首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Oka  Y Murooka    T Harada 《Journal of bacteriology》1980,143(1):321-327
Mutants of Klebsiella aerogenes with three types of mutations affecting regulation of tyramine oxidase were isolated by a simple selection method. In the first type, the mutation (tynP) was closely linked to the structural gene for tyramine oxidase tynA). The order of mutation sites was atsA-tynP-tynA. In the second type, the mutation that relieves catabolite repression of the syntheses of several catabolite repression-sensitive enzymes are not linked to the tyn gene by P1 transduction. These strains contained high levels of cyclic adenosine 5'-monophosphate when grown on glucose. The third type of mutation, in which tyramine oxidase was synthesized constitutively, was shown by genetic analysis to involve mutations of tynP and tynR. The tynR gene was not linked to tynA. Results using the constitutive mutants showed that the constitutive expression of the tynA gene resulted in depression of arylsulfatase synthesis in the absence of tyramine.  相似文献   

2.
The participation of tyramine oxidase in the regulation of arylsulfatase synthesis in Klebsiella aerogenes was studied. Arylsulfatase was synthesized when this organism was grown with methionine or taurine as the sulfur source (nonrepressing conditions) and was repressed by inorganic sulfate or cysteine; this repression was relieved by tyramine and related compounds (derepressing conditions). Under nonrepressing conditions, arylsulfatase synthesis was not regulated by tyramine oxidase synthesis. However, derepression of arylsulfatase and induction of tyramine oxidase synthesis by tyramine were both antagonized by glucose and other carbohydrate compounds. The derepressed synthesis of arylsulfatase, like that of tyramine oxidase, was released from catabolite repression by use of tyramine as the sole source of nitrogen. A mutant strain that exhibits constitutive synthesis of glutamine synthetase and high levels of histidase when grown in glucose-ammonium medium was subject to the catabolite repression of both tyramine oxidase and arylsulfatase syntheses. Mutants in which repression of arylsulfatase could not be relieved by tyramine could not utilize tyramine as the sole source of nitrogen and were defective in the gene for tyramine oxidase.  相似文献   

3.
In Klebsiella aerogenes, arylsulfatase synthesis was repressed by inorganic sulfate, sulfite, sulfide, thiosulfate, and cysteine, but not by methionine under normal growth conditions. We isolated cysteine-requiring mutants (Cys minus), and mutants (AtsS minus, AtsR minus) in which the regulation of arylsulfatase synthesis was altered. In the cysteine auxotroph, enzyme synthesis was also repressed by inorganic sulfate or cysteine. Kinetic studies on mutants of the cysteine auxotroph showed that inorganic sulfate repressed arylsulfatase synthesis and that this was not due to cysteine formed by reduction of sulfate. Arylsulfatase synthesis in the AtsS minus mutant was not repressed by inorganic sulfate but was repressed by cysteine. This mutant strain had a normal level of inorganic sulfate transport. Another mutant strain, defective in the inorganic sulfate transport system, synthesized arylsulfatase in the presence of inorganic sulfate but not in the presence of cysteine. The AtsS minus mutant could synthesize the enzyme in the presence of inorganic sulfate but not cysteine. The AtsR minus mutant could synthesize the enzyme in the presence of either inorganic sulfate or cysteine. These results suggest that there are two independent functional corepressors of arylsulfatase synthesis in K. aerogenes.  相似文献   

4.
5.
The participation of tyramine oxidase in the regulation of arylsulfatase synthesis in Salmonella typhimurium was studied. Arylsulfatase synthesis was repressed by inorganic sulfate, cysteine, methionine, or taurine. This repression was relieved by tyramine, octopamine, or dopamine, which induced tyramine oxidase synthesis, although the level of arylsulfatase activity was very low. The induction of tyramine oxidase and derepression of arylsulfatase by tyramine were strongly inhibited by glucose and ammonium chloride, and the repression of both enzymes was relieved by use of xylose as a carbon source after consumption of glucose or by use of tyramine as the sole source of nitrogen, irrespective of the carbon source used. The initial rates of tyramine uptake by cells grown with glucose and xylose were similar. Results with tyramine oxidase-constitutive mutants showed that constitutive expression of the tyramine oxidase gene resulted in derepression of arylsulfatase synthesis in the absence of tyramine. Thus, catabolite and ammonium repressions of arylsulfatase synthesis and the induction of the enzyme by tyramine seem to reflect the levels of tyramine oxidase synthesis. These results in S. typhimurium support our previous finding that the specific regulation system of arylsulfatase synthesis by tyramine oxidase is conserved in enteric bacteria.  相似文献   

6.
7.
Regulation of Glycerol Catabolism in Klebsiella aerogenes   总被引:18,自引:17,他引:1       下载免费PDF全文
The utilization of glycerol as a carbon source for growth by Klebsiella aerogenes, strain 2103, involves separate aerobic (sn-glycerol-3-phosphate or G3P) and anaerobic (dihydroxyacetone or DHA) pathways of catabolism. Enzyme and transport activities of the aerobic pathway are elevated in cells grown under oxygenated conditions on glycerol or G3P. Anaerobic growth on G3P as carbon source requires the presence of an exogenous hydrogen acceptor such as fumarate; cells thus grown also are highly induced in the G3P pathway. Anaerobic growth on glycerol requires no exogenous hydrogen acceptors; cells thus grown are highly induced in the DHA pathway but almost uninduced in the G3P pathway and the addition of fumarate electron acceptors has no effect on the relative levels of the two pathways. When both glycerol and G3P are provided anaerobically with fumarate, the DHA pathway is still preferentially induced, which probably accounts for the exclusive utilization of glycerol until its exhaustion. These observations suggest the presence of a regulatory control of G3P pathway imposed by the operation of the DHA pathway.  相似文献   

8.
Genetic control of arylsulfatase synthesis in Klebsiella aerogenes.   总被引:3,自引:10,他引:3       下载免费PDF全文
It was shown that at least four genes are specifically responsible for arylsulfatase synthesis in Klebsiella aerogenes. Mutations at chromosome site atsA result in enzymatically inactive arylsulfatase. Mutants showing constitutive synthesis of arylsulfatase (atsR) were isolated by using inorganic sulfate or cysteine as the sulfur source. Another mutation in which repression of arylsulfatase by inorganic sulfate or cysteine could not be relieved by tyramine was determined by genetic analysis to be on the tyramine oxidase gene (tyn). This site was distinguished from the atsC mutation site, which is probably concerned with the action or synthesis of corepressors of arylsulfatase synthesis. Genetic analysis with transducing phage PW52 showed that the order of mutation sites was atsC-atsR-atsA-tynA-tynB. On the basis of these results and previous physiological findings, we propose a new model for regulation of arylsulfatase synthesis.  相似文献   

9.
Studies were made on the effect of tyramine on arylsulfatase synthesis in mutants of Aerobacter aerogenes ATCC 9621 deficient in enzymes involved in tyramine degradation. As shown previously, some sulfur compounds, such as inorganic sulfate, repressed enzyme synthesis while others, such as methionine, did not. Tyramine caused derepression of enzyme synthesis, which is repressed by inorganic sulfate. The present work showed that, although tyramine readily derepressed arylsulfatase synthesis, metabolites of tyramine in either the wild-type or mutant strains did not, so that the derepression is due to the particular structure of tyramine. Kinetic studies on the cells indicated that incorporation of sulfur into protein and enzyme synthesis occurred on supply of either a sulfur compound, which did not cause repression, or of tyramine, which caused derepression, irrespective of the type of sulfur compound added, if any.  相似文献   

10.
11.
12.
Klebsiella aerogenes W70 could grow aerobically with nitrate or nitrite as the sole nitrogen source. The assimilatory nitrate reductase and nitrite reductase responsible for this ability required the presence of either nitrate or nitrite as an inducer, and both enzymes were repressed by ammonia. The repression by ammonia, which required the NTR (nitrogen regulatory) system (A. Macaluso, E. A. Best, and R. A. Bender, J. Bacteriol. 172:7249-7255, 1990), did not act solely at the level of inducer exclusion, since strains in which the expression of assimilatory nitrate reductase and nitrite reductase was was independent of the inducer were also susceptible to repression by ammonia. Insertion mutations in two distinct genes, neither of which affected the NTR system, resulted in the loss of both assimilatory nitrate reductase and nitrite reductase. One of these mutants reverted to the wild type, but the other yielded pseudorevertants at high frequency that were independent of inducer but still responded to ammonia repression.  相似文献   

13.
Siroheme, the cofactor for sulfite and nitrite reductases, is formed by methylation, oxidation, and iron insertion into the tetrapyrrole uroporphyrinogen III (Uro-III). The CysG protein performs all three steps of siroheme biosynthesis in the enteric bacteria Escherichia coli and Salmonella enterica. In either taxon, cysG mutants cannot reduce sulfite to sulfide and require a source of sulfide or cysteine for growth. In addition, CysG-mediated methylation of Uro-III is required for de novo synthesis of cobalamin (coenzyme B(12)) in S. enterica. We have determined that cysG mutants of the related enteric bacterium Klebsiella aerogenes have no defect in the reduction of sulfite to sulfide. These data suggest that an alternative enzyme allows for siroheme biosynthesis in CysG-deficient strains of Klebsiella. However, Klebsiella cysG mutants fail to synthesize coenzyme B(12), suggesting that the alternative siroheme biosynthetic pathway proceeds by a different route. Gene cysF, encoding an alternative siroheme synthase homologous to CysG, has been identified by genetic analysis and lies within the cysFDNC operon; the cysF gene is absent from the E. coli and S. enterica genomes. While CysG is coregulated with the siroheme-dependent nitrite reductase, the cysF gene is regulated by sulfur starvation. Models for alternative regulation of the CysF and CysG siroheme synthases in Klebsiella and for the loss of the cysF gene from the ancestor of E. coli and S. enterica are presented.  相似文献   

14.
We isolated an F' episome of Escherichia coli carrying the glnA+ gene from K. aerogenes and an F' episome of E. coli carrying the glnA4 allele from K. aerogenes responsible for the constitutive synthesis of glutamine synthetase. Complementation tests with these episomes showed that the glnA4 mutation (leading to the constitutive synthesis of active glutamine synthetase) was in the gene identified by mutations glnA20, glnA51, and glnA5 as the structural gene for glutamine synthetase. By using these merodiploid strains we were able to show that the glnA51 mutation lead to the synthesis of a glutamine synthetase that lacked enzymatic activity but fully retained its regulatory properties. Finally, we discuss a model that explains the several phenotypes associated with mutations such as glnA4 located within the structural gene for glutamine synthetase leading to constitutive synthesis of active glutamine synthetase.  相似文献   

15.
16.
An L-asparaginase has been purified some 250-fold from extracts of Klebsiella aerogenes to near homogeneity. The enzyme has a molecular weight of 141,000 as measured by gel filtration and appears to consist of four subunits of molecular weight 37,000. The enzyme has high affinity for L-asparagine, with a Km below 10(-5) M, and hydrolyzes glutamine at a 20-fold lower rate, with a Km of 10(-3) M. Interestingly, the enzyme exhibits marked gamma-glutamyltransferase activity but comparatively little beta-aspartyl-transferase activity. A mutant strain lacking this asparaginase has been isolated and grows at 1/2 to 1/3 the rate of the parent strain when asparagine is provided in the medium as the sole source of nitrogen. This strain grows as well as the wild type when the medium is supplemented with histidine or ammonia. Glutamine synthetase activates the formation of L-asparaginase. Mutants lacking glutamine synthetase fail to produce the asparaginase, and mutants with a high constitutive level of glutamine synthetase also contain the asparaginase at a high level. Thus, the formation of asparaginase is regulated in parallel with that of other enzymes capable of supplying the cell with ammonia or glutamate, such as histidase and proline oxidase. Formation of the asparaginase does not require induction by asparaginase and is not subject to catabolite repression.  相似文献   

17.
Regulation of cellular arylsulfatase synthesis in Klebsiella aerogenes was analyzed by immunological techniques. Antibody directed against the purified arylsulfatase from K. aerogenes W70 was obtained from rabbits and characterized by immunoelectrophoresis, double-diffusion, quantitative precipitation, and enzyme neutralization tests. Arylsulfatase was located in the periplasmic space when the wild-type strain was cultured with methionine or with inorganic sulfate plus tyramine, but not with inorganic sulfate without tyramine, as the sole sulfur source. Tyramine oxidase was retained in the membrane fraction prepared from cells grown in the presence of tyramine. Arylsulfatase protein was not synthesized in the presence of tyramine and inorganic sulfate by mutant K611, which is deficient in tyramine oxidase (tynA). We conclude that the expression of the arylsulfatase gene (atsA) is regulated by the expression of tynA and that inorganic sulfate serves as a corepressor. In addition, strains mutated in the atsA gene were analyzed by using antibody.  相似文献   

18.
When a mutant (Mao(-)) of Klebsiella aerogenes lacking an enzyme for tyramine degradation (monoamine oxidase) was grown with d-xylose as a carbon source, arylsulfatase was repressed by inorganic sulfate and repression was relieved by tyramine. When the cells were grown on glucose, tyramine failed to derepress the arylsulfatase synthesis. When grown with methionine as the sole sulfur source, the enzyme was synthesized irrespective of the carbon source used. Addition of cyclic adenosine monophosphate overcame the catabolite repression of synthesis of the derepressed enzyme caused by tyramine. Uptake of tyramine was not affected by the carbon source. We isolated a mutant strain in which derepression of arylsulfatase synthesis by tyramine occurred even in the presence of glucose and inorganic sulfate. This strain also produced beta-galactosidase in the presence of an inducer and glucose. These results, and those on other mutant strains in which tyramine cannot derepress enzyme synthesis, strongly suggest that a protein factor regulated by catabolite repression is involved in the derepression of arylsulfatase synthesis by tyramine.  相似文献   

19.
We have isolated a temperature-sensitive mutant of Klebsiella aerogenes unable to grow aerobically at 42 C in standard glucose minimal medium containing 0.03 M ammonium sulfate as a source of nitrogen. This strain, MK810, will grow at this temperature in significantly lower concentrations of ammonia (1 mM) or when ammonia is replaced by a growth rate-limiting source of nitrogen such as histidine or glutamate. A detailed physiological characterization and preliminary biochemical tests support the contention that the mutant has an altered alpha-ketoglutarate dehydrogenase that at the restrictive condition fails to manufacture sufficient succinyl-coenzyme A. We explain the ammonia sensitivity by the dual role of alpha-ketoglutarate as substrate for the formation of succinyl-coenzyme A and glutamate. A defect in the enzyme necessary for the production of succinyl-coenzyme A makes ammonia an overly effective competitor for alpha-ketoglutarate.  相似文献   

20.
Klebsiella aerogenes was found to contain a specific L-serine dehydrase that was induced by threonine, glycine or leucine, but not by its substrate. Cellular concentrations were sensitive to carbon rather than nitrogen sources in the growth medium. A nonspecific isoleucine-sensitive L-threonine dehydrase supplemented the specific L-serine dehydrase activity. K. aerogenes also contains a leucine-inducible L-threonine dehydrogenase which probably initiated a threonine-utilization pathway in which the serine-specific dehydrate participated. Strains that were altered in their ability to metabolize serine differed in either L-serine dehydrase or L-threonine dehydrase activity. Thus, K. aerogenes growing on L-serine as a sole nitrogen source relies upon two enzymes that metabolize the amino acid as subsidiary functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号