首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Structure of the rat prolactin gene   总被引:17,自引:0,他引:17  
The organization and sequence of the rat preprolactin gene has been investigated. Analysis of two different plasmids containing pituitary cDNA inserts has provided the complete 681-nucleotide coding sequence of preprolactin as well as 17 nucleotides preceding the initiation codon and 90 nucleotides following the termination codon. Digestion of rat chromosomal DNA with the restriction endonuclease Eco RI followed by size fractionation and hybridization to a labeled prolactin cDNA probe has demonstrated that prolactin genomic sequences are located on 6.0-, 3.9-, and 2.9-kilobase fragments. The 6.0- and 3.9-kilobase fragments were isolated from a library of cloned rat DNA fragments. The sequence of more than 1800 nucleotides of the cloned DNA has been determined. The sequenced region contains coding regions of 180 and 189 nucleotides which specify the COOH-terminal 123 amino acids of the 227-amino-acid sequence of rat preprolactin. These coding regions are separated by an intervening sequence of 597 nucleotides. At least one other large intervening sequence separates this region from the region coding for the NH2-terminal portion of preprolactin. Hybridization experiments suggested that the intervening sequences of the rat prolactin gene contain DNA sequences which are repeated elsewhere in the rat genome.  相似文献   

3.
4.
We have isolated a cloned segment of Drosophila genomic DNA containing a ribosomal protein gene. Hybridization analysis of the DNA in this clone indicates a complex organization of repeated elements within this cloned segment. At least one of these repeated elements is homologous to regions of rDNA. Restriction analysis of the clone shows that some of the repeated elements are present as tandem duplications and in scattered locations within the cloned DNA segment. There are also three non-ribosomal protein genes contained in this clone, each of which is expressed along with the ribosomal protein gene into RNA species present in Drosophila embryos.  相似文献   

5.
6.
Repetitive DNA sequences in Mycoplasma pneumoniae.   总被引:22,自引:5,他引:17  
Two types of different repetitive DNA sequences called RepMP1 and RepMP2 were identified in the genome of Mycoplasma pneumoniae. The number of these repeated elements, their nucleotide sequence and their localization on a physical map of the M. pneumoniae genome were determined. The results show that RepMP1 appears at least 10 times and RepMP2 at least 8 times in the genome. The repeated elements are dispersed on the chromosome and, in three cases, linked to each other by a homologous DNA sequence of 400 bp. The elements themselves are 300 bp (for RepMP1) and 150 bp (for RepMP2) long showing a high degree of homology. One copy of RepMP2 is a translated part of the gene for the major cytadhesin protein P1 which is responsible for the adsorption of M. pneumoniae to its host cell.  相似文献   

7.
8.
Details of the general DNA sequence organization in the dinoflagellate Crypthecodinium cohnii have been obtained by using hydroxylapatite binding experiments, S1 nuclease digestion .and electron microscopy of reassociated DNA. It has been found that roughly half of the genome is made up of unique sequences interspersed with repeated sequence elements with a period of approximately 600 nucleotides. This class represents roughly 95% of the total number of interspersed unique elements in the genome. The remaining 5% are uninterrupted by repeated sequences for at least 4000 nucleotide pairs. The interspersed repeated elements are narrowly distributed in length with 80% under 300 nucleotide pairs in length. About half of the repeated DNA (20-30% of the genome) is not interspersed among unique sequences. The close spacing of the short repeats interspersed throughout much of the genome is consistent with the occurrence of the huge network structures observed in the electron microscope for low Cot reassociation of moderately long fragments. An unusual class of heteroduplexes was detected in the electron microscope which is believed to derive from the reassociation of repeated sequences from different families which are frequently found adjacent to one another in different locations in the genome. The occurrence of this novel arrangement of repeated sequences may reflect the unusual organization of the dinoflagellate nucleus. However, in most respects the sequence arrangement in this unicellular alga is very typical of higher plants and animals.  相似文献   

9.
Porcine relaxin. Gene structure and expression   总被引:2,自引:0,他引:2  
  相似文献   

10.
Recombinant plasmids containing highly repetitive Physarum DNA segments were identified by colony hybridisation using a radioactively-labelled total Physarum DNA probe. A large number of these clones also hybridised to a foldback DNA probe purified from Physarum nuclear DNA. The foldback DNA probe was characterised by reassociation kinetic analysis. About one-half of this component was shown to consist of highly repeated sequences with a kinetic complexity of 1100 bp and an average repetition frequency of 5200. Direct screening of 67 recombinant plasmids for foldback sequences using the electron microscope revealed that about one-half were located in segments of DNA containing highly repetitive sequences; the remainder were present in clones containing low-copy number repeated elements. Analysis of two DNA clones showed that they contained repetitive elements located in over half of all DNA segments containing highly repetitive DNA and that the foci containing these highly repetitive sequences had different sequence arrangements. The results are consistent with the hypothesis that the most highly repeated DNA sequence families in the Physarum genome are few in number and are clustered together in different arrangements in about one-sixth of the genome. Over one-half of the foldback DNA complement in the Physarum genome is derived from these segments of DNA.  相似文献   

11.
12.
The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.  相似文献   

13.
The KpnI sequences constitute the dominant, long, interspersed repetitive DNA families in primate genomes. These families contain related, but nonidentical sequence subsets, some of which border functional gene domains and are transcribed into RNA. To test whether these sequences perform an organizational function in the nucleus, their association with the nuclear matrix has been examined in African green monkey cells. DNase I treatment depleted the residual matrix of most of the KpnI 1.2- and 1.5-kilobase pair family sequences although significant amounts of each family remained in the loop attachment DNA fragments. Hybridization analysis of the KpnI and RsaI cleavage patterns of matrix loop attachment DNA indicate that some sequence subsets of these KpnI families are relatively less depleted than others. The nuclear matrix association of subpopulations of KpnI 1.2- and 1.5-kilobase pair families was also shown by metrizamide gradient centrifugation of nuclear matrix complexes cleaved by KpnI endonuclease. The gradients demonstrate that some KpnI segments are differentially associated with nuclear matrix proteins. Moreover, the procedures permit the preparative isolation and purification of the DNA-protein complexes containing these KpnI 1.2- and 1.5-kilobase pair sequence families. Speculations on the relationship between the matrix association of these KpnI family sequences and their possible roles in gene organization and expression are presented and discussed.  相似文献   

14.
Recombinant plasmids containing highly repetitive Physarum DNA segments were identified by colony hybridisation using a radioactively-labelled total Physarum DNA probe. A large number of these clones also hybridised to a foldback DNA probe purified from Physarum nuclear DNA. The foldback DNA probe was characterised by reassociation kinetic analysis. About one-half of this component was shown to consist of highly repeated sequences with a kinetic complexity of 1100 bp and an average repetition frequency of 5200. Direct screening of 67 recombinant plasmids for foldback sequences using the electron microscope revealed that about one-half were located in segments of DNA containing highly repetitive sequences; the remainder were present in clones containing low-copy number repeated elements. Analysis of two DNA clones showed that they contained repetitive elements located in over half of all DNA segments containing highly repetitive DNA and that the foci containing these highly repetitive sequences had different sequence arrangements. The results are consistent with the hypothesis that the most highly repeated DNA sequence families in the Physarum genome are few in number and are clustered together in different arrangements in about one-sixth of the genome. Over one-half of the foldback DNA complement in the Physarum genome is derived from these segments of DNA.  相似文献   

15.
M C Alevy  M J Tsai  B W O'Malley 《Biochemistry》1984,23(10):2309-2314
We have cloned a 36-kilobase segment of chicken DNA containing the gene coding for glyceraldehyde-3-phosphate dehydrogenase [GAPDH (EC 1.2.1.12)], a glycolytic enzyme which is expressed constitutively in all cell types. Using defined segments of this cloned DNA as probes, we have determined the DNase I sensitive domain of the GAPDH natural gene in the hen oviduct. When nuclei isolated from hen oviduct were treated with DNase I under conditions known to preferentially degrade actively transcribed genes (i.e., 15-20% of the DNA rendered perchloric acid soluble), a region of approximately 12 kilobase(s) (kb) containing the GAPDH coding sequences and flanking DNA was found to be highly susceptible to digestion by DNase I. Approximately 4 kb downstream from the end of the coding sequences, there was an abrupt transition from the DNase I sensitive or "open" configuration to the resistant or "closed" configuration. The chromatin then remained in a closed conformation for at least 10 kb further downstream. On the 5' side of the gene, the transition from a sensitive to a resistant configuration was located about 4 kb upstream from the gene. In addition, we have localized two repeated sequences in the area of DNA that was cloned. One of these is of the CR1 family of middle repetitive elements. It is located about 18 kb 3' to the gene and as such lies well outside of the DNase I sensitive region which encompasses GAPDH. The other repetitive element is of an uncharacterized family. It is located upstream from the gene and appears to be within a region of transition from the DNase I sensitive to resistant states.  相似文献   

16.
Multigene families in African swine fever virus: family 110.   总被引:8,自引:6,他引:2       下载免费PDF全文
  相似文献   

17.
18.
The genomic organization of two parasitic wasps was analyzed by DNA reassociation. Cot curves revealed a pattern with three types of components. A highly repetitive DNA, accounting for 15 to 25% of the genome, was identified as satellite DNA. The moderately repetitive DNA corresponds to 26 to 42% of the genome in both species, and shows large variations in complexity, repetitive frequency and a number of sub-components between males and females. These variations are seen as resulting from DNA amplification during somatic and sexual differentiation. Dot blot analyses show that such DNA amplifications concern several types of structural and regulatory genes. The presence of repeated mobile elements was studied by the Roninson method to compare the repeated sequence patterns of Diadromus pulchellus and Eupelmus vuilleti with those of Drosophila melanogaster. The occurrence and organization of mobile elements in these Hymenoptera differ from those of the neighboring order of Diptera. The repetitive and unique components define very large genomes (1 to 3 × 109 base pairs). The genomic organization in Parasitica appears to be an extreme drosophilan type. We propose that the germinal genome of these parasitic wasps is primarily composed of satellite DNA blocks and very long stretches of unique sequences, separated by a few repeated and/or variously deleted, interspersed elements of each mobile element family.  相似文献   

19.
20.
In an attempt to define myosin heavy chain (MHC) gene organization and expression in adult human skeletal muscle, we have isolated and characterized genomic sequences corresponding to different human sarcomeric MHC genes (1). In this report, we present the complete DNA sequence of two different adult human skeletal muscle MHC cDNA clones, one of which encodes the entire light meromyosin (LMM) segment of MHC and represents the longest described MHC cDNA sequence. Additionally, both clones provide new sequence data from a 228 amino acid segment of the MHC tail for which no protein or DNA sequence has been previously available. One clone encodes a "fast" form of skeletal muscle MHC while the other clone most closely resembles a MHC form described in rat cardiac ventricles. We show that the 3' untranslated region of skeletal MHC cDNAs are homologous from widely separated species as are cardiac MHC cDNAs. However, there is no homology between the 3' untranslated region of cardiac and skeletal muscle MHCs. Isotype-specific preservation of MHC 3' untranslated sequences during evolution suggests a functional role for these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号