首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complement receptor 2-deficient (Cr2(-/-)) mice are resistant to mesenteric ischemia/reperfusion (I/R) injury because they lack a component of the natural Ab repertoire. Neither the nature of the Abs that are involved in I/R injury nor the composition of the target Ag, to which recognition is lacking in Cr2(-/-) mice, is known. Because anti-phospholipid Abs have been shown to mediate fetal growth retardation and loss when injected into pregnant mice, we performed experiments to determine whether anti-phospholipid Abs can also reconstitute I/R injury and, therefore, represent members of the injury-inducing repertoire that is missing in Cr2(-/-) mice. We demonstrate that both murine and human monoclonal and polyclonal Abs against negatively charged phospholipids can reconstitute mesenteric I/R-induced intestinal and lung tissue damage in Cr2(-/-) mice. In addition, Abs against beta2 glycoprotein I restore local and remote tissue damage in the Cr2(-/-) mice. Unlike Cr2(-/-) mice, reconstitution of I/R tissue damage in the injury-resistant Rag-1(-/-) mouse required the infusion of both anti-beta2-glycoprotein I and anti-phospholipid Ab. We conclude that anti-phospholipid Abs can bind to tissues subjected to I/R insult and mediate tissue damage.  相似文献   

2.
Mutations of Fas (lpr) or Fas ligand (gld) cause a limited lupus-like syndrome in B6 mice by interfering with the deletion of autoreactive B and/or T cells. A more generalized lupus syndrome reminiscent of that of MRL mice can be induced in nonautoimmune strains by pristane, which causes a nonspecific inflammatory response in the peritoneal cavity. We hypothesized that, as in MRL mice, the lpr and gld mutations might accelerate lupus in pristane-treated mice. Pristane-treated B6 mice developed anti-nRNP/Sm, Su, and ribosomal P Abs, but little anti-ssDNA or chromatin. In contrast, B6/lpr and B6/gld mice spontaneously developed anti-ssDNA/chromatin Abs, but not anti-nRNP/Sm/Su/ribosomal P. Unexpectedly, B6/lpr and B6/gld mice were highly resistant to the induction by pristane of IgM anti-ssDNA (2 wk) and IgG anti-nRNP/Sm/Su/ribosomal P autoantibodies (6 mo), suggesting that intact Fas signaling is necessary. Interestingly, pristane did not enhance IgG chromatin Ab production in B6/lpr or B6/gld mice, suggesting that it did not influence the production of autoantibodies that develop spontaneously in the setting of Fas deficiency. Pristane treatment also decreased lymphoproliferation in B6/lpr mice. Increased production of IL-12 was associated consistently with the production of anti-nRNP/Sm/Su/ribosomal P as well as anti-DNA/chromatin. In contrast, production of anti-DNA/chromatin Abs was associated with IL-6 overproduction in pristane-treated mice, but not in lpr mice. The data strongly support the idea that different subsets of autoantibodies are regulated differentially by cytokine stimulation and/or Fas signaling.  相似文献   

3.
We generated MRL/lpr mice deficient in activation-induced deaminase (AID). Because AID is required for Ig hypermutation and class switch recombination, these mice lack hypermutated IgG Abs. Unlike their AID wild-type littermates, AID-deficient MRL/lpr mice not only lacked autoreactive IgG Abs but also experienced a dramatic increase in the levels of autoreactive IgM. This phenotype in AID-deficient mice translated into a significant reduction in glomerulonephritis, minimal mononuclear cell infiltration in the kidney, and a dramatic increase in survival to levels comparable to those previously reported for MRL/lpr mice completely lacking B cells and well below those of mice lacking secreted Abs. Therefore, this study wherein littermates with either high levels of autoreactive IgM or autoreactive IgG were directly examined proves that autoreactive IgM Abs alone are not sufficient to promote kidney disease in MRL/lpr mice. In addition, the substantial decrease in mortality combined with a dramatic increase in autoreactive IgM Abs in AID-deficient MRL/lpr mice suggest that autoreactive IgM Abs might not only fail to promote nephritis but may also provide a protective role in MRL/lpr mice. This novel mouse model containing high levels of autoreactive, unmutated IgM Abs will help delineate the contribution of autoreactive IgM to autoimmunity.  相似文献   

4.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by immune abnormalities leading to multi-organ damage. The activation of autoreactive B cell differentiation will lead to the production of pathogenic autoantibodies, contributing to the development of SLE. However, the effects of Ophiopogonin D (OP-D) on B cell activation and autoantibody production as well as renal injury in the pathogenesis of SLE remain unclear. MRL/lpr mice, one of the most commonly used animal models of SLE, were intragastrically administered with 5 mg/kg/d OP-D at 17 weeks of age for 3 weeks. The survival rates of mice in each group were monitored for 6 weeks until 23 weeks of age. Proteinuria and serum creatinine levels were measured. Serum levels of immunoglobulin (Ig)G, IgM, and anti-dsDNA autoantibodies were detected by enzyme-linked immunosorbent assay. Numbers of CD19+ B cells in the blood, spleen and bone marrow and numbers of splenic germinal center (GC) B cells were calculated by using flow cytometry. OP-D treatment prolonged survival in MRL/lpr mice. OP-D treatment reduced proteinuria and serum creatinine levels as well as mitigated renal pathological alternation in MRL/lpr mice. Furthermore, serum levels of IgG, IgM, and anti-dsDNA autoantibodies were reduced by OP-D treatment. OP-D lessened not only CD19+ B cells in the spleen and bone marrow but also plasma cells that secreted anti-dsDNA autoantibodies, IgG and IgM in the spleen and bone marrow. OP-D ameliorated the progression of SLE by inhibiting the secretion of autoantibodies though reducing B cell numbers.  相似文献   

5.
We previously described a renal protective effect of factor B deficiency in MRL/lpr mice. Factor B is in the MHC cluster; thus, the deficient mice were H2b, the haplotype on which the knockout was derived, whereas the wild-type littermates were H2k, the H2 of MRL/lpr mice. To determine which protective effects were due to H2 vs factor B deficiency, we derived H2b congenic MRL/lpr mice from the 129/Sv (H2b) strain. Autoantibody profiling using autoantigen microarrays revealed that serum anti-Smith and anti-small nuclear ribonucleoprotein complex autoantibodies, while present in the majority of H2k/k MRL/lpr mice, were absent in the H2b/b MRL/lpr mice. Surprisingly, 70% of MRL/lpr H2b/b mice were found to be serum IgG3 deficient (with few to no IgG3-producing B cells). In addition, H2b/b IgG3-deficient MRL/lpr mice had significantly less proteinuria, decreased glomerular immune complex deposition, and absence of glomerular subepithelial deposits compared with MRL/lpr mice of any H2 type with detectable serum IgG3. Despite these differences, total histopathologic renal scores and survival were similar among the groups. These results indicate that genes encoded within or closely linked to the MHC region regulate autoantigen selection and isotype switching to IgG3 but have minimal effect on end-organ damage or survival in MRL/lpr mice.  相似文献   

6.
The systemic lupus erythematosus-like syndrome in MRL/lpr mice involves high-titered IgG autoantibodies, particularly antinuclear Abs that target histones, DNA, and RNA particles. Although T cell help is required for the generation of antinuclear Abs, the epitopes recognized by such helper T cells are unknown. To address this question, we isolated and sequenced self peptides bound by MHC class II molecules from MRL/lpr mice. We identified a number of peptides that are not seen in similar preparations from nonautoimmune C3H animals. The "abnormal" peptide donors include histone, a protein component of a small nuclear ribonucleoprotein, ribosomal proteins, and RNA processing enzymes. We postulate that the peptides from these donors are T cell epitopes required for the generation of the most frequent antinuclear Abs specificities seen in MRL/lpr mice.  相似文献   

7.
Type I IFN protects against murine lupus   总被引:1,自引:0,他引:1  
Both the type I (IFN-alpha beta) and type II (IFN-gamma) IFNs have been heavily implicated in the pathogenesis of systemic lupus erythematosus. To test the relative roles of these systems, congenic lupus-prone MRL/CD95(lpr/lpr) (MRL/lpr) mice lacking the type I IFN receptor (IFN-RI), type II IFN receptor (IFN-RII), or both, were derived. As expected, deficiency for IFN-RII protected MRL/lpr mice from the development of significant autoimmune-associated lymphadenopathy, autoantibodies, and renal disease. However, deficiency for the IFN-RI surprisingly worsened lymphoproliferation, autoantibody production, and end organ disease; animals doubly deficient for IFN-RI and IFN-RII developed an autoimmune phenotype intermediate between wild-type and IFN-RII-deficient animals, all correlating with an ability of type I IFN to suppress MRL B cell activation. Thus, type I IFNs protect against both the humoral and end organ autoimmune syndrome of MRL/lpr mice, independent of IFN-gamma. These findings warrant caution in the use of type I IFN antagonists in the treatment of autoimmune diseases and suggest further investigation into the interplay between the types I and II IFNs during the ontogeny of pathogenic autoantibodies.  相似文献   

8.
Abs to DNA and nucleoproteins are expressed in systemic autoimmune diseases, whereas B cells producing such Abs are edited, deleted, or inactivated in healthy individuals. Why autoimmune individuals fail to regulate is not well understood. In this study, we investigate the sources of anti-dsDNA B cells in autoimmune transgenic MRL-lpr/lpr mice. These mice are particularly susceptible to lupus because they carry a site-directed transgene, H76R that codes for an anti-DNA H chain. Over 90% of the B cells are eliminated in the bone marrow of these mice, and the few surviving B cells are associated with one of two Vkappa editors, Vkappa38c and Vkappa21D. Thus, it appears that negative selection by deletion and editing are intact in MRL-lpr/lpr mice. However, a population of splenic B cells in the H76R MRL-lpr/lpr mice produces IgG anti-nuclear Abs, and these mice have severe autoimmune organ damage. These IgG Abs are not associated with editors but instead use a unique Vkappa gene, Vkappa23. The H76R/Vkappa23 combination has a relatively high affinity for dsDNA and an anti-nuclear Ab pattern characteristic of lupus. Therefore, this Vkappa gene may confer a selective advantage to anti-DNA Abs in diseased mice.  相似文献   

9.
The role of DNA as the target for pathogenic lupus autoantibodies in systemic lupus erythematosus is equivocal and renal damage may be due to cross-reactivity of lupus Abs with glomerular components. We have previously shown that lupus autoantibodies bind to the laminin component of the extracellular matrix. In the present work, we have analyzed the fine specificity of the interaction of pathogenic murine lupus autoantibodies with this molecule and the effect of inhibiting their binding to laminin during the course of the disease. We have found that pathogenic murine lupus autoantibodies react with a 21-mer peptide located in the globular part of the alpha-chain of laminin. Immunization of young lupus-prone mice with this peptide accelerated renal disease. Analysis of transgenic, congenic, and RAG-1(-/-) mice confirmed the importance of this epitope in the pathogenesis of lupus renal disease. We have synthesized a panel of peptides that cross-react with the anti-laminin Abs and have found that the binding of lupus autoantibodies to the extracellular matrix could be inhibited in vitro by some of these competitive peptides. Treatment of MRL/lpr/lpr mice with these peptides prevented Ab deposition in the kidneys, ameliorated renal disease, and prolonged survival of the peptide-treated mice. We suggest that laminin components can serve as the target for lupus Abs. The interaction with these Ags can explain both the tissue distribution and the immunopathological findings in lupus. Moreover, inhibition of autoantibody binding to the extracellular matrix can lead to suppression of disease.  相似文献   

10.
Intestinal ischemia-reperfusion (IR)-induced damage requires complement receptor 2 (CR2) for generation of the appropriate natural Ab repertoire. Pathogenic Abs recognize neoantigens on the ischemic tissue, activate complement, and induce intestinal damage. Because C3 cleavage products act as ligands for CR2, we hypothesized that CR2(hi) marginal zone B cells (MZBs) require C3 for generation of the pathogenic Abs. To explore the ability of splenic CR2(+) B cells to generate the damaging Ab repertoire, we adoptively transferred either MZBs or follicular B cells (FOBs) from C57BL/6 or Cr2(-/-) mice into Rag-1(-/-) mice. Adoptive transfer of wild type CR2(hi) MZBs but not CR2(lo) FOBs induced significant damage, C3 deposition, and inflammation in response to IR. In contrast, similarly treated Rag-1(-/-) mice reconstituted with either Cr2(-/-) MZB/B1 B cells (B1Bs) or FOBs lacked significant intestinal damage and displayed limited complement activation. To determine whether C3 cleavage products are critical in CR2-dependent Ab production, we evaluated the ability of the natural Ab repertoire of C3(-/-) mice to induce damage in response to IR. Infusion of C3(-/-) serum into Cr2(-/-) mice restored IR-induced tissue damage. Furthermore, Rag-1(-/-) mice sustained significant damage after infusion of Abs from C3(-/-) but not Cr2(-/-) mice. Finally, adoptive transfer of MZBs from C3(-/-) mice into Rag-1(-/-) mice resulted in significant tissue damage and inflammation. These data indicate that CR2 expression on MZBs is sufficient to induce the appropriate Abs required for IR-induced tissue damage and that C3 is not critical for generation of the pathogenic Abs.  相似文献   

11.
This study demonstrates cell lineage-specific resistance to engraftment involving lymphocytes but not erythrocytes by the spontaneously autoimmune MRL/lpr mouse strain. In these experiments, MRL/lpr mice were lethally irradiated (1000 R) and reconstituted with normal A-Thy bone marrow stem cells. Periodic analysis from 6 wk to 6 mo posttransplantation demonstrated that the T and B cells of these chimeras were derived from the MRL/lpr host. However, in the same A-Thy----MRL/lpr chimeras, erythrocyte repopulation was completely of A-Thy donor origin. In contrast, control MRL/+ (congenic mice that differ from MRL/lpr at the lpr locus and do not develop accelerated autoimmune disease) recipients were successfully repopulated in both the lymphoid and erythroid compartments by the A-Thy donor cells.  相似文献   

12.
Increased Fli-1 mRNA is present in PBLs from systemic lupus erythematosus patients, and transgenic overexpression of Fli-1 in normal mice leads to a lupus-like disease. We report in this study that MRL/lpr mice, an animal model of systemic lupus erythematosus, have increased splenic expression of Fli-1 protein compared with BALB/c mice. Using mice with targeted gene disruption, we examined the effect of reduced Fli-1 expression on disease development in MRL/lpr mice. Complete knockout of Fli-1 is lethal in utero. Fli-1 protein expression in heterozygous MRL/lpr (Fli-1(+/-)) mice was reduced by 50% compared with wild-type MRL/lpr (Fli-1(+/+)) mice. Fli-1(+/-) MRL/lpr mice had significantly decreased serum levels of total IgG and anti-dsDNA Abs as disease progressed. Fli-1(+/-) MRL/lpr mice had significantly increased splenic CD8(+) and naive T cells compared with Fli-1(+/+) MRL/lpr mice. Both in vivo and in vitro production of MCP-1 were significantly decreased in Fli-1(+/-) MRL/lpr mice. The Fli-1(+/-) mice had markedly decreased proteinuria and significantly lower pathologic renal scores. At 48 wk of age, survival was significantly increased in the Fli-1(+/-) MRL/lpr mice, as 100% of Fli-1(+/-) MRL/lpr mice were alive, in contrast to only 27% of Fli-1(+/+) mice. These findings indicate that Fli-1 expression is important in lupus-like disease development, and that modulation of Fli-1 expression profoundly decreases renal disease and improves survival in MRL/lpr mice.  相似文献   

13.
Systemic lupus erythematosus (SLE) is a serious systemic autoimmune disease of unknown etiology. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is operative in innate and adaptive immunity and important in immune-mediated diseases such as rheumatoid arthritis and atherosclerosis. The functional relevance of MIF in systemic autoimmune diseases such as SLE is unknown. Using the lupus-prone MRL/lpr mice, we aim to examine the expression and function of MIF in this murine model of systemic autoimmune disease. These experiments revealed that renal MIF expression was significantly higher in MRL/lpr mice compared with nondiseased control mice (MRL/MpJ), and MIF was also markedly up-regulated in skin lesions of MRL/lpr mice. To examine the effect of MIF on development of systemic autoimmune disease, we generated MRL/lpr mice with a targeted disruption of the MIF gene (MIF(-/-)MRL/lpr), and compared their disease manifestations to MIF(+/+)MRL/lpr littermates. MIF(-/-)MRL/lpr mice exhibited significantly prolonged survival, and reduced renal and skin manifestations of SLE. These effects occurred in the absence of major changes in T and B cell markers or alterations in autoantibody production. In contrast, renal macrophage recruitment and glomerular injury were significantly reduced in MIF(-/-)MRL/lpr mice, and this was associated with reduction in the monocyte chemokine MCP-1. Taken together, these data suggest MIF as a critical effector of organ injury in SLE.  相似文献   

14.
IL-10 regulates murine lupus   总被引:13,自引:0,他引:13  
MRL/MpJ-Tnfrsf6(lpr) (MRL/MpJ-Fas(lpr); MRL-Fas(lpr)) mice develop a spontaneous lupus syndrome closely resembling human systemic lupus erythematosus. To define the role of IL-10 in the regulation of murine lupus, IL-10 gene-deficient (IL-10(-/-)) MRL-Fas(lpr) (MRL-Fas(lpr) IL-10(-/-)) mice were generated and their disease phenotype was compared with littermates with one or two copies of an intact IL-10 locus (MRL-Fas(lpr) IL-10(+/-) and MRL-Fas(lpr) IL-10(+/+) mice, respectively). MRL-Fas(lpr) IL-10(-/-) mice developed severe lupus, with earlier appearance of skin lesions, increased lymphadenopathy, more severe glomerulonephritis, and higher mortality than their IL-10-intact littermate controls. The increased severity of lupus in MRL-Fas(lpr) IL-10(-/-) mice was closely associated with enhanced IFN-gamma production by both CD4(+) and CD8(+) cells and increased serum concentration of IgG2a anti-dsDNA autoantibodies. The protective effect of IL-10 in this lupus model was further supported by the observation that administration of rIL-10 reduced IgG2a anti-dsDNA autoantibody production in wild-type MRL-Fas(lpr) animals. In summary, our results provide evidence that IL-10 can down-modulate murine lupus through inhibition of pathogenic Th1 cytokine responses. Modulation of the level of IL-10 may be of potential therapeutic benefit for human lupus.  相似文献   

15.
《Free radical research》2013,47(12):1472-1481
Even though reactive oxygen species (ROS) have been implicated in SLE pathogenesis, the contributory role of ROS, especially the consequences of oxidative modification of proteins by lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) in eliciting an autoimmune response and disease pathogenesis remains largely unexplored. MRL/lpr mice, a widely used model for SLE, spontaneously develop a condition similar to human SLE, whereas MRL+/+ mice with the same MRL background, show much slower onset of SLE. To assess if the differences in the onset of SLE in the two substrains could partly be due to differential expression of LPDAs and to provide evidence for the role of LPDA-modified proteins in SLE pathogenesis, we determined the serum levels of MDA-/HNE-protein adducts, anti-MDA-/HNE-protein adduct antibodies, MDA-/HNE-protein adduct specific immune complexes, and various autoantibodies in 6-, 12- and 18-week old mice of both substrains. The results show age-related increases in the formation of MDA-/HNE-protein adducts, their corresponding antibodies and MDA-/HNE-specific immune complexes, but MRL/lpr mice showed greater and more accelerated response. Interestingly, a highly positive correlation between increased anti-MDA-/HNE-protein adduct antibodies and autoantibodies was observed. More importantly, we further observed that HNE-MSA caused significant inhibition in antinuclear antibodies (ANA) binding to nuclear antigens. These findings suggest that LPDA-modified proteins could be important sources of autoantibodies and CICs in these mice, and thus contribute to autoimmune disease pathogenesis. The observed differential responses to LPDAs in MRL/lpr and MRL+/+ mice may, in part, be responsible for accelerated and delayed onset of the disease, respectively.  相似文献   

16.
MRL/lpr mice develop a spontaneous systemic lupus erythematosus-like autoimmune syndrome due to a dysfunctional Fas receptor, with contributions from other less well-defined genetic loci. The removal of B cells by genetic manipulation not only prevents autoantibody formation, but it also results in substantially reduced T cell activation and kidney inflammation. To determine whether B cell depletion by administration of Abs is effective in lupus mice with an intact immune system and established disease, we screened several B cell-specific mAbs and found that a combination of anti-CD79alpha and anti-CD79beta Abs was most effective at depleting B cells in vivo. Anti-CD79 therapy started at 4-5 mo of age in MRL/lpr mice significantly decreased B cells (B220(+)CD19(+)) in peripheral blood, bone marrow, and spleens. Treated mice also had a significant increase in the number of both double-negative T cells and naive CD4(+) T cells, and a decreased relative abundance of CD4(+) memory cells. Serum anti-chromatin IgG levels were significantly decreased compared with controls, whereas serum anti-dsDNA IgG, total IgG, or total IgM were unaffected. Overall, survival was improved with lower mean skin scores and significantly fewer focal inflammatory infiltrates in submandibular salivary glands and kidneys. Anti-CD79 mAbs show promise as a potential treatment for systemic lupus erythematosus and as a model for B cell depletion in vivo.  相似文献   

17.
Human TNF-alpha transgenic (hTNFtg) mice develop erosive arthritis closely resembling rheumatoid arthritis (RA). To investigate mechanisms leading to pathological autoimmune reactions in RA, we examined hTNFtg animals for the presence of RA-associated autoantibodies including Abs to citrullinated epitopes (anti-cyclic citrullinated peptide), heterogeneous nuclear ribonucleoprotein (hnRNP)-A2 (anti-RA33), and heat shock proteins (hsp) (anti-hsp). Although IgM anti-hsp Abs were detected in 40% of hTNFtg and control mice, IgG anti-hsp Abs were rarely seen, and anti-cyclic citrullinated peptide Abs were not seen at all. In contrast, >50% of hTNFtg mice showed IgG anti-RA33 autoantibodies, which became detectable shortly after the onset of arthritis. These Abs were predominantly directed to a short epitope, which was identical with an epitope previously described in MRL/lpr mice. Incidence of anti-RA33 was significantly decreased in mice treated with the osteoclast inhibitor osteoprotegerin and also in c-fos-deficient mice lacking osteoclasts. Pronounced expression of hnRNP-A2 and a smaller splice variant was seen in joints of hTNFtg mice, whereas expression was low in control animals. Although the closely related hnRNP-A1 was also overexpressed, autoantibodies to this protein were infrequently detected. Because expression of hnRNP-A2 in thymus, spleen, brain, and lung was similar in hTNFtg and control mice, aberrant expression appeared to be restricted to the inflamed joint. Finally, immunization of hTNFtg mice with recombinant hnRNP-A2 or a peptide harboring the major B cell epitope aggravated arthritis. These findings suggest that overproduction of TNF-alpha leads to aberrant expression of hnRNP-A2 in the rheumatoid joint and subsequently to autoimmune reactions, which may enhance the inflammatory and destructive process.  相似文献   

18.
MRL/lpr and BXSB mice were treated weekly or biweekly with cholera toxin (CT) in intravenous dose of 2 micrograms/mouse. CT treatment notably alleviated proteinuria in MRL/lpr mice, but did not influence the course of lupus nephritis in BXSB male mice. Flow cytometric analysis showed that anomalous B220+ T cells in spleen and thymus were reduced in CT-treated MRL/lpr mice while no significant change in lymphocyte populations was induced in BXSB male mice by this treatment. The suppressive effect of CT treatment on Con A response and the augmentative action on LPS response were observed in MRL/lpr mice. The latter may reflect increased B cells in relative number in the peripheral lymphoid organs. Mitogenic responses in CT-treated BXSB male mice remained unchanged in comparison with those of untreated group. Increased production of IL-6 by spleen cells was demonstrated in MRL/lpr mice treated with CT while in BXSB mice the level of IL-6 was not changed by the treatment with CT. Production of IFN gamma was suppressed by CT treatment in both strains of mice. This may be attributed to the inhibitory effect of CT on IFN gamma-producing Th1 cells as reported previously (Munoz et al, J. Exp. Med. 172: 95-103, 1990). However, CT treatment did not inhibit anti-DNA antibody production in BXSB mice, whereas the autoantibodies were markedly decreased in MRL/lpr mice treated with CT.  相似文献   

19.
In systemic lupus erythematosus, the renal deposition of complement-containing immune complexes initiates an inflammatory cascade resulting in glomerulonephritis. Activation of the classical complement pathway with deposition of C3 is pathogenic in lupus nephritis. Although the alternative complement pathway is activated in lupus nephritis, its role in disease pathogenesis is unknown. To determine the role of the alternative pathway in lupus nephritis, complement factor B-deficient mice were backcrossed to MRL/lpr mice. MRL/lpr mice develop a spontaneous lupus-like disease characterized by immune complex glomerulonephritis. We derived complement factor B wild-type (B+/+), homozygous knockout (B-/-), and heterozygous (B+/-) MRL/lpr mice. Compared with B+/- or B+/+ mice, MRL/lpr B-/- mice developed significantly less proteinuria, less glomerular IgG deposition, and decreased renal scores as well as lower IgG3 cryoglobulin production and vasculitis. Serum C3 levels were normal in the B-/- mice compared with significantly decreased levels in the other two groups. These results suggest that: 1) factor B plays an important role in the pathogenesis of glomerulonephritis and vasculitis in MRL/lpr mice; and 2) activation of the alternative pathway, either by the amplification loop or by IgA immune complexes, has a prominent effect on serum C3 levels in this lupus model.  相似文献   

20.
Susceptibility to severe lupus in MRL-Fas(lpr) mice requires not only the lpr mutation but also other predisposing genes. Using (MRL-Fas(lpr) x B6-Fas(lpr))F2 (where B6 represents C57BL/6) intercrosses that utilize the highly susceptible MRL and poorly susceptible B6 backgrounds, we previously mapped CFA-enhanced systemic lupus-like autoimmunity to four loci, named Lmb1-4, on chromosomes 4, 5, 7, and 10. In the current study, we generated and analyzed reciprocal interval congenic mice for susceptibility to CFA-enhanced autoimmunity at all four Lmb loci. Although all loci had at least a slight effect on lymphoproliferation, only Lmb3 demonstrated a major effect on lymphoproliferation and anti-chromatin Ab levels. Further characterization of Lmb3, primarily by comparing MRL-Fas(lpr) with MRL.B6-Lmb3 Fas(lpr) congenic mice, revealed that it also played a significant role in spontaneous lupus, modifying lymphoproliferation, IgG and autoantibody levels, kidney disease, and survival. The less susceptible B6 Lmb3 locus was associated with a marked reduction in numbers of CD4(+) and double-negative (CD4(-)CD8(-)) T cells, particularly in lymph nodes, as well as reduced T cell proliferation and enhanced T cell apoptosis, both in vivo and in vitro. IFN-gamma-producing CD4(+) T cells were also reduced in MRL.B6-Lmb3 Fas(lpr) mice. Further mapping using subinterval congenic mice placed Lmb3 in the telomeric portion of chromosome 7. Thus, Lmb3, primarily through its effects on CD4(+) and double-negative T cells, appears to be a highly penetrant lupus-modifying locus. Identification of the underlying genetic alteration responsible for this quantitative trait locus should provide new insights into lupus-modifying genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号