 domains from other proteins (Ras-GTPase-activating protein, Src, p85 phosphatidylinositol 3-kinase subunit, and Crk) can complement the absence of the Abl SH2 domain and that mutants with heterologous SH2 domains induce altered patterns of tyrosine-phosphorylated proteins in vivo. The positive function of the SH2 domain is relatively position independent, and the effect of multiple SH2 domains appears to be additive. These results suggest a novel mechanism for regulation of tyrosine kinases in which the SH2 domain binds to, and thereby enhances the phosphorylation of, a subset of proteins phosphorylated by the catalytic domain. Our data also suggest that the roles of the SH2 and SH3 domains in the regulation of Abl are different in several respects from the roles proposed for these domains in the closely related Src family of tyrosine kinases.  相似文献   

17.
Recent studies have shown that trans-phosphorylation of the Abl SH3 domain at Tyr89 by Src-family kinases is required for the full transforming activity of Bcr-Abl. Tyr89 localizes to a binding surface of the SH3 domain that engages the SH2-kinase linker in the crystal structure of the c-Abl core. Displacement of SH3 from the linker is likely to influence efficient downregulation of c-Abl. Hydrogen-deuterium exchange (HX) and mass spectrometry (MS) were used to investigate whether Tyr89 phosphorylation affects the ability of the SH3 domain to interact intramolecularly with the SH2-kinase linker in cis as well as other peptide ligands in trans. HX MS analysis of SH3 binding showed that when various Abl constructs were phosphorylated at Tyr89 by the Src-family kinase Hck, SH3 was unable to engage a high-affinity ligand in trans and that interaction with the linker in cis was reduced dramatically in a construct containing the SH3 and SH2 domains plus the linker. Phosphorylation of the Abl SH3 domain on Tyr89 also interfered with binding to the negative regulatory protein Abi-1 in trans. Site-directed mutagenesis of Tyr89 and Tyr245, another tyrosine phosphorylation site located in the linker that may also influence SH3 binding, implicated Tyr89 as the key residue necessary for disrupting regulation after phosphorylation. These results imply that phosphorylation at Tyr89 by Src-family kinases prevents engagement of the Abl SH3 domain with its intramolecular binding partner leading to enhanced Abl kinase activity and cellular signaling.  相似文献   

18.
Jung J  Byeon IJ  Ahn J  Gronenborn AM 《Proteins》2011,79(5):1609-1622
Nef is an HIV accessory protein that plays an important role in the progression of disease after viral infection. It interferes with numerous signaling pathways, one of which involves serine/threonine kinases. Here, we report the results of an NMR structural investigation on full-length Nef and its interaction with the entire regulatory domain of Hck (residues 72-256; Hck32L). A helical conformation was found at the N-terminus for residues 14-22, preceding the folded core domain. In contrast to the previously studied truncated Nef (Nef Δ1-39), the full-length Nef did not show any interactions of Trp57/Leu58 with the hydrophobic patch formed by helices α1 and α2. Upon Hck32L binding, the N-terminal anchor domain as well as the well-known SH3-binding site of Nef exhibited significant chemical shift changes. Upon Nef binding, resonance changes in the Hck spectrum were confined mostly to the SH3 domain, with additional effects seen for the connector between SH3 and SH2, the N-terminal region of SH2 and the linker region that contains the regulatory polyproline motif. The binding data suggest that in full-length Nef more than the core domain partakes in the interaction. The solution conformation of Hck32L was modeled using RDC data and compared with the crystal structure of the equivalent region in the inactivated, full-length Hck, revealing a notable difference in the relative orientations of the SH3 and SH2 domains. The RDC-based model combined with (15)N backbone dynamics data suggest that Hck32L adopts an open conformation without binding of the polyproline motif in the linker to the SH3 domain.  相似文献   

19.
The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.  相似文献   

20.
CD2 associated protein (CD2AP) is an adaptor protein that plays an important role in cell to cell union needed for the kidney function. It contains three N-terminal SH3 domains that are able to interact among others with CD2, ALIX, c-Cbl and Ubiquitin. To understand the role of the individual SH3 domains of this adaptor protein we have performed a complete structural, thermodynamic and dynamic characterization of the separate domains using NMR and DSC. The energetic contributions to the stability and the backbone dynamics have been related to the structural features of each domain using the structure-based FoldX algorithm. We have found that the N-terminal SH3 domain of both adaptor proteins CD2AP and CIN85 are the most stable SH3 domains that have been studied until now. This high stability is driven by a more extensive network of intra-molecular interactions. We believe that this increased stabilization of N-terminal SH3 domains in adaptor proteins is crucial to maintain the necessary conformation to establish the proper interactions critical for the recruitment of their natural targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号