首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Necdin is expressed predominantly in postmitotic neurons and serves as a growth suppressor that is functionally similar to the retinoblastoma tumor suppressor protein. Using primary cultures of dorsal root ganglion (DRG) of mouse embryos, we investigated the involvement of necdin in the terminal differentiation of neurons. DRG cells were prepared from mouse embryos at 12.5 days of gestation and cultured in the presence of nerve growth factor (NGF). Immunocytochemistry revealed that necdin accumulated in the nucleus of differentiated neurons that showed neurite extension and expressed the neuronal markers microtubule-associated protein 2 and synaptophysin. Suppression of necdin expression in DRG cultures treated with antisense oligonucleotides led to a marked reduction in the number of terminally differentiated neurons. The antisense oligonucleotide-treated cells did not attempt to reenter the cell cycle, but underwent death with characteristics of apoptosis such as caspase-3 activation, nuclear condensation, and chromosomal DNA fragmentation. Furthermore, a caspase-3 inhibitor rescued antisense oligonucleotide-treated cells from apoptosis and significantly increased the population of terminally differentiated neurons. These results suggest that necdin mediates the terminal differentiation and survival of NGF-dependent DRG neurons and that necdin-deficient nascent neurons are destined to caspase-3-dependent apoptosis.  相似文献   

2.
Tong  J. X  Vogelbaum  M. A  Drzymala  R. E  Rich  K. M 《Brain Cell Biology》1997,26(11):771-777
Ionizing radiation (IR) results in apoptosis in a number of actively proliferating or immature cell types. The effect of IR on rat dorsal root ganglion (DRG) neurons was examined in dissociated cell cultures. After exposure to IR, embryonic DRG neurons, established in cell culture for six days, underwent cell death in a manner that was dose-dependent, requiring a minimum of 8 to 16 Gy. Twenty-five per cent cell loss occurred in embryonic day 15 (E-15) neurons, grown in cell culture for 6 days (“immature”), and then treated with 24 Gy IR. In contrast, only 2% cell loss occurred in E-15 neurons maintained in culture for 21 days ("mature") and then treated with 24 Gy IR. Staining with a fluorescent DNA-binding dye demonstrated clumping of the nuclear chromatin typical of apoptosis. Initiation of the apoptosis occurred within 24 h after exposure to IR. Apoptosis was prevented by inhibition of protein synthesis with cycloheximide. Apoptosis induced by IR occurred more frequently in immature than in mature neurons. Immature DRG neurons have a lower concentration of intracellular calcium ([Ca2+]i) than mature neurons. Elevation of [Ca2+]i by exposure to a high extracellular potassium ion concentration (35 μM) depolarizes the cell membrane with a resultant influx of calcium ions. The activation of programmed cell death after nerve growth factor (NGF) withdrawal is inversely correlated with [Ca2+]i in immature DRG neurons. When treated with high extracellular potassium, these immature neurons were resistant to IR exposure in a manner similar to that observed in mature neurons. These data suggest that [Ca2+]i modulates the apoptotic response of neurons after exposure to IR in a similar manner to that proposed by the “Ca2+ setpoint hypothesis” for control of NGF withdrawal-induced apoptosis.  相似文献   

3.
The role of brain-derived neurotrophic factor (BDNF) in sensory hypersensitivity has been suggested; however the molecular mechanisms and signal transduction that regulate BDNF expression in primary afferent neurons during visceral inflammation are not clear. Here we used a rat model of cystitis and found that the mRNA and protein levels of BDNF were increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. BDNF up-regulation in the L6 DRG was triggered by endogenous nerve growth factor (NGF) because neutralization of NGF with a specific NGF antibody reduced BDNF levels during cystitis. The neutralizing NGF antibody also subsequently reduced cystitis-induced up-regulation of the serine/threonine kinase Akt activity in L6 DRG. To examine whether the NGF-induced Akt activation led to BDNF up-regulation in DRG in cystitis, we found that in cystitis the phospho-Akt immunoreactivity was co-localized with BDNF in L6 DRG, and prevention of the endogenous Akt activity in the L6 DRG by inhibition of phosphoinositide 3-kinase (PI3K) with a potent inhibitor LY294002 reversed cystitis-induced BDNF up-regulation. Further study showed that application of NGF to the nerve terminals of the ganglion-nerve two-compartmented preparation enhanced BDNF expression in the DRG neuronal soma; which was reduced by pre-treatment of the ganglia with the PI3K inhibitor LY294002 and wortmannin. These in vivo and in vitro experiments indicated that NGF played an important role in the activation of Akt and subsequent up-regulation of BDNF in the sensory neurons in visceral inflammation such as cystitis.  相似文献   

4.
Leukaemia inhibitory factor (LIF) and nerve growth factor (NGF) are well characterized regulators of galanin expression. However, LIF knockout mice containing the rat galanin 5' proximal promoter fragment (- 2546 to + 15 bp) driving luciferase responded to axotomy in the same way as control mice. Also, LIF had no effect on reporter gene expression in vitro, neither in the presence or absence of NGF, suggesting that other factors mediate an axotomy response from the galanin promoter. We then addressed the role of nitric oxide (NO) using NGF-deprived rat dorsal root ganglion (DRG) neuron cultures infected with viral vectors containing the above-mentioned construct, and also studied endogenous galanin expression in axotomized DRG in vivo. Blocking endogenous NO in NGF-deprived DRG cultures suppressed galanin promoter activity. Consistent with this, axotomized/NGF-deprived DRG neurons expressed high levels of neuronal NO synthase (nNOS) and galanin. Further, using pharmacological NOS blockers, or adenoviral vectors expressing dominant-negative either for nNOS or soluble guanylate cyclase in vivo and in vitro, we show that the NO-cGMP pathway induces endogenous galanin in DRG neurons. We propose that both LIF and NO, acting at different promoter regions, are important for the up-regulation of galanin, and for DRG neuron survival and regeneration after axotomy.  相似文献   

5.
ABSTRACT: BACKGROUND: Cystitis causes considerable neuronal plasticity in the primary afferent pathways. The molecular mechanism and signal transduction underlying cross talk between the inflamed urinary bladder and sensory sensitization has not been investigated. Results: In a rat cystitis model induced by cyclophosphamide (CYP) for 48 h, the mRNA and protein levels of the excitatory neurotransmitter calcitonin gene-related peptide (CGRP) are increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. Cystitis-induced CGRP expression in L6 DRG is triggered by endogenous nerve growth factor (NGF) because neutralization of NGF with a specific NGF antibody reverses CGRP up-regulation during cystitis. CGRP expression in the L6 DRG neurons is also enhanced by retrograde NGF signaling when NGF is applied to the nerve terminals of the ganglion-nerve two-compartmented preparation. Characterization of the signaling pathways in cystitis- or NGF-induced CGRP expression reveals that the activation (phosphorylation) of extracellular signal-regulated protein kinase (ERK)5 but not Akt is involved. In L6 DRG during cystitis, CGRP is co-localized with phospho-ERK5 but not phospho-Akt. NGF-evoked CGRP up-regulation is also blocked by inhibition of the MEK/ERK pathway with specific MEK inhibitors U0126 and PD98059, but not by inhibition of the PI3K/Akt pathway with inhibitor LY294002. Further examination shows that cystitis-induced cAMP-responsive element binding protein (CREB) activity is expressed in CGRP bladder afferent neurons and is co-localized with phospho-ERK5 but not phospho-Akt. Blockade of NGF action in vivo reduces the number of DRG neurons co-expressing CGRP and p-CREB, and reverses cystitis-induced increases in micturition frequency. Conclusion: A specific pathway involving NGF-ERK5-CREB axis plays an essential role in cystitis-induced sensory activation.  相似文献   

6.
An overlap between subpopulations of nerve growth factor (NGF)-responsive and capsaicin-sensitive dorsal root ganglion (DRG) sensory neurons has been suggested from a number of in vivo studies. To examine this apparent link in more detail, we compared the effects of capsaicin on adult rat DRG neurons cultured in the presence or absence of NGF. Capsaicin sensitivity was assessed histochemically by a cobalt staining method, by measuring capsaicin-induced 45Ca2+ uptake, and by electrophysiological recording of capsaicin-evoked membrane currents. When cultured with NGF, approximately 50% of these adult DRG neurons were capsaicin-sensitive, whereas adult sympathetic neurons or ganglionic nonneuronal cells were insensitive. DRG cultures grown in the absence of NGF, however, were essentially unresponsive to capsaicin. Capsaicin sensitivity could be regained fully within 4-6 days of replacement of NGF. These results indicate that, at least in vitro, NGF can modify the capsaicin sensitivity of adult DRG neurons.  相似文献   

7.
Li HL  Li Z  Qin LY  Liu S  Lau LT  Han JS  Yu AC 《FEBS letters》2006,580(7):1723-1728
We identified a novel gene and named it, "neuronal development-associated protein (NDAP)". We detected NDAP mRNA presence in most tissues including the brain where it was present in the area from the external granular layer to the multiform layer in the cerebral cortex, and in CA1, CA2, CA3 and the dentate gyrus in the hippocampus. Its expression increased transiently in primary cultures of 2-4 day neurons and 1-2 week astrocytes and was significantly reduced in older cultures. Treatment by the neurotrophin, NT-3, significantly attenuated the decline of NDAP in neurons from days 2 to 10, whereas growth factors such as GDNF and insulin, and high potassium levels did not. To elucidate the effects of neurotrophins, we treated day 5 neurons with NT-3, BDNF or NGF for 48 h. NT-3 and BDNF both inhibited downregulation of NDAP mRNA levels but NGF slightly enhanced the already present downregulation; this effect of NGF was significant when examined in day 3 neurons. To investigate the potential function of NDAP, we over-expressed an NDAP-EGFP fusion protein in 4-week-old astrocytes. The newly expressed NDAP gradually aggregated into membrane-bound structures and eventually led to cell death through apoptosis by 24 h. Significant levels of cell death were also observed in NDAP-EGFP transfected HEK293 cells. Thus maintenance of high NDAP levels may cause apoptosis. The different regulations of NDAP expression by neurotrophins indicate that the expression of NDAP might be a checkpoint for apoptosis during neuronal development.  相似文献   

8.
Abstract: The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion with maximal effects at concentrations known to saturate TrkA receptor binding. Displacement of NGF binding to p75NTR by addition of an excess of brain-derived neurotrophic factor abolished NGF's effects on neurite outgrowth and APP metabolism, whereas addition of brain-derived neurotrophic factor alone did not induce neurite outgrowth or affect APP mRNA or protein processing. However, treatment of PC12 cells with C2-ceramide, an analogue of ceramide, the endogenous product produced by the activity of p75NTR-activated sphingomyelinase, mimicked the effects of NGF on cell morphology and stimulation of both APP mRNA levels and APP secretion. Specific stimulation of TrkA receptors by receptor cross-linking, on the other hand, selectively stimulated neurite outgrowth and APP secretion but not APP mRNA levels, which were decreased. These findings demonstrate that in PC12 cells expressing p75NTR and TrkA receptors, binding of NGF to the p75NTR is required to mediate NGF effects on cell morphology and APP metabolism. Furthermore, our data are consistent with NGF having specific effects on p75NTR not shared with other neurotrophins. Lastly, we have shown that specific activation of TrkA receptors—in contrast to p75NTR-associated signaling—stimulates neurite outgrowth and increases nonamyloidogenic secretory APP processing without increases in APP mRNA levels.  相似文献   

9.
Insulin-like growth factor-I (IGF-I) is emerging as an important growth factor able to modulate the programmed cell death (PCD) pathway mediated by the cysteine-dependent aspartate proteases (caspases); however, little is known about the effect of IGF-I after nerve growth factor (NGF) withdrawal in neurons. To begin to understand the neuronal death-sparing effect of IGF-I under NGF-free conditions, we tested whether embryonic sensory dorsal root ganglion neurons (DRG) were able to survive in defined serum-free medium in the presence of IGF-I. We further studied the role of IGF-I signaling and caspase inhibition after NGF withdrawal. NGF withdrawal produced histological changes of apoptosis including chromatin condensation, shrinkage of the perikaryon and nucleus, retention of the plasma membrane, and deletion of single cells. Both IGF-I and Boc-aspartyl (OMe)-fluoromethylketone (BAF), a caspase inhibitor, equally reduced apoptosis after NGF withdrawal. The antiapoptotic effect of IGF-I was completely blocked by LY294002, an inhibitor of PI 3-kinase signaling, but not by the mitogen-activated protein (MAP) kinase/extracellular signal-regulated protein kinase (ERK) activated protein kinase inhibitor PD98059. Functional IGF-I receptors were extensively expressed both in rat and human DRG neurons, although they were most abundant in the neuronal growth cone. Collectively, these findings indicate that IGF-I, signaling though the PI-3 kinase pathway, is important in modulating PCD in cultured DRG neurons after NGF withdrawal, and IGF-I may be important in DRG embryogenesis. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 455–467, 1998  相似文献   

10.
Regulation of amyloid-β (Aβ) precursor protein (APP) expression is complex. MicroRNAs (miRNAs) are expected to participate in the molecular network that controls this process. The composition of this network is, however, still undefined. Elucidating the complement of miRNAs that regulate APP expression should reveal novel drug targets capable of modulating Aβ production in AD. Here, we investigated the contribution of miR-153 to this regulatory network. A miR-153 target site within the APP 3'-untranslated region (3'-UTR) was predicted by several bioinformatic algorithms. We found that miR-153 significantly reduced reporter expression when co-transfected with an APP 3'-UTR reporter construct. Mutation of the predicted miR-153 target site eliminated this reporter response. miR-153 delivery in both HeLa cells and primary human fetal brain cultures significantly reduced APP expression. Delivery of a miR-153 antisense inhibitor to human fetal brain cultures significantly elevated APP expression. miR-153 delivery also reduced expression of the APP paralog APLP2. High functional redundancy between APP and APLP2 suggests that miR-153 may target biological pathways in which they both function. Interestingly, in a subset of human AD brain specimens with moderate AD pathology, miR-153 levels were reduced. This same subset also exhibited elevated APP levels relative to control specimens. Therefore, endogenous miR-153 inhibits expression of APP in human neurons by specifically interacting with the APP 3'-UTR. This regulatory interaction may have relevance to AD etiology, where low miR-153 levels may drive increased APP expression in a subset of AD patients.  相似文献   

11.
NGF has been implicated in forebrain neuroprotection from amyloidogenesis and Alzheimer's disease (AD). However, the underlying molecular mechanisms are still poorly understood. Here, we investigated the role of NGF signalling in the metabolism of amyloid precursor protein (APP) in forebrain neurons using primary cultures of septal neurons and acute septo‐hippocampal brain slices. In this study, we show that NGF controls the basal level of APP phosphorylation at Thr668 (T668) by downregulating the activity of the Ser/Thr kinase JNK(p54) through the Tyr kinase signalling adaptor SH2‐containing sequence C (ShcC). We also found that the specific NGF receptor, Tyr kinase A (TrkA), which is known to bind to APP, fails to interact with the fraction of APP molecules phosphorylated at T668 (APPpT668). Accordingly, the amount of TrkA bound to APP is significantly reduced in the hippocampus of ShcC KO mice and of patients with AD in which elevated APPpT668 levels are detected. NGF promotes TrkA binding to APP and APP trafficking to the Golgi, where APP–BACE interaction is hindered, finally resulting in reduced generation of sAPPβ, CTFβ and amyloid‐beta (1‐42). These results demonstrate that NGF signalling directly controls basal APP phosphorylation, subcellular localization and BACE cleavage, and pave the way for novel approaches specifically targeting ShcC signalling and/or the APP–TrkA interaction in AD therapy.  相似文献   

12.
Antisera against specific sites of the Alzheimer beta Amyloid protein precursor (beta APP) were used to study the effects of nerve and epidermal growth factors on the expression and processing of this protein in PC12 cell cultures. Two major beta APP proteins (140 and 105 kDa) both containing the Kunitz-protease inhibitor insert (KPI), were detected in cell extracts of naive PC12 cells. Treatment of these cultures with nerve growth factor (NGF) induced the release of two beta APP species 125 and 120 kDa, both of which contained the KPI domain and lacked the carboxy-terminal portion of the precursor. The released beta APP contained O-linked sugars. Only one of the released beta APP proteins bound to the lectin Concanavalin A indicating that they differ in their glycosylation. Epidermal growth factor (EGF) also induced the release of beta APP proteins into the culture medium with similar electrophoretic mobilities as those released by NGF.  相似文献   

13.
Programmed cell death (PCD) is a key phenomenon in the regulation of cell number in multicellular organisms. We have shown that reduction of endogenous transforming growth factor beta (TGF-beta) prevents apoptotic PCD of neurons in the developing peripheral and central nervous system, suggesting that TGF-beta is an important mediator of ontogenetic neuron death. Previous studies suggested that there are other pro-apoptotic molecules, nerve growth factor (NGF) and brain-derived neurotrophic factor, that induce cell death in the nervous system. In the developing chick retina, NGF induces PCD by activation of the p75 receptor. We have studied the role of TGF-beta and its putative interdependence with NGF-mediated PCD in the chick retina. We found that TGF-beta is present in the developing chick retina during the period of PCD and is essentially required to regulate PCD of retinal cells. TGF-beta 2, TGF-beta 3 and the ligand-binding TGF-beta receptor can be detected immunocytochemically in the central retina, a region where apoptosis is most prominent during the early period of PCD. Application of a TGF-beta-neutralizing antibody to chick embryos in ovo resulted in a decrease in the number of TUNEL-positive cells and a reduction of free nucleosome levels. In terms of magnitude, reduction of PCD caused by the neutralization of endogenous TGF-beta was equivalent to that seen after anti-NGF application. Neutralization of both factors did not result in a further decrease in apoptosis, indicating that NGF and TGF-beta may act on the same cell population. Furthermore, neutralization of TGF-beta did not affect the expression of NGF or the p75-receptor. Our results suggest that TGF-beta and NGF are both required to regulate cell death in the chick retina in vivo.  相似文献   

14.
Amyloid precursor protein (APP) gene expression was investigated in primary cultures of neurons, astrocytes, microglial cells and oligodendrocytes. Neurons from various rat brain regions, as well as oligodendrocytes, contained RNA encoding APP695, while astrocytes and microglial cells expressed high levels of RNAs for APP770 and APP751. It was studied whether the cell type-specific regulation of APP gene expression could be modified by induction of cellular differentiation in vitro. While neuronal differentiation of PC12 cells has been shown to correspond with an altered pattern of APP splicing, in the primary cultures neither the time in culture nor a treatment of the cells with appropriate differentiation factors affected this pattern.  相似文献   

15.
The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are important for the regulation of survival and differentiation of distinct, largely non-overlapping populations of embryonic sensory neurons. We show here that the multifunctional cytokine transforming growth factor-β (TGF-β) fails to maintain sensory neurons cultured from embryonic day (E) 8 chick dorsal root ganglia (DRG), although DRG neurons are immunoreactive for the TGF-β receptor type II, which is essential for TGF-β signaling. However, in combination with various concentrations of NT-3 and NT-4, but not NGF, TGF-β3 causes a further significant increase in neuron survival. In DRG cell cultures treated with NGF, NT-3, and NT-4, a neutralizing antibody to TGF-β decreases neuron survival suggesting that endogenous TGF-β in these cultures affects the efficacies of neurotrophins. Consistent with this notion and a modulatory role of TGF-β in neurotrophin functions is the observation that TGF-β2 and-β3 immunoreactivities and TGF-β3 mRNA are located in embryonic chick DRG in close association with neurons from E5 onwards. We also show that leukemia inhibitory factor (LIF) significantly decreases NGF-mediated DRG neuron survival. Together, these data indicate that actions and efficacies of neurotrophins are under distinct control by TGF-β and LIF in vitro, and possibly also in vivo. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

16.
In utero immune deprivation of the neurotrophic molecule nerve growth factor (NGF) results in the death of most, but not all, mammalian dorsal root ganglion (DRG) neurons. The recent identification of trk, trkB, and trkC as the putative high affinity receptors for NGF, brain-derived neurotrophic factor, and neurotrophin-3, respectively, has allowed an examination of whether their expression by DRG neurons correlates with differential sensitivity to immune deprivation of NGF. In situ hybridization demonstrates that virtually all neurons expressing trk are lost during in utero NGF deprivation. Most, if not all, neurons expressing trkB and trkC survive this treatment. In contrast, the low affinity NGF receptor, p75NGFR, is expressed in both NGF deprivation-resistant and -sensitive neurons. These experiments show that DRG neurons expressing trk require NGF for survival. Furthermore, at least some of the DRG neurons that do not require NGF express the high affinity receptor for another neurotrophin. Finally, these experiments provide evidence that trk, and not p75NGFR, is the primary effector of NGF action in vivo.  相似文献   

17.
We examined whether nerve growth factor (NGF), an inflammatory mediator that contributes to chronic hypersensitivity, alters the intracellular signaling that mediates the sensitizing actions of PGE2 from activation of protein kinase A (PKA) to exchange proteins directly activated by cAMP (Epacs). When isolated sensory neurons are grown in the absence of added NGF, but not in cultures grown with 30 ng/ml NGF, inhibiting protein kinase A (PKA) activity blocks the ability of PGE2 to augment capsaicin-evoked release of the neuropeptide CGRP and to increase the number of action potentials (APs) evoked by a ramp of current. Growing sensory neurons in culture in the presence of increasing concentrations of NGF increases the expression of Epac2, but not Epac1. An intradermal injection of complete Freund''s adjuvant into the rat hindpaw also increases the expression of Epac2, but not Epac1 in the dorsal root ganglia and spinal cord: an effect blocked by intraplantar administration of NGF antibodies. Treating cultures grown in the presence of 30 ng/ml NGF with Epac1siRNA significantly reduced the expression of Epac1, but not Epac2, and did not block the ability of PGE2 to augment capsaicin-evoked release of CGRP from sensory neurons. Exposing neuronal cultures grown in NGF to Epac2siRNAreduced the expression of Epac2, but not Epac1 and prevented the PGE2-induced augmentation of capsaicin and potassium-evoked CGRP release in sensory neurons and the PGE2-induced increase in the number of APs generated by a ramp of current. In neurons grown with no added NGF, Epac siRNAs did not attenuate PGE2-induced sensitization. These results demonstrate that NGF, through increasing Epac2 expression, alters the signaling cascade that mediates PGE2-induced sensitization of sensory neurons, thus providing a novel mechanism for maintaining PGE2-induced hypersensitivity during inflammation.  相似文献   

18.
Naturally occurring sympathetic neuron death is the result of two apoptotic signaling events: one normally suppressed by NGF/TrkA survival signals, and a second activated by the p75 neurotrophin receptor. Here we demonstrate that the p53 tumor suppressor protein, likely as induced by the MEKK-JNK pathway, is an essential component of both of these apoptotic signaling cascades. In cultured neonatal sympathetic neurons, p53 protein levels are elevated in response to both NGF withdrawal and p75NTR activation. NGF withdrawal also results in elevation of a known p53 target, the apoptotic protein Bax. Functional ablation of p53 using the adenovirus E1B55K protein inhibits neuronal apoptosis as induced by either NGF withdrawal or p75 activation. Direct stimulation of the MEKK-JNK pathway using activated MEKK1 has similar effects; p53 and Bax are increased and the subsequent neuronal apoptosis can be rescued by E1B55K. Expression of p53 in sympathetic neurons indicates that p53 functions downstream of JNK and upstream of Bax. Finally, when p53 levels are reduced or absent in p53+/− or p53−/− mice, naturally occurring sympathetic neuron death is inhibited. Thus, p53 is an essential common component of two receptor-mediated signal transduction cascades that converge on the MEKK-JNK pathway to regulate the developmental death of sympathetic neurons.  相似文献   

19.
Transforming growth factor beta (TGF beta) influences the growth and differentiation of a wide variety of nonneuronal cells (nnc) during embryogenesis and in response to wounding. In the present study TGF beta 1 and TGF beta 2 were examined for their neurotrophic actions on neonatal rat dorsal root ganglion (DRG) neurons with ganglionic nnc in dissociated cultures. TGF beta 1 and TGF beta 2 each increased both neuronal survival and levels of the peptide neurotransmitter substance P (SP) expressed per neuron as well as per culture. TGF beta 1 was maximally effective at a concentration of 40 pM, whereas TGF beta 2 was about 10-fold less potent. Survival effects promoted by simultaneous treatment with both factors were not additive. TGF beta 1 also changed the morphology and distribution of DRG nnc which resulted in clustering of DRG neurons on top of the nnc. Cotreatment of the cultures with two different anti-nerve growth factor (NGF) antibodies eliminated the neurotrophic effects of TGF beta 1. However, treatment with TGF beta 1 did not alter NGF mRNA expression in the cultures nor did it change the amount of NGF in the medium. Further, TGF beta 1 greatly enhanced survival effects and SP stimulation promoted by exogenous NGF at concentrations up to 100 ng/ml. The neurotrophic effects of TGF beta 1 were significantly attenuated by decreasing the proportion of the ganglionic nnc, suggesting a role for these cells in mediating TGF beta 1 action on the neurons. It is hypothesized that the neurotrophic activity of TGF beta depended upon the presence of molecules immunologically related to NGF and that the effects of TGF beta were synergistic with NGF. These observations suggest that TGF beta may play a role in the differentiation and regeneration of DRG neurons in vivo.  相似文献   

20.
Sensory neurons in dorsal root ganglia (DRG) are highly heterogeneous in terms of cell size, protein expression, and signaling activity. To analyze their heterogeneity, threshold-based methods are commonly used, which often yield highly variable results due to the subjectivity of the individual investigator. In this work, we introduce a threshold-free analysis approach for sparse and highly heterogeneous datasets obtained from cultures of sensory neurons. This approach is based on population estimates and completely free of investigator-set parameters. With a quantitative automated microscope we measured the signaling state of single DRG neurons by immunofluorescently labeling phosphorylated, i.e., activated Erk1/2. The population density of sensory neurons with and without pain-sensitizing nerve growth factor (NGF) treatment was estimated using a kernel density estimator (KDE). By subtraction of both densities and integration of the positive part, a robust estimate for the size of the responsive subpopulations was obtained. To assure sufficiently large datasets, we determined the number of cells required for reliable estimates using a bootstrapping approach. The proposed methods were employed to analyze response kinetics and response amplitude of DRG neurons after NGF stimulation. We thereby determined the portion of NGF responsive cells on a true population basis. The analysis of the dose dependent NGF response unraveled a biphasic behavior, while the study of its time dependence showed a rapid response, which approached a steady state after less than five minutes. Analyzing two parameter correlations, we found that not only the number of responsive small-sized neurons exceeds the number of responsive large-sized neurons--which is commonly reported and could be explained by the excess of small-sized cells--but also the probability that small-sized cells respond to NGF is higher. In contrast, medium-sized and large-sized neurons showed a larger response amplitude in their mean Erk1/2 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号