首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flaveria bidentis, a C4 dicot, was transformed with sorghum (a monocot) cDNA clones encoding NADP-malate dehydrogenase (NADP-MDH; EC 1.1.1.82) driven by the cauliflower mosaic virus 35S promoter. Although these constructs were designed for over-expression, many transformants contained between 5 and 50% of normal NADP-MDH activity, presumably by cosense suppression of the native gene. The activities of a range of other photosynthetic enzymes were unaffected. Rates of photosynthesis in plants with less than about 10% of normal activity were reduced at high light and at high [CO2], but were unaffected at low light or at [CO2] below about 150 [mu]L L-1. The large decrease in maximum activity of NADP-MDH was accompanied by an increase in the activation state of the enzyme. However, the activation state was unaffected in plants with 50% of normal activity. Metabolic flux control analysis of plants with a range of activities demonstrates that this enzyme is not important in regulating the steady-state flux through C4 photosynthesis in F. bidentis. Cosense suppression of gene expression was similarly effective in both the mesophyll and bundle-sheath cells. Photosynthesis of plants with very low activity of NADP-MDH in the bundle-sheath cells was only slightly inhibited, suggesting that the presence of the enzyme in this compartment is not essential for supporting maximum rates of photosynthesis.  相似文献   

2.
Purified ATPsynthase of bovine heart mitochondria has been analyzed for its mobility and reactivity of oligomycin-sensitive sulfhydryl regions in presence of the substrate ADP and oligomycin. Labeling of thiol groups at the hydrophobic F_0 region of the ATPsynthase was increased in the enzyme initially treated with SDS, N-ethylmaleimide and dithiothreitol (modified enzyme). After dialysis or gel permeation the ATPsynthase was treated with [14C] alpha lipoic acid at a molar ratio of 35-85/1 (lipoic acid/ATPsynthase) corresponding to 4-8.6 nmol/mg protein. Under these conditions, ATPase activity of the native enzyme was significantly decreased. After preincubation with ADP, PAGE of the native, [14C] labeled enzyme revealed an increase of radioactivity at a region of 25 kDa deduced to Cys 197 of subunit b. In the modified enzyme the increase in radioactivity was found at 10 kDa. In this context, the sequence Lys-Cys-Ile around Cys 197 of subunit b suggests excessive reactivity of this thiol, as well as ready reversibility by -SH-S-S- interchange. Therefore, previously observed reaction by thiol reagents and antioxidants from outside the mitochondrion can be interpreted with Cys 197 of F0 b. It accounts for sulfhydryl unmasked by binding of ADP at F1.  相似文献   

3.
The activity of chloroplast NADP-malate dehydrogenase (NADP-MDH; EC 1.1.1.82) in both C3 and C4 plants is regulated by light intensity. In darkness, the activity of the enzyme can be less than 1% of the maximal activity found at high light intensities. The extent of activation in the light is dynamic, responding rapidly to changes in light intensity and adapting to changes in photosynthetic rate. Enzyme activation is caused by thioredoxin-catalyzed reduction of two regulatory disulfide bonds, while inactivation is accomplished by thioredoxin-catalyzed re-oxidation. In the case of NADP-MDH, the coenzyme substrates NADP+ and NADPH modify the rate of this interconversion and seem to be important to the extent of activation in vivo. The recent determination of the X-ray structure of the oxidized, dark form of NADP-MDH from the C4 plants Flaveria bidentis and Sorghum shows how oxidation of a disulfide bond can inactivate the enzyme. This review discusses the various structural features of NADP-MDH that seem to be responsible for the regulatory properties of the enzyme and emphasizes that large changes of activity can be accomplished by multiple, small, reinforcing changes rather than a single large change in a signal molecule concentration.  相似文献   

4.
The activity and extent of light activation of three photosynthetic enzymes, pyruvate,Pi dikinase, NADP-malate dehydrogenase (NADP-MDH), and fructose 1,6-bisphosphatase (FBPase), were examined in maize (Zea mays var Royal Crest) leaves relative to the rate of photosynthesis during induction and under varying light intensities. There was a strong light activation of NADP-MDH and pyruvate,Pi dikinase, and light also activated FBPase 2- to 4-fold. During the induction period for whole leaf photosynthesis at 30°C under high light, the time required to reach half-maximum activation for all three enzymes was only 1 minute or less. After 2.5 minutes of illumination the enzymes were fully activated, while the photosynthetic rate was only at half-maximum activity, indicating that factors other than enzyme activation limit photosynthesis during the induction period in C4 plants.

Under steady state conditions, the light intensity required to reach half-maximum activation of the three enzymes was similar (300-400 microEinsteins per square meter per second), while the light intensity required for half-maximum rates of photosynthesis was about 550 microEinsteins per square meter per second. The light activated levels of NADP-MDH and FBPase were well in excess of the in vivo activities which would be required during photosynthesis, while maximum activities of pyruvate,Pi dikinase were generally just sufficient to accommodate photosynthesis, suggesting the latter may be a rate limiting enzyme.

There was a large (5-fold) light activation of FBPase in isolated bundle sheath strands of maize, whereas there was little light activation of the enzyme in isolated mesophyll protoplasts. In mesophyll protoplasts the enzyme was largely located in the cytoplasm, although there was a low amount of light-activated enzyme in the mesophyll chloroplasts. The results suggest the chloroplastic FBPase in maize is primarily located in the bundle sheath cells.

  相似文献   

5.
A full-length cDNA encoding light-activated chloroplast NADP-malate dehydrogenase (NADP-MDH) (EC 1.1.1.82) from pea (Pisum sativum L.) was introduced in the sense and antisense orientation into tobacco (Nicotiana tabacum L.). Transgenic plants with decreased or increased expression levels were obtained. Because of substantial age-dependent differences in individual leaves of a single plant, standardization of NADP-MDH levels was required first. Then, extent and stability of over- or under-expression of Nmdh, the gene encoding NADP-MDH, was characterized in the various transformants. Frequently, cosuppression effects were observed, indicating sufficient homology between the endogenous tobacco and the heterologous pea gene. Analysis of the T1 and T2 progeny of a series of independent transgenic lines revealed that NADP-MDH capacity ranged between 10% and [greater than or equal to]10-fold compared with the wild type. Under ambient conditions whole-plant development, growth period, and fertility were unaffected by NADP-MDH reduction to 20% of the wild-type level; below this threshold plant growth was retarded. A positive growth effect was registered in young plants with stably enhanced NADP-MDH levels within a defined developmental window.  相似文献   

6.
The chloroplastic NADP-dependent malate dehydrogenase (NADP-MDH) catalyzing the reduction of oxaloacetate into L-malate is regulated by light. Its activation results from the thioredoxin-mediated reduction of two disulfides, located, respectively, in N- and C-terminal sequence extensions typical of all NADP-dependent light-regulated forms. Site-directed mutagenesis studies and the resolution of the three-dimensional structure of the oxidized (inactive) Sorghum vulgare enzyme showed that the C-terminal Cys(365)-Cys(377) disulfide constrains the C-terminal extension to fold into the active site where it acts as an internal inhibitor. In the present study, two-dimensional proton NMR spectra of an engineered NADP-MDH rendered monomeric by a 33-amino acid deletion at the N terminus (38 kDa) revealed that a 15-amino acid-long C-terminal peptide (Ala(375) to C-terminal Val(389)) acquired an increased mobility upon reduction, allowing its direct sequence-specific NMR assignment. The location of the flexible peptide in the sequence suggests that the first part of the C-terminal peptide is still folded near the core of the enzyme, so that cysteines 365 and 377 remain in proximity to allow for an efficient reoxidation/inactivation of the enzyme.  相似文献   

7.
A heterogeneous photochemical electron relay system was constructed, mimicking the chloroplast electron transport reaction in order to activate the NADP-malate dehydrogenase in light. The photocatalyst acridine orange or proflavin sensitized EDTA-dependent reduction of ferredoxin. In a complete system, consisting of a dye donor couple, ferredoxin, thioredoxin and ferredoxin-thioredoxin reductase, light activation of purified NADP-MDH was observed in vitro. The chloroplast mediated redox activation of enzyme essentially required ferredoxin, while heterogeneous photochemical mediated activation of enzyme need not require ferredoxin. The heterogeneus photochemical system activated NADP-MDH by eight fold similar to chloroplasts mediated ferredoxin dependent redox activation but was not affected by the presence of disalicylinden propanediamine-1, 2-disulphonic acid while there was complete inhibition of chloroplasts mediated activation of NADP-MDH in presence of this inhibitor. These observations suggest that a thiol mediator is essential for reductive activation of NADP-MDH and ferredoxin is not required for photochemical activation.  相似文献   

8.
9.
Light-induced swelling of guard cell protoplasts (GCP) from Vicia faba was accompanied by increases in content of K+ and malate. DCMU inhibited the increase of K+ and malate, and consequently swelling.

Effect of light on the activity of selected enzymes that take part in malate formation was studied. When isolated GCP were illuminated, NADP-malate dehydrogenase (NADP-MDH) was activated, and the activity reached a maximum within 5 minutes. The enzyme activity underwent 5- to 6-fold increase in the light. Upon turning off the light, the enzyme was inactivated in 5 minutes NAD-MDH and phosphoenolpyruvate carboxylase (PEPC) were not influenced by light. The rapid light activation of NADP-MDH was inhibited by DCMU, suggesting that the enzyme was activated by reductants from the linear electron transport in chloroplasts. An enzyme localization study by differential centrifugation indicates that NADP-MDH is located in the chloroplasts, NAD-MDH in the cytosol and mitochondria, and PEPC in the cytosol. After light activation, the activity of NADP-MDH in guard cells was 10 times that in mesophyll cells on a chlorophyll basis. The physiological significance of light-dependent activation of NADP-MDH in guard cells is discussed in relation to stomatal movement.

  相似文献   

10.
Thiolase proceeds via covalent catalysis involving an acetyl-S-enzyme. The active-site thiol nucleophile is identified as Cys89 by acetylation with [14C]acetyl-CoA, rapid denaturation, tryptic digestion, and sequencing of the labeled peptide. The native acetyl enzyme is labile to hydrolytic decomposition with t 1/2 of 2 min at pH 7, 25 degrees C. Cys89 has been converted to the alternate nucleophile Ser89 by mutagenesis and the C89S enzyme overproduced, purified, and assessed for activity. The Ser89 enzyme retains 1% of the Vmax of the Cys89 enzyme in the direction of acetoacetyl-CoA thiolytic cleavage and 0.05% of the Vmax in the condensation of two acetyl-CoA molecules. A covalent acetyl-O-enzyme intermediate is detected on incubation with [14C]acetyl-CoA and isolation of the labeled Ser89-containing tryptic peptide. Comparisons of the Cys89 and Ser89 enzymes have been made for kinetic and thermodynamic stability of the acetyl enzyme intermediates both by isolation and by analysis of [32P]CoASH/acetyl-CoA partial reactions and for rate-limiting steps in catalysis with trideuterioacetyl-CoA.  相似文献   

11.
We have developed a simple and rapid method for detecting the enzyme myristoyl-CoA:protein N-myristoyl transferase. The enzyme catalyzes the transfer of the myristoyl moiety of myristoyl-CoA to the amino-terminal glycine residue of a peptide (protein). Incorporation of the [14C]myristate into the peptide is quantified after separation of the [14C]myristoyl-peptide from unreacted [14C]myristoyl-CoA by selective adsorption of [14C]myristoyl-CoA on acidic alumina. Optimal assay concentrations were 200 microM synthetic peptide, 1 microM [14C]myristoyl-CoA, 10 mM Tris-HCl/1 mM dithiothreitol/0.1 mM ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid/aprotinin (10 micrograms/ml) buffer, pH 7.4, and 1-10 micrograms protein.  相似文献   

12.
NADP-malate dehydrogenase extracted from darkened leaves of the C3 plants pea, barley, wheat and spinach was activated by reduced glutathione, a monothiol, as well as by dithiothreitol (DTT). However, in the C4 plants maize and Flaveria trinervia, only dithiothreitol could effectively activate the enzyme. There was no activation of the maize enzyme and little or no activation of the F. trinervia enzyme by glutathione. The failure of glutathione to activate NADP-MDH in leaf extracts of maize and F. trinervia may indicate there is some difference in disulfide groups of the protein compared to the C3 plant enzyme. Both DTT and glutathione could activate NADP-malate dehydrogenase in a partially purified enzyme preparation from pea leaves with or without addition of partially purified thioredoxin. However, the required concentration of reductant was lower with addition of thioredoxin than in its absence. In extracts of C3 species and the partially purified pea enzyme the level of activation after 40 to 60 min under aerobic conditions was higher (up to twofold) with DTT than with glutathione. Under anaerobic conditions, the initial rate of activation was about twice as high with DTT as with glutathione, but the total activation after 40 to 60 min was similar. Ascorbate was totally ineffective as a reducing agent in activating NADP-MDH from C3 or C4 plants, possibly due to its more positive redox potential.Abbreviations Chl Chlorophyll - DTT Dithiothreitol - GSH Reduced Glutathione - NADP-MDH NADP-malate Dehydrogenase  相似文献   

13.
Inactivation of the bovine heart mitochondrial F1-ATPase, taken as alpha 3 beta 3 gamma delta epsilon with a molecular weight of 375,000, with a 4-fold molar excess of 7-chloro-4-nitro[14C]benzofurazan at pH 7.5, led to the incorporation of 1.42 g atoms of 14C/mol. Treatment of the inactivated enzyme with dithiothreitol removed 0.99 g atom of 14C/mol of enzyme which was accompanied by reactivation of the ATPase. Therefore, of the 1.42 mol of 7-chloro-4-nitro-[14C]benzofurazan incorporated per mol of bovine heart mitochondrial F1-ATPase, 0.43 mol was present on lysine residues and 0.99 mol was present on tyrosine residues. When the inactivated enzyme was treated with 10 mM sodium dithionite at pH 6.0, 10% of the activity was recovered which was accompanied by a 10% loss in covalently bound 14C. Following dithionite treatment, that part of the 14C which remained covalently bound could not be removed by subsequent treatment of the labeled enzyme with dithiothreitol. It is presumed that dithionite reduces the 4-nitro group of the covalently bound reagent, converting it to 4-amino[14C]benzofurazan derivatives at lysine and tyrosine residues. The moles of 4-amino[14C]benzofurazan incorporated per mol of the isolated subunits were: alpha, 0.18; beta, 0.30; gamma, 0.03; and delta plus epsilon, less than 0.01. Gel filtration of a cyanogen bromide digest of the labeled beta subunit on Sephadex G-75 resolved a major 14C peak which contained 83% of the 14C recovered. The major, radioactive tryptic fragment derived from this peak was purified by gel filtration on Sephadex G-75 followed by reversed phase high performance liquid chromatography. Automatic Edman degradation of this peptide showed that the 14C was released at the position occupied by beta-Tyr-311.  相似文献   

14.
Purification and characterization of a kallikrein-like T-kininogenase   总被引:3,自引:0,他引:3  
A T-kininogenase has been purified to homogeneity from rat submandibular gland extracts by DEAE-Sepharose chromatography and preparative gel electrophoresis. The purified protein has an apparent Mr of 28,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and splits into heavy and light chains with Mr of 22,000 and 6,000 in the presence of dithiothreitol. It is an acidic glycoprotein with pI of 4.65-4.75. The carbohydrate moiety is located on the light chain and binds concanavalin A and wheat germ agglutinin. The active site serine residue of the heavy chain is labeled with [14C]diisopropylfluorophosphate and visualized by fluorography. NH2-terminal amino acid sequences of the light and heavy chains reveal 74-84% identity to rat tissue kallikrein, tonin, and other kallikrein-related enzymes. The enzyme cleaves T-kininogen to release T-kinin which was separated by high performance liquid chromatography on a reverse phase C18 column and identified by a kinin radioimmunoassay. Its T-kininogenase but not N-tosyl-L-arginine methyl ester esterase activity can be enhanced 10-fold in the presence of dithiothreitol. The esterolytic activity of the enzyme is inhibited by soybean trypsin inhibitor, aprotinin, leupeptin, and antipain; whereas lima bean and ovomucoid trypsin inhibitors stimulate its activity. The enzyme is localized at the granular convoluted tubule and striated duct cells in rat submandibular glands by immunohistochemistry. The results indicate that T-kininogenase belongs to the group of structurally similar yet distinct kallikrein-like serine proteases.  相似文献   

15.
The active site cysteine of pig liver thioltransferase was identified as Cys22. The kinetics of the reaction between Cys22 of the reduced enzyme and iodoacetic acid as a function of pH revealed that the active site sulfhydryl group had a pKa of 2.5. Incubation of reduced enzyme with [1-14C]cysteine prevented the inactivation of the enzyme by iodoacetic acid at pH 6.5, and no stable protein-cysteine disulfide was found when the enzyme was separated from excess [1-14C]cysteine, suggesting an intramolecular disulfide formation. The results suggested a reaction mechanism for thioltransferase. The thiolated Cys22 first initiates a nucleophilic attack on a disulfide substrate, resulting in the formation of an unstable mixed disulfide between Cys22 and the substrate. Subsequently, the sulfhydryl group at Cys25 is deprotonated as a result of micro-environmental changes within the active site domain, releasing the mixed disulfide and forming an intramolecular disulfide bond. Reduced glutathione, the second substrate, reduces the intramolecular disulfide forming a transient mixed disulfide which is then further reduced by glutathione to regenerate the reduced enzyme and form oxidized glutathione. The rate-limiting step for a typical reaction between a disulfide and reduced glutathione is proposed to be the reduction of the intramolecular disulfide form of the enzyme by reduced glutathione.  相似文献   

16.
The principal phytoalexin that accumulates in Arabidopsis thaliana after infection by fungi or bacteria is 3-thiazol-2'-yl-indole (camalexin). Detached noninoculated leaves of Arabidopsis and leaves inoculated with the fungus Cochliobolus carbonum were fed [35S]cysteine (Cys) and [35S]methionine. Inoculated leaves incorporated more than a 200-fold greater amount of radioactivity from [35S]Cys into camalexin, as compared with noninoculated leaves. The amount of radioactivity from [35S]Cys that was incorporated into camalexin from inoculated Arabidopsis leaves was 10-fold greater than the amount of radioactivity that was incorporated into camalexin from [35S]methionine. Additional labeling experiments were performed to determine whether other atoms of Cys are incorporated into camalexin. [14C]Cys and [35S]Cys were incorporated into camalexin with approximately the same efficiency. Cys labeled either with deuterium (D3-Cys[2,3,3]) or 13C and 15N ([U-13C,15N]Cys) was also fed to inoculated leaves of Arabidopsis; camalexin was analyzed by mass spectroscopic analysis. The average ratio of molecular ion intensities of 203/200 for [U-13C,15N]Cys-labeled camalexin was 4.22, as compared with 0.607 for the average 203/200 ratio for unlabeled camalexin. The mass fragment-ion intensity ratios of 60/58 (thiazole ring ion fragment) and 143/142 were also higher for [U-13C,15N]Cys-labeled camalexin, as compared with unlabeled camalexin. The 59/58 and 201/200 ratios were higher for D3-Cys-labeled camalexin as compared with unlabeled camalexin. These data are consistent with the predicted formation of the thiazole ring of camalexin from Cys.  相似文献   

17.
The E. coli propionyl-CoA synthetase (PCS) was cloned, expressed, purified, and analyzed. Kinetic analyses suggested that the enzyme preferred propionate as substrate but would also use acetate. The purified, stored protein had relatively low activity but was activated up to about 10-fold by incubation with dithiothreitol (DTT). The enzyme activation by DTT was reversed by diamide. This suggests that the protein contains a regulatory disulfide bond and that the reduction to two sulfhydryl groups activates PCS while the oxidation to a disulfide leads to its inactivation. This idea was tested by sequential mutagenesis of the 9 Cys in the protein to Ala. It was revealed that the C128A and C315A mutants had wildtype enzyme activity but were no longer activated by DTT or inhibited by diamide. The data obtained indicate that two Cys residues could be involved in redox-regulated system through formation of an intramolecular disulfide bridge in PCS.  相似文献   

18.
The E. coli propionyl-CoA synthetase (PCS) was cloned, expressed, purified, and analyzed. Kinetic analyses suggested that the enzyme preferred propionate as substrate but would also use acetate. The purified, stored protein had relatively low activity but was activated up to about 10-fold by incubation with dithiothreitol (DTT). The enzyme activation by DTT was reversed by diamide. This suggests that the protein contains a regulatory disulfide bond and that the reduction to two sulfhydryl groups activates PCS while the oxidation to a disulfide leads to its inactivation. This idea was tested by sequential mutagenesis of the 9 Cys in the protein to Ala. It was revealed that the C128A and C315A mutants had wildtype enzyme activity but were no longer activated by DTT or inhibited by diamide. The data obtained indicate that two Cys residues could be involved in redox-regulated system through formation of an intramolecular disulfide bridge in PCS.  相似文献   

19.
Two major endoproteinases were purified from senescing primary barley leaves. The major enzyme (EP1) appeared to be a thiol proteinase and accounted for about 85% of the total proteolytic activity measured in vitro. This proteinase was purified 5,800-fold and had a molecular weight of 28,300. It was highly unstable in the absence of dithiothreitol or at a pH greater than 7.5. Leupeptin, at a concentration of 10 micromolar, inhibited this enzyme 100%. A second proteinase (EP2) was purified approximately 50-fold and had a molecular weight of 67,000. It was inhibited 20% by 1 millimolar dithiothreitol and 50% by 1 millimolar phenylmethyl sulfonylfluoride. EP2 contributed about 15% of the total proteolytic activity measured in vitro. Both proteinases hydrolyzed a variety of artificial and protein substrates, and both had pH optima of 5.5 to 5.7 when either azocasein or [14C]ribulose-1,5-bisphosphate carboxylase ([14C]RuBPCase) was the substrate. The thiol endoproteinase hydrolyzed azocasein linearly but hydrolyzed [14C]RuBPCase biphasically. A third endoproteinase (EP3), not detected by standard proteolytic assays, was observed when [14C]RuBPCase was the substrate.  相似文献   

20.
The chloroplast enzyme phosphoribulokinase is reversibly deactivated by oxidation of Cys16 and Cys55 to a disulfide. Although not required for catalysis, Cys16 is an active-site residue positioned at the nucleotide-binding domain (Porter and Hartman, 1988). The hyperreactivity of Cys16 has heretofore limited further active-site characterization by chemical modification. To overcome this limitation, the partially active enzyme,S-methylated at Cys16, has been probed with a potential affinity reagent. Treatment of methylated enzyme with bromoacetylethanolamine phosphate results in essentially complete loss of catalytic activity. Inactivation follows pseudo-first-order kinetics and exhibits a rate saturation with an apparentK d of 3–4 mM. ATP, but not ribulose 5-phosphate, affords substantial protection. Complete inactivation correlates with incorporation of 1 mol of [14C]reagent per mole of enzyme subunit. Amino acid analysis of the [14C]-labeled enzyme demonstrates that only cysteine is modified, and mapping of tryptic digests shows that Cys55 is a major site of alkylation. These results indicate that Cys55 is also located in the ATP-binding domain of the active-site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号