首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Three mosquito cell cultures designated as Suitor's clone ofAedes aegypti, Culiseta inornata, andAedes vexans were shown to be moth by immunological, karyological, and isozyme analyses. The cells reacted with rabbit antimoth serum but not rabbit antimosquito serum. Chromosome analyses indicated Lepidopteran rather than Dipteran morphology, and three isozyme systems were confirmative. Any one of these assays would be sufficient to indicate that contamination had occurred and could be used as a periodic check for identity of cell cultures. Morphology and growth characteristics are also valid criteria to distinguish between these particular orders of insect cells. These studies were supported by Grant CA-04953-12 from the National Cancer Institute; General Research Support Grant FR-5582 from the National Institutes of Health; and Grant-in-Aid Contract M-43 from the State of New Jersey. Recipient of Research Career Award 5-K3-16,749 from the National Institutes of Health.  相似文献   

3.
4.
Transfection of insect cell lines using polyethylenimine   总被引:1,自引:0,他引:1  
Insect cell lines have been widely used in recombinant baculovirus expression systems and transient gene expression studies. Critical to these applications have been the transfection of foreign DNA. This has been frequently done using labor intensive and cytotoxic liposome-based transfection reagents. In the current study we have optimized a new kind of polyethylenimine-based DNA transfection reagent on the Spodoptera frugiperda Sf9 insect cell line. A plasmid vector that transiently expresses green fluorescent protein (GFP) was effectively delivered into Sf9 cells. A transfection efficiency of 54% and cell viability of 85–90% were obtained for Sf9 cells. The developed transfection protocol has now been successfully used to transfect eight insect cell lines derived from Bombyx mori, Trichoplusia ni, Helicoverpa zea, Heliothis virescens and S. frugiperda with GFP and GUS with transfection efficiencies of at least 45%. This method provides high heterologous protein expression levels, transfection efficacy and cell viability, and could be used for transient gene expression in other lepidopteran cell lines.
D. E. LynnEmail: Phone: 301-504-6328Fax: 301-504-5104
  相似文献   

5.
Development and characterization of insect cell lines   总被引:6,自引:0,他引:6  
Lynn DE 《Cytotechnology》1996,20(1-3):3-11
Conclusions With the wide availability of insect cell culture media, it can generally be considered a routine process to develop new cell lines. Exceptions to this statement do exist, of course. Difficulties may arise when attempting to culture a specific cell type. For example, while there are a few cell lines from insect fat body and at least one from the midgut, it may not be possible to obtain cell lines from these tissues from all insect species due to terminal differentiation and other factors. Also, researchers have desired cell lines from certain species, such as the honey bee, for which no success has been obtained. As in the early days of tissue culture, it is difficult to discern why negative results occur. However, as more is learned about the physiology and nutrition of various insects and tissues, we may get clues which will help solve these questions.The remaining chapters in this book will provide the reader with exciting uses for insect cell culture. As I mentioned earlier, the baculovirus expression vector system has provided a stimulus to the field of insect cell culture not seen previously.Abbreviations ICD Isocitrate dehydrogenase - ME malic enzyme - PGI phosphoglucose isomerase - PGM phosphoglucose mutase  相似文献   

6.
昆虫细胞系的培养和建立技术   总被引:2,自引:1,他引:2  
迄今已经报道的昆虫细胞系有800株以上。昆虫细胞系在昆虫病理学、寄生虫学、内分泌学、遗传学和分子生物学等基础和应用研究中得到越来越广泛的应用。本文结合我们研究的结果和实践经验,概括了国内外昆虫细胞系建立技术的研究进展,包括昆虫细胞培养的发展、昆虫细胞系建立技术、不同昆虫组织来源细胞系的建立方法和过程,以及对昆虫细胞系特征的鉴定等方面。  相似文献   

7.
The enzyme activities involved in O-glycosylation have been studied in three insect cell lines, Spodoptera frugiperda (Sf-9), Mamestra brassicae (Mb) and Trichoplusia ni (Tn) cultured in two different serum-free media. The structural features of O-glycoproteins in these insect cells were investigated using a panel of lectins and the glycosyltransferase activities involved in O-glycan biosynthesis of insect cells were measured (i.e., UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, UDP-Gal:core-1 beta1, 3-galactosyltransferase, CMP-NeuAc:Galbeta1-3GalNAc alpha2, 3-sialyltransferase, and UDP-Gal:Galbeta1-3GalNAc alpha1, 4-galactosyltransferase activities). First, we show that O-glycosylation potential depends on cell type. All three lepidopteran cell lines express GalNAcalpha-O-Ser/Thr antigen, which is recognized by soy bean agglutinin and reflects high UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase activity. Capillary electrophoresis and mass spectrometry studies revealed the presence of at least two different UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases in these insect cells. Only some O-linked GalNAc residues are further processed by the addition of beta1,3-linked Gal residues to form T-antigen, as shown by the binding of peanut agglutinin. This reflects relative low levels of UDP-Gal:core-1 beta1,3-galactosyltransferase in insect cells, as compared to those observed in mammalian control cells. In addition, we detected strong binding of Bandeiraea simplicifolia lectin-I isolectin B4 to Mamestra brassicae endogenous glycoproteins, which suggests a high activity of a UDP-Gal:Galbeta1-3GalNAc alpha1, 4-galactosyltransferase. This explains the absence of PNA binding to Mamestra brassicae glycoproteins. Furthermore, our results substantiated that there is no sialyltransferase activity and, therefore, no terminal sialic acid production by these cell lines. Finally, we found that the culture medium influences the O-glycosylation potential of each cell line.  相似文献   

8.
The cells and tissues of many aphids contain bacteria known as "secondary symbionts," which under specific environmental circumstances may be beneficial to the host insect. Such symbiotic bacteria are traditionally described as intractable to cultivation in vitro. Here we show that two types of aphid secondary symbionts, known informally as T type and U type, can be cultured and maintained in three insect cell lines. The identities of the cultured bacteria were confirmed by PCR with sequencing of 16S rRNA gene fragments and fluorescence in situ hybridization. In cell lines infected with bacteria derived from aphids harboring both T type and U type, the U type persisted, while the T type was lost. We suggest that the two bacteria persist in aphids because competition between them is limited by differences in tropism for insect tissues or cell types. The culture of these bacteria in insect cell lines provides a new and unique research opportunity, offering a source of unibacterial material for genomic studies and a model system to investigate the interactions between animal cells and bacteria. We propose the provisional taxon names "Candidatus Consessoris aphidicola" for T type and "Candidatus Adiaceo aphidicola" for U type.  相似文献   

9.
Prostaglandins (PGs) are oxygenated metabolites of arachidonic acid (AA) and two other C20 polyunsaturated fatty acids that serve as biochemical signals mediating physiological functions. We reported that PGs influence protein expression in insect cell lines, which prompted the question: do PGs influence cell proliferation or viability in insect cell lines? Here, we report on the outcomes of experiments designed to address the question in cell lines from three insect orders: Hemiptera (squash bug, Anasa tristis, BCIRL-AtE-CLG15A), Coleoptera (red flour beetle, Tribolium castaneum, BCIRL-TcA-CLG1), and Lepidoptera (tobacco budworm, Heliothis virescens, BCIRL-HvAM1). Treating the insect cell lines with PGA1, PGA2, or PGD2 led to dose-dependent reductions in cell numbers. All three cell lines were sensitive to PGA1 and PGA2 (IC50s = 9.9 to 26.9 μM) and were less sensitive to PGD2 (IC50s = 31.6 to 104.7 μM). PG treatments also led to cell death at higher concentrations, as seen in mammalian cell lines. PGE1, PGE2, and PGF treatments did not influence AtE-CLG15A or HvAM1 cell numbers at lower concentrations, but led to dose-related reductions in TcA-CLG1 cells at higher concentrations. Similar treatments with pharmaceutical inhibitors of PG biosynthesis also led to reduced cell numbers: MAFP (inhibits phospholipase A2), indomethacin (inhibits PG biosynthesis), and esculetin (inhibits lipoxygenase). Because these pharmaceuticals are used to relieve inflammation and other medical issues in human medicine, they are not toxic to animal cells. We infer PGs are necessary in optimal quantities for ongoing homeostatic functions in established cell lines; in quantities outside the optimal concentrations, PGs are deleterious.  相似文献   

10.
【目的】绿僵菌素(Destruxins)是绿僵菌产生的具有杀虫活性的次生代谢产物,本研究以家蚕Bombyx mori Bm12细胞、亚洲玉米螟Ostrinia furnacalis血细胞(Ofh)、果蝇S2细胞和草地贪夜蛾Sf9细胞为对象,探索绿僵菌素对不同昆虫细胞的毒性差异。【方法】采用MTT法和显微观察法比较绿僵菌素A、B(DA、DB)以及两者等量混合物(DABM)对上述4种昆虫细胞的影响,比较其IC50值和形态学变化。【结果】绿僵菌素处理24 h后,在较低处理剂量(<25μg/m L)下,Ofh细胞比Bm12、S2、Sf9细胞对DA、DB和DABM更为敏感,DA、DB和DABM对Ofh细胞IC50值分别219.19、112.29和34.86μg/m L,而对Bm12、S2、Sf9细胞的IC50值均大于250μg/m L;DA和DB对Ofh细胞具有协同增效作用,对Sf9细胞具拮抗作用,对Bm12和S2细胞具相加作用。显微观察发现,绿僵菌素处理后,6.25μg/m L的低剂量下,即可发现细胞的形态变化,剂量越高,变化越显著。Bm12细胞出现瘤状突起、细胞破碎、聚集、扩展及胞内空泡等现象,且细胞数量减少;Ofh细胞扩展,似乎回归到浆血细胞及类绛色细胞的形态,发生凝集现象,少数出现瘤状突起和细胞破碎;S2细胞出现明显的胞内空泡,少数发生扩展、破碎和聚集现象;Sf9细胞细胞膜收缩、细胞空泡、破碎,细胞数量减少等变化。【结论】玉米螟的血细胞Ofh对绿僵菌素最为敏感,而来自非寄主昆虫果蝇的S2细胞最不敏感。绿僵菌素对4种细胞的致死剂量较高,但引起细胞形态改变的剂量却非常低。  相似文献   

11.
Novel techniques to establish new insect cell lines   总被引:3,自引:0,他引:3  
Summary The success of insect cell culture is demonstrated by reports of over 500 established cell lines. While established procedures that can be used for developing new cell lines exist, these usually require some fine-tuning for various tissue sources. This paper attempts to depict some of the variations that can be applied.  相似文献   

12.
13.
Comparative recombinant protein production of eight insect cell lines   总被引:4,自引:0,他引:4  
Summary A recombinantAutographa californica baculovirus expressing secreted alkaline phosphatase (SEAP) gene was used to evaluate the expression of a secreted glycoprotein in eight insect cell lines derived fromSpodoptera frugiperda, Trichoplusia ni, Mamestra brassicae andEstigmene acrea. Because cell density was found to influence protein production, SEAP production was evaluated at optimal cell densities for each cell line on both a per cell and per milliliter basis. On a per cell basis, theT. ni-derived BTI-TN-5B1-4 cells produced a minimum of 20-fold more SEAP than theS. frugiperda-derived Sf9 or Sf21 cell lines and a minimum of 9-fold more than any of the other cell lines growing in serum-containing medium. On a per milliliter basis, BTI-TN-5B1-4 cells produced a minimum of fivefold more SEAP than any of the other cell lines tested. Using cell lines that were adapted to serum-free medium, SEAP yields were the same or better than their counterparts in serum-containing medium. At 3 days postinoculation, extracellular SEAP activity ranged from 59 to 85% of total SEAP activity with cell lines grown in serum-free and serum-containing media.  相似文献   

14.
Antioxidant defense systems of two lipidopteran insect cell lines   总被引:1,自引:0,他引:1  
Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) insect cell lines were found to contain unique assemblages of antioxidant enzymes. Specifically, the Sf-9 insect cell line contained Manganese and Copper-Zinc superoxide dismutase (MnSOD and CuZnSOD) for reducing the superoxide radical (O(2)(*-)) to hydrogen peroxide (H(2)O(2)) and ascorbate peroxidase (APOX) for reducing the resulting H(2)O(2) to H(2)O. Approximately one third of the total SOD activity was found to be MnSOD. The Tn-5B1-4 cells were also found to contain MnSOD (approximately two thirds of the total SOD activity), CuZnSOD and APOX activities. However, the Tn-5B1-4 cell line, in contrast to the Sf-9 cell line, contained catalase (CAT) activity for reducing H(2)O(2) to H(2)O. Both the Sf-9 and Tn-5B1-4 cell lines contained glutathione reductase and dehydroascorbic acid reductase activities for regenerating the reduced forms of glutathione and ascorbic acid, respectively. In addition, both cell lines contained glutathione S-transferase peroxidase activity towards hydroperoxides other than H(2)O(2). Finally, neither cell line contains the glutathione peroxidase activity that is ubiquitous in mammalian cells.  相似文献   

15.
Continuous insect cell lines make a special object of research in biology. Insect cells in the established lines differ in the number of attributes from both normal differentiated, and embryonic cells. The period of genome destabilization necessarily precedes cell line immortalization. Genome destabilization is manifested by changes in genome size, cell karyotype, amplification of some retrotransposone families, and induction of their expression. The existence of significant genetic variability in one line puts a problem of searching for invariant attributes providing culture identification and defining the limits of normal polymorphism of cells in the culture. Using the vast collection of insect continuous cell lines stored at the N. I. Vavilov Institute of General Genetics RAS, nine lines were identified by RFLP method of mitochondrial DNA. Variability of DNA-polymorphisms, cellular karyology, morphology, immunological and biochemical attribute in the culture is discussed.  相似文献   

16.
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.  相似文献   

17.
18.
Nine insect cell lines were evaluated for their potential as host systems for recombinant protein production using a new expression vector permitting the continuous high-level expression of secreted glycoproteins by transformed insect cells (Farrell et al., 1998). As a means of preliminary screening, all nine insect cell lines were transfected with the green fluorescence protein. Growth in static and suspension culture was then examined as a further method of screening. On the basis of their transfection efficiencies and cell growth characteristics, five insect cell lines, Bm5, High Five, IPLB-LdFB, IZD-MB-0503, and Sf-21, were selected for stable transformation to produce granulocyte-macrophage colony-stimulating factor (GM-CSF). These five cell lines were stably transformed using an antibiotic resistance scheme and evaluated as a polyclonal population. Increasing the antibiotic concentration was found to cause not only a decrease in the specific growth rate but also an increase in the specific protein production rate and final GM-CSF concentration. The transformed High Five cells exhibited by far the greatest specific protein production rate of 5.1 x 10(-)(6) microgram/(cell.h), resulting in the highest final GM-CSF concentration of 22.8 mg/L when grown in static culture. One cloned High Five cell line produced a GM-CSF concentration of 46 mg/L in static culture and 27 mg/L in suspension culture.  相似文献   

19.
This study addresses the susceptibility of Spodoptera frugiperda (Sf9 and Sf21), Trichoplusia ni (Hi5), and S. exigua (Se301) cells to the Bombyx mori nucleopolyhedrovirus (BmNPV). Although these cells have classically been considered nonpermissive to BmNPV, the cytopathic effect, an increase in viral yield, and viral DNA synthesis by BmNPV were observed in Sf9, Sf21, and Hi5 cells, but not in Se301 cells. Very late gene expression by BmNPV in these cell lines was also detected via beta-galactosidase expression under the control of the polyhedrin promoter. Sf9 cells were most susceptible to BmNPV in all respects, followed by Sf21 and Hi5 cells in decreasing order, while the Se301 cells evidenced no distinct viral replication. This particular difference in viral susceptibility in each of the cell lines can be utilized for our understanding of the mechanisms underlying the host specificity of NPVs.  相似文献   

20.
Random amplified polymorphic DNA (RAPD) analysis was used to characterize 11 insect cell lines, including six from lepidoptera (five species), one from diptera and four from coleoptera (one species: Leptinotarsa decemlineata). Whatever the order and even when comparing two closely related species from the same genus (Spodoptera), the DNA fingerprints are very different from one species or from one primer to the other. On the other hand, two independently isolated cell lines from the lepidopteran Phthorimaea operculella produce nearly identical profiles with only minor differences. Finally, a statistical analysis based on Nei's similarity coefficient was performed on the fingerprints of four independent cell lines from the Colorado potato beetle, L. decemlineata. Each possesses a common recognizable pattern also found in field-collected insects, while also showing a series of polymorphic markers which allow one to distinguish each cell line from the three others. RAPD fingerprinting, together with the use of appropriate statistics, thus constitutes a highly specific method both for the authentication of the species from which a cell line was developed and for the individual characterization of each cell line from a given species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号