首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α-Ionone, α-methylionone, and α-isomethylionone were converted by Aspergillus niger JTS 191. The individual bioconversion products from α-ionone were isolated and identified by spectrometry and organic synthesis. The major products were cis-3-hydroxy-α-ionone, trans-3-hydroxy-α-ionone, and 3-oxo-α-ionone. 2,3-Dehydro-α-ionone, 3,4-dehydro-β-ionone, and 1-(6,6-dimethyl-2-methylene-3-cyclohexenyl)-buten-3-one were also identified. Analogous bioconversion products from α-methylionone and α-isomethylionone were also identified. From results of gas-liquid chromatographic analysis during the fermentation, we propose a metabolic pathway for α-ionones and elucidation of stereochemical features of the bioconversion.  相似文献   

2.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

3.
A regulated order of adhesion events directs leukocytes from the vascular compartment into injured tissues in response to inflammatory stimuli. We show that on human T cells, the interaction of the β2 integrin leucocyte function–associated antigen-1 (LFA-1) with its ligand intercellular adhesion molecule-1 (ICAM-1) will decrease adhesion mediated by α4β1 and, to a lesser extent, α5β1. Similar inhibition is also seen when T cells are exposed to mAb 24, which stabilizes LFA-1 in an active state after triggering integrin function through divalent cation Mg2+, PdBu, or T cell receptor/ CD3 complex (TCR/CD3) cross-linking. Such cross talk decreases α4β1 integrin–mediated binding of T cells to fibronectin and vascular cell adhesion molecule-1 (VCAM-1). In contrast, ligand occupancy or prolonged activation of β1 integrin has no effect on LFA-1 adhesion to ICAM-1. We also show that T cell migration across fibronectin, unlike adhesion, is mediated solely by α5β1, and is increased when the α4β1-mediated component of fibronectin adhesion is decreased either by cross talk or the use of α4-blocking mAb. The ability of mAb 24 Fab′ fragments to induce cross talk without cross-linking LFA-1 suggests signal transduction through the active integrin. These data provide the first direct evidence for cross talk between LFA-1 and β1 integrins on T cells. Together, these findings imply that activation of LFA-1 on the extravasating T cell will decrease the binding to VCAM-1 while enhancing the subsequent migration on fibronectin. This sequence of events provides a further level of complexity to the coordination of T cell integrins, whose sequential but overlapping roles are essential for transmigration.  相似文献   

4.
Intestinal intraepithelial lymphocytes (IELs) are distributed along the length of the intestine and are considered the frontline of immune surveillance. The precise molecular mechanisms, especially epigenetic regulation, of their development and function are poorly understood. The trimethylation of histone 3 at lysine 27 (H3K27Me3) is a kind of histone modifications and associated with gene repression. Kdm6b is an epigenetic enzyme responsible for the demethylation of H3K27Me3 and thus promotes gene expression. Here we identified Kdm6b as an important intracellular regulator of small intestinal IELs. Mice genetically deficient for Kdm6b showed greatly reduced numbers of TCRαβ+CD8αα+ IELs. In the absence of Kdm6b, TCRαβ+CD8αα+ IELs exhibited increased apoptosis, disturbed maturation and a compromised capability to lyse target cells. Both IL-15 and Kdm6b-mediated demethylation of histone 3 at lysine 27 are responsible for the maturation of TCRαβ+CD8αα+ IELs through upregulating the expression of Gzmb and Fasl. In addition, Kdm6b also regulates the expression of the gut-homing molecule CCR9 by controlling H3K27Me3 level at its promoter. However, Kdm6b is dispensable for the reactivity of thymic precursors of TCRαβ+CD8αα+ IELs (IELPs) to IL-15 and TGF-β. In conclusion, we showed that Kdm6b plays critical roles in the maturation and cytotoxic function of small intestinal TCRαβ+CD8αα+ IELs.Subject terms: Epigenetics, Gene regulation, Immunological disorders, T cells  相似文献   

5.
Several preparations of staphylococcal alpha-toxin and delta-lysin were studied in order to compare hemolytic activity with capacity to lyse bacterial protoplasts. delta-Lysin in relatively low concentration lysed protoplasts of Sarcina lutea, protoplasts of Streptococcus faecalis, and spheroplasts of Escherichia coli. Lysis of bacterial protoplasts by preparations of alpha-toxin appeared to be due to contamination of the preparations with delta-lysin. Data comparing the protoplast-lysing activity of various lytic agents are presented.  相似文献   

6.
7.
8.
The amyloid-β peptide (Aβ) can mediate cell attachment by binding to β1 integrins through an arg-his-asp sequence. We show here that the α5β1 integrin, a fibronectin receptor, is an efficient binder of Aβ, and mediates cell attachment to nonfibrillar Aβ. Cells engineered to express α5β1 internalized and degraded more added Aβ1-40 than did α5β1-negative control cells. Deposition of an insoluble Aβ1-40 matrix around the α5β1-expressing cells was reduced, and the cells showed less apoptosis than the control cells. Thus, the α5β1 integrin may protect against Aβ deposition and toxicity, which is a course of Alzheimer's disease lesions.  相似文献   

9.
The interaction of the α5β1 integrin and its ligand, fibronectin (FN), plays a crucial role in the adhesion of cells to the extracellular matrix. An important intrinsic property of the α5β1/FN interaction is the dynamic response of the complex to a pulling force. We have carried out atomic force microscopy measurements of the interaction between α5β1 and a fibronectin fragment derived from the seventh through tenth type III repeats of FN (i.e., FN7-10) containing both the arg-gly-asp (RGD) sequence and the synergy site. Direct force measurements obtained from an experimental system consisting of an α5β1 expressing K562 cell attached to the atomic force microscopy cantilever and FN7-10 adsorbed on a substrate were used to determine the dynamic response of the α5β1/FN7-10 complex to a pulling force. The experiments were carried out over a three-orders-of-magnitude change in loading rate and under conditions that allowed for detection of individual α5β1/FN7-10 interactions. The dynamic rupture force of the α5β1/FN7-10 complex revealed two regimes of loading: a fast loading regime (>10,000 pN/s) and a slow loading regime (<10,000 pN/s) that characterize the inner and outer activation barriers of the complex, respectively. Activation by TS2/16 antibody increased both the frequency of adhesion and elevated the rupture force of the α5β1/wild type FN7-10 complex to higher values in the slow loading regime. In experiments carried out with a FN7-10 RGD deleted mutant, the force measurements revealed that both inner and outer activation barriers were suppressed by the mutation. Mutations to the synergy site of FN, however, suppressed only the outer barrier activation of the complex. For both the RGD and synergy deletions, the frequency of adhesion was less than that of the wild type FN7-10, but was increased by integrin activation. The rupture force of these mutants was only slightly less than that of the wild type, and was not increased by activation. These results suggest that integrin activation involved a cooperative interaction with both the RGD and synergy sites.  相似文献   

10.
Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvβ6 and αvβ8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mβ6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvβ6-positive CMT-93 cells, whereas mβ8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvβ8-positive M000216 cells. Soluble integrin αvβ6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvβ6/αvβ8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvβ6/β8, where the distal leucine residue dips into a hydrophobic pocket of β6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvβ6/β8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvβ6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.  相似文献   

11.
Membrane traffic is an important regulator of cell migration through the endocytosis and recycling of cell surface receptors such as integrin heterodimers. Intracellular nanovesicles (INVs) are transport vesicles that are involved in multiple membrane trafficking steps, including the recycling pathway. The only known marker for INVs is tumor protein D54 (TPD54/TPD52L2), a member of the TPD52-like protein family. Overexpression of TPD52-like family proteins in cancer has been linked to poor prognosis and an aggressive metastatic phenotype, which suggests cell migration may be altered under these conditions. Here, we show that TPD54 directly binds membrane and associates with INVs via a conserved positively charged motif in its C terminus. We describe how other TPD52-like proteins are also associated with INVs, and we document the Rab GTPase complement of all INVs. Depletion of TPD52-like proteins inhibits cell migration and invasion, while their overexpression boosts motility. We show that inhibition of migration is likely due to altered recycling of α5β1 integrins in INVs.  相似文献   

12.
13.
Representing ∼5% of the human genome, G-protein-coupled receptors (GPCRs) are a primary target for drug discovery; however, the molecular details of how they couple to heterotrimeric G protein subunits are incompletely understood. Here, I propose a hypothetical initial docking model for the encounter between GPCR and Gβγ that is defined by transient interactions between the cytosolic surface of the GPCR and the prenyl moiety and the tripeptide motif, asparagine–proline–phenylalanine (NPF), in the C-terminus of the Gγ subunit. Analysis of class A GPCRs reveals a conserved NPF binding site formed by the interaction of the TM1 and H8. Functional studies using differentially prenylated proteins and peptides further suggest that the intracellular hydrophobic core of the GPCR is a prenyl binding site. Upon binding TM1 and H8 of GPCRs, the propensity of the C-terminal region of Gγ to convert into an α helix allows it to extend into the hydrophobic core of the GPCR, facilitating the GPCR active state. Conservation of the NPF motif in Gγ isoforms and interacting residues in TM1 and H8 suggest that this is a general mechanism of GPCR–G protein signaling. Analysis of the rhodopsin dimer also suggests that Gγ–rhodopsin interactions may facilitate GPCR dimer transactivation.  相似文献   

14.
15.
The ββα-Me restriction endonuclease (REase) Hpy99I recognizes the CGWCG target sequence and cleaves it with unusual stagger (five nucleotide 5′-recessed ends). Here we present the crystal structure of the specific complex of the dimeric enzyme with DNA. The Hpy99I protomer consists of an antiparallel β-barrel and two β4α2 repeats. Each repeat coordinates a structural zinc ion with four cysteine thiolates in two CXXC motifs. The ββα-Me region of the second β4α2 repeat holds the catalytic metal ion (or its sodium surrogate) via Asp148 and Asn165 and activates a water molecule with the general base His149. In the specific complex, Hpy99I forms a ring-like structure around the DNA that contacts DNA bases on the major and minor groove sides via the first and second β4α2 repeats, respectively. Hpy99I interacts with the central base pair of the recognition sequence only on the minor groove side, where A:T resembles T:A and G:C is similar to C:G. The Hpy99I–DNA co-crystal structure provides the first detailed illustration of the ββα-Me site in REases and complements structural information on the use of this active site motif in other groups of endonucleases such as homing endonucleases (e.g. I-PpoI) and Holliday junction resolvases (e.g. T4 endonuclease VII).  相似文献   

16.
17.
18.
The relative activity of Flavobacterium whole cells on the enzymatic synthesis of epoxides from α,β-chlorohydrins, -bromohydrins, and -iodohydrins is described.  相似文献   

19.
20.
Upon plating on basement membrane Matrigel, NIH3T3 cells formed an anastomosing network of cord-like structures, inhibitable by anti-alpha6beta1 integrin antibodies. For NIH3T3 cells transfected with human CD151 protein, the formation of a cord-like network was also inhibitable by anti-CD151 antibodies. Furthermore, CD151 and alpha6beta1 were physically associated within NIH3T3 cells. On removal of the short 8-amino acid C-terminal CD151 tail (by deletion or exchange), exogenous CD151 exerted a dominant negative effect, as it almost completely suppressed alpha6beta1-dependent cell network formation and NIH3T3 cell spreading on laminin-1 (an alpha6beta1 ligand). Importantly, mutant CD151 retained alpha6beta1 association and did not alter alpha6beta1-mediated cell adhesion to Matrigel. In conclusion, the CD151-alpha6beta1 integrin complex acts as a functional unit that markedly influences cellular morphogenesis, with the CD151 tail being of particular importance in determining the "outside-in" functions of alpha6beta1-integrin that follow ligand engagement. Also, antibodies to alpha6beta1 and CD151 inhibited formation of endothelial cell cord-like networks, thus pointing to possible relevance of CD151-alpha6beta1 complexes during angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号