首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commercial samples of bovine serum albumin (BSA) in a complex medium caused growth of 1-cell rabbit embryos to completely hatched blastocysts. Heat treatment of the BSA at 65 or 80 degrees C significantly decreased blastocyst formation and expansion and destroyed the ability to cause blastocyst hatching. Addition of trypsin at levels down to 20 ng/ml caused the formation of hatched blastocysts which degenerated rapidly. The effects of 5 protease inhibitors (ovomucoid trypsin inhibitor, alpha-1-antitrypsin, TAME, TLCK and soybean) were tested. Ovomucoid trypsin inhibitor, TAME and TLCK significantly inhibited blastocyst hatching but only at the highest concentration used. These inhibitors also reduced blastocyst formation and expansion, indicating that their effect was not specifically on blastocyst hatching in vitro. It is concluded that hatching of rabbit blastocysts is probably not dependent on protease action.  相似文献   

2.
The present study aimed to determine the influence of exogenous epidermal growth factor (EGF) on in vitro preimplantation porcine embryo development and its mRNA expression for EGF receptor (EGFR). Oocytes were aspirated from abattoir ovaries, selected and cultured in defined, protein-free media for 44 hr before in vitro fertilization (IVF). Thirty-six hours after IVF, two-cell stage embryos were selected and treated or cultured until embryo treatment. In experiment 1, compact morulae were selected on day 4 after IVF and randomly allocated into 5 groups: NCSU 23 with PVA as group 1; NCSU 23 with PVA and 0.1 ng/ml, 1.0 ng/ml, 10.0 ng/ml EGF as group 2, 3, 4, respectively; NSCU 23 with 0.4% BSA as group 5. In experiment 2, treatment groups were the same as in experiment 1 except that 0.1% crystallized BSA was added to both washing media and all treatment groups instead of PVA. In experiments 3 and 4, two-cell stage embryos were treated and cultured in the same experimental design as experiments 1 and 2, respectively. RT-PCR was used to detect the mRNA expression of EGF receptor in compact morulae and blastocysts. The PCR products were subjected to direct DNA sequencing. There was no significant improvement in the development rate of embryos from compact morulae to blastocysts in the presence of various EGF concentrations (0.1, 1.0, 10.0 ng/ml) versus without EGF addition. They were all significantly lower than those embryos cultured in the continuous presence of 0.4% BSA. However, when a reduced concentration (0.1%) of crystallized BSA was added to all the treatment groups, a significantly lower rate of embryo development was observed in control media (NCSU23 with 0.1% crystallized BSA) compared with those developed in culture media with 0.4% BSA. With the addition of EGF at 10 ng/ml (with 0.1% BSA), embryo development rates were significantly improved over the control group (P < 0.05) and were as good as those rates in 0.4% BSA culture group. When embryos were selected and treated from the 2-cell stage, they did not develop to blastocyst stages after five more days' culture without any protein (BSA) or growth factor addition. When 0.1% BSA was included in the media, blastocyst formation rates were significantly improved by EGF addition at the concentration of both 1.0 or 10 ng/ml (P < 0.05) as compared to 0.0 or 0.1 ng/ml. EGFR mRNA was detected in both compact morulae and blastocyst stages of porcine embryos and confirmed by direct DNA sequencing. Our results indicate that IVM-IVF porcine embryo developmental rates could be improved by the addition of EGF in the culture media with the presence of a reduced amount of defined BSA (>97% albumin). However, EGF alone was not able to elicit any stimulatory effects on embryo development in the absence of protein supplementation. Further studies are needed to investigate the potential synergistic factors in embryo culture media to eventually define the porcine embryo culture media.  相似文献   

3.
To improve rat embryo culture conditions, responses of Wistar 2-cell embryos from 2 breeders to oxygen tension (5 vs 20%) and bovine serum albumin (BSA) (0 vs 3 mg/ml) were examined using rat 1-cell embryo culture medium (mR1ECM). Supplementation of 3 mg/ml BSA significantly stimulated and accelerated development to the blastocyst and expanded blastocyst stages during 72 and 96 h culture, while reduced oxygen tension stimulated cell division. Fetus development after transfer of blastocysts obtained from 72 h culture under 5% O2 with BSA was significantly higher than those cultured under atmospheric oxygen without BSA. However, the nuclear numbers of in vitro cultured blastocysts and fetus development after embryo transfer were still significantly lower than in vivo developed blastocysts, indicating the current culture condition is still suboptimal.  相似文献   

4.
In vitro development of eight-cell hamster embryos to hatching blastocysts requires the presence of amino acids and a group of water-soluble vitamins in the culture medium. The present studies investigated the effect of type of macromolecule on blastocyst hatching and on the requirement for vitamins. Embryos were cultured for 3 days in the presence of the synthetic macromolecule polyvinylalcohol (PVA) and of different types of bovine serum albumin (BSA), both with and without vitamins. The results showed th at eight-cell embryos develop to hatching blastocysts in the presence of vitamins and amino acids with PVA as the only macromolecule in the medium. The presence of certain types of BSA reduced but did not eliminate the need for vitamins. Glutamine alone was as efficient as a complete amino acid supplement in supporting blastocyst hatching. These results demonstrate for the first time that eight-cell hamster embryos can be cultured to hatching blastocysts in a chemically defined medium.  相似文献   

5.
Bovine embryos, derived from in vitro matured (IVM)/in vitro fertilized (IVF) ova, were used to investigate the effects of timing of serum inclusion in the culture medium and different types of blood sera and heat inactivation of the serum on embryo development. In Experiment 1, oocytes at 18 h post insemination were allocated to 1 of the following 4 treatments: 1) TCM-199 + 0.1 mg/ml polyvinylalcohol (PVA), 2) TCM-199 supplemented with 10% bovine calf serum (BCS), 3) PVA medium followed by BCS medium at 47 h, or 4) PVA medium followed by BCS medium at 82 h. Supplementation with BCS at 18 h post insemination suppressed (P<0.05) development of morulae/blastocysts (17.6%) when compared with PVA (30.5%) or with serum supplementation at 47 or 82 h post insemination (32.4 and 27.6%, respectively). However, inclusion of BCS at 18, 47 or 82 h post insemination produced more blastocysts (16.8, 29.3 and 22.1%, respectively; P<0.05) than medium +PVA (8.8%). In Experiment 2, ova were cultured from 18 h to 42 h post insemination in PVA-medium, then >/=2-cell embryos were transferred into serum-supplemented medium for another 168 h. Fetal bovine serum (FBS) +/- heat-inactivation (56 degrees C for 30 min, = heated FBS) suppressed morula/blastocyst development compared with medium + PVA, medium + BCS or medium + heated BCS (P<0.05). Bovine calf serum was superior to FBS in supporting blastocyst development (35.1 and 15.2%, respectively), but there was no difference between BCS and heated BCS. However, heated FBS increased the proportion of blastocysts/>/=8-cell embryos compared with that of FBS (51.0 and 31.4%, respectively; P<0.05). These results indicate that the type of serum supplementation and the timing of its inclusion in the culture medium markedly affect bovine embryo development in vitro, and that heat inactivation of serum with high embryotrophic properties is not necessary.  相似文献   

6.
The present study was designed to investigate the effects of amino acids on the in vitro development of porcine parthenogenetic diploids that were produced by electrostimulation (El-St) and cytochalasin B treatment of in vitro-matured oocytes. The culture medium for development, based on Whitten medium, contained 0.5 mg/ml of hyaluronic acid (mWM), and a two-step culture system in which 290 mOsmol before the 4-cell stage (48 or 72 h after El-St) and, subsequently, 256 mOsmol up to the blastocyst stage (mWMs) were used. In experiment 1, the diploids were cultured for 168 h in mWMs supplemented with 0.01-5 mg/ml of polyvinyl alcohol (PVA). In experiment 2, the diploids were cultured in mWMs containing 0.5 mg/ml of PVA (PVA-mWMs) for 0, 48, or 72 h and then cultured for 168 h after El-St in PVA-mWMs supplemented with essential amino acids for Eagle basal medium without glutamine (E-AA) and nonessential amino acids for minimum essential medium (NE-AA). The results showed that diploids can develop up to the blastocyst stage in mWMs including 0.05-5.0 mg/ml of PVA (49%-53% vs. 63%, P > 0.05), but the replacement of BSA with PVA alone could not support the expansion of blastocysts (11%-20% vs. 39%, P < 0.05) or their proliferation. The addition of both E-AA and NE-AA (E+NE-AA) to PVA-mWMs from the 1-cell stage resulted in severe inhibition of the development of diploids to the blastocyst stage. However, the addition of E+NE-AA to PVA-mWMs later than 48 or 72 h after El-St well supported the development of diploids to the blastocyst stage and supported the expansion of blastocysts. In experiments 3-5, which types of amino acids in E-AA inhibited the development of diploids during the first 48 h after El-St were determined. In experiment 6, the stimulatory effects of E-AA and/or NE-AA after the 4-cell stage were examined. The results of those experiments clearly showed that the presence of nonpolar E-AA, especially for valine, leucine, isoleucine, and methionine, during the first 48 h after El-St caused severe delay of the first division and inhibition of development beyond the 4-cell stage. The presence of NE-AA after the 4-cell stage produced a favorable condition for the expansion of blastocysts (33%), whereas the presence of E-AA increased the cleavage rates of the diploids after compaction and the total number of cells in the blastocysts (53.7 +/- 2.7) and inner cell mass (12 +/- 0.5). These findings indicate that the presence of nonpolar E-AA in a protein-free medium during the first 48 h causes the 4-cell block in porcine parthenogenetic diploids.  相似文献   

7.
With the aim of developing a serum-free, cell-free culture system for embryo development, in vitro-matured (IVM) and -fertilized (IVF) bovine oocytes were cultured in TCM 199 with the following supplements: 1) BSA alone (10 mg/ml); 2) BSA with ITS (5 mug/ml insulin, 5 mug/ml transferrin and 5 ng/ml selenium; BSAITS medium); 3) estrous cow serum alone (ECS; 10%); or 4) ECS with BOEC (bovine oviduct epithelial cells) (Experiment 1). In Experiment 2, embryos were cultured in BSAITS medium with or without feeding with fresh medium on Day 4 (day of insemination = Day 0). Embryos were evaluated on Day 2 for first cleavage, on Day 7 for morulae and blastocysts, and on Day 8 for blastocysts. Blastocysts from Experiment 1 were frozen in 10% glycerol in PBS, thawed and further cultured in ECS medium with BOEC for 48 h, and evaluated for formation of a distinct blastocoel, or expansion and hatching of blastocysts. In vivo-developed, Grade-1 and Grade-2, 7-d-old embryos served as control for the freezing, thawing and subsequent culture procedures. The percentage of first cleavage did not differ between the treatments (74 to 79% in Experiment 1 and 80 to 83% in Experiment 2). The percentage of blastocysts developed in BSAITS medium did not differ from that in ECS medium whether BOEC were present or not. However, medium with BSA alone had fewer blastocysts than any other culture system (P<0.05). Feeding embryos with fresh BSAITS medium on Day 4 did not lead to any further increase in the proportion of blastocysts. The culture systems had a significant effect on the post-thaw viability of blastocysts developed in them (P<0.001). Blastocysts developed in BSAITS medium had better (P<0.05) viability (14/38) than those from medium with ECS alone (1/27) or with ECS and BOEC (3/37). The post-thaw survival of control embryos was 80% (n=30). One of the three transfers of BSAITS-treated, frozen-thawed blastocysts resulted in a pregnancy. The results indicate that a serum-free, cell-free culture system can support the development of IVM-IVF bovine oocytes up to the blastocyst stage with better viability than a complex co-culture system.  相似文献   

8.
9.
Eckert J  Niemann H 《Theriogenology》1995,43(7):1211-1225
This study examined the role of protein supplementation at the various steps of the in vitro production of bovine embryos derived from two different morphological categories of COC. The basic medium was TCM 199 and was supplemented with hormones during maturation in vitro and either estrous cow serum (ECS), bovine serum albumin (BSA) at various concentrations or polyvinyl-alcohol (PVA). Fertilization in vitro was carried out using frozen-thawed semen or one bull in Fert-talp containing heparin, hypotaurin and epinephrine and either 6 mg/ml BSA or 1 mg/ml PVA. In vitro culture up to the blastocyst stage was performed in TCM 199 supplemented with either ECS, BSA or PVA. The first experiment investigated the influence of different medium-supplements (ECS, BSA or PVA) on nuclear maturation and revealed no significant differences among treatment groups nor between categories of COC (63.9% to 74.9% and 48.9% to 77.0%, respectively). The time course of in vitro fertilization was elucidated in Experiment 2 in medium supplemented with either protein or PVA during maturation and fertilization. Penetration was not affected (70.9% to 79.3% penetration 12 h after onset of oocyte-sperm-co-incubation), but formation of pronuclei was decreased (P < 0.05) 12 and 19 h after onset of oocyte-sperm-co-incubation and was retarded in medium supplemented with PVA (12 h: 63.8 vs 21.4 %; 19 h: 57.5 vs 20.8 %, respectively) while cleavage was not affected. In Experiment 3, six treatment groups were formed in which the two different morphological categories of cumulus-oocyte-complexes (COC) were incubated in basic medium supplemented with 1) ECS during maturation and embryo culture and BSA during fertilization; 2) PVA during maturation and embryo culture, fertilization medium with PVA; 3) PVA during maturation and embryo culture, fertilization medium with BSA; 4) BSA (1 mg/ml) during maturation, fertilization and embryo culture; 5) BSA (6 mg/ml) during maturation, fertilization and embryo culture; and 6) BSA (10 mg/ml) during maturation, fertilization and embryo culture. The rates of cleavage and the development to morulae or blastocysts did not differ (P > 0.05) among treatment groups and between both categories of COC and were showing a high degree of variability (cleavage 54.0% to 65.1% and 41.3% to 55.7%, respectively; morulae 25.3% to 53.0% and 26.0% to 51.2%, respectively; blastocysts 5.4% to 24.7% and 0.6% to 20.3%, respectively). Parthenogenetic activation only rarely occurred in medium containing PVA throughout all steps of in vitro production of bovine embryos (Experiment 4) and led to early cleavage stages (8%), but no development to morula- or blastocyst-stages was observed. It is concluded that 1) formation of pronuclei was retarded in medium lacking protein-supplementation, indicating that BSA is required for regular fertilization in vitro and 2) under our experimental conditions, protein-supplementation is not necessary for maturation and development up to the blastocyst stage in vitro.  相似文献   

10.
Orsi NM  Leese HJ 《Theriogenology》2004,61(2-3):561-572
Bovine serum albumin (BSA) is an embryotrophic macromolecule used in embryo culture media, which is commonly replaced with synthetic compounds, such as polyvinyl alcohol (PVA). This study compared the effect of BSA and PVA on the development, blastocyst cell number and amino acid metabolism of preimplantation bovine embryos in vitro. Embryos were produced by in vitro maturation and fertilization of immature oocytes from abattoir-derived ovaries. Zygotes were cultured in synthetic oviduct fluid with either 4 mg/ml BSA (SOFaaBSA) or 1 mg/ml PVA (SOFaaPVA) in microdrops with a mineral oil overlay at 39 degrees C under a 5% O2/5% CO2/90% N2 atmosphere. Blastocyst rate and cell numbers were determined after 123 h of culture. In parallel, single expanding blastocysts grown in either medium were incubated in microdrops for 12 h. Amino acid profile of spent drops was determined by high performance liquid chromatography. Replacing BSA with PVA depressed blastocyst rate and cell numbers, and led to quantitative and qualitative differences in amino acid appearance, disappearance and turnover. These differences could partly be due to an increase in free intracellular amino acid concentration in SOFaaBSA embryos derived from hydrolysis of endocytosed BSA, and argue against the inclusion of PVA in bovine embryo culture media.  相似文献   

11.
《Theriogenology》2013,79(9):2110-2119
The objective was to establish an efficient defined culture medium for bovine somatic cell nuclear transfer (SCNT) embryos. In this study, modified synthetic oviductal fluid (mSOF) without bovine serum albumin (BSA) was used as the basic culture medium (BCM), whereas the control medium was BCM with BSA. In Experiment 1, adding polyvinyl alcohol (PVA) to BCM supported development of SCNT embryos to blastocyst stage, but blastocyst formation rate and blastocyst cell number were both lower (P < 0.05) compared to the undefined group (6.1 vs. 32.6% and 67.3 ± 3.4 vs. 109.3 ± 4.5, respectively). In Experiment 2, myo-inositol, a combination of insulin, transferrin and selenium (ITS), and epidermal growth factor (EGF) were added separately to PVA-supplemented BCM. The blastocyst formation rate and blastocyst cell number of those three groups were dramatically improved compared with that of PVA-supplemented group in Experiment 1 (18.5, 23.0, 24.1 vs. 6.1% and 82.7 ± 2.0, 84.3 ± 4.2, 95.3 ± 3.8 vs. 67.3 ± 3.4, respectively, P < 0.05), but were still lower compared with that of undefined group (33.7% and 113.8 ± 3.4, P < 0.05). In Experiment 3, when a combination of myo-inositol, ITS and EGF were added to PVA-supplemented BCM, blastocyst formation rate and blastocyst cell number were similar to that of undefined group (30.4 vs. 31.1% and 109.3 ± 4.4 vs. 112.0 ± 3.6, P > 0.05). In Experiment 4, when blastocysts were cryopreserved and subsequently thawed, there were no significant differences between the optimized defined group (Experiment 3) and undefined group in survival rate and 24 and 48 h hatching blastocyst rates. Furthermore, there were no significant differences in expression levels of H19, HSP70 and BAX in blastocysts derived from optimized defined medium and undefined medium, although the relative expression abundance of IGF-2 was significantly decreased in the former. In conclusion, a defined culture medium containing PVA, myo-inositol, ITS, and EGF supported in vitro development of bovine SCNT embryos.  相似文献   

12.
The employment of protein-free medium for the culture of ovine embryos collected at the 1-2 cell stage from superovulated ewes was investigated. For this purpose sheep zygotes were randomly allocated in four treatment groups: T1) CZB medium + bovine serum albumin (BSA) on sheep oviductal monolayer (SOM), T2) CZB + polyvinyl alcohol (PVA) + SOM, T3) CZB + PVA + SOM supplemented with inositol (I) and serine (S), T4) TCM 199 + 10% fetal calf serum + SOM. Standard culture conditions were 2 ml of medium in 35 mm Petri dishes, under 5% CO2 in air at 39 degrees C. The percentages of morulae and blastocysts were recorded after 4 and 7 days of culture. After 4 days of culture there was no significant difference (P > 0.05) in the percentage of morulae between embryos cultured in T1 (86%), T2 (85%), T3 (88.8%), and T4 (87.5%). After 7 days the percentages of blastocysts were T1 (70%), T2 (50%), T3 (55.5%) and T4 (46.8%). These data suggest that a protein-free medium, CZB + PVA and CZB + PVA + I + S, can support ovine preimplantation embryo development in vitro; however CZB medium supplemented with BSA enhances development to blastocyst.  相似文献   

13.
Choi YH  Lee BC  Lim JM  Kang SK  Hwang WS 《Theriogenology》2002,58(6):1187-1197
This study was conducted to establish an effective culture system for supporting in vitro development of cloned bovine embryos and to evaluate whether improved development in the optimal culture system could contribute to enhancing pregnancy and delivery outcomes after transfer. Enucleated oocytes at the metaphase II stage were reconstructed with serum-starved ear fibroblasts and cloned embryos were subsequently cultured for 168 h in vitro. In Experiment 1, cloned embryos were cultured in either modified Charles Rosenkrans 2 amino acid medium (mCR2aa) or modified synthetic oviduct fluid medium (mSOF). More (P < 0.05) 2-cell embryos (78% versus 92%), morulae (51% versus 69%) and blastocysts (2% versus 39%) were obtained after culture in mSOF than after culture in mCR2aa. In Experiment 2, cloned embryos were successively cultured in mSOF supplemented with various macromolecules during different periods of culture. A successive culture of oocytes in BSA-containing medium for 72 h and then in FBS-containing medium for the next 96 h yielded a higher rate of blastocyst formation (49% versus 25-36%) than other combinations (BSA to BSA or PVA to PVA, BSA or FBS). This macromolecule supplementation also significantly increased the number of total blastomeres (117.3 cells/blastocyst) and inner cell mass cells (ICM, 49.7 cells/blastocyst), and the ratio of ICM cells to trophoblast cells (TB, 0.98). In Experiment 3, a total of 85 blastocysts obtained from each 2-step culture were transferred individually to recipient cows at the end of the culture period and 32 pregnancies (38%) were diagnosed on Day 60 after transfer. However, no (P > 0.05) significant differences due to culture were apparent in the pregnancy outcome. Although six calves were produced using the 2-step culture regime of either BSA-BSA or PVA-FBS, no calves were produced using the successive culture of BSA then FBS, which optimized preimplantation development. In conclusion, mSOF has more potential to support the development of clone embryos than mCR2aa, and successive supplementation of BSA and FBS to mSOF further promotes blastocyst formation. However, enhanced development in vitro might not directly contribute to improving pregnancy outcomes.  相似文献   

14.
Eight-cell embryos were recovered from mated golden hamsters that had been superovulated with pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). Embryos were cultured for 24 or 32 h in a defined medium (modified Tyrode's solution) designed for fertilization of hamster oocytes in vitro. This medium was supplemented in some experiments with amino acids (glutamine, phenylalanine, methionine and isoleucine) and with vitamins (Eagle's Minimum Essential Medium vitamin supplement). At the end of the culture period, the numbers of embryos developing to the blastocyst stage were recorded. In other experiments, the effects of varying the osmotic pressure (225, 250, 275 and 300 m0smol/kg) and the pH (6.8 and 7.4) of the culture medium on blastocyst formation were examined. A difference was found between the ability of early 8-cell embryos (approx. 54 h post-egg activation) and late 8-cell embryos (approx. 62 h post-egg activation) to develop in culture. In the unsupplemented culture medium, only 2% of early 8-cell embryos developed to the blastocyst stage compared with 22% of late 8-cell embryos. A marked effect of the four amino acids on development was found. In the presence of amino acids 36% of early 8-cell embryos developed into blastocysts (18-fold increase). The amino acids also increased the percentage of late 8-cell embryos that developed into blastocysts from 22% to 66%. These data suggest that an important metabolic change may occur in hamster embryos during a critical period at the 8-cell stage of development. No additional effect on development was observed when vitamins were included in the culture medium. No significant effect of either osmotic pressure of pH of the culture medium on development was found. When blastocysts formed from cultured 8-cell embryos were transferred surgically to pseudopregnant hamsters, about 25% developed into normal-looking fetuses and 5 normal-looking young were born, 4 of which have survived. These results represent an approach towards achieving complete preimplantation development of hamster embryos in vitro.  相似文献   

15.
This study examined the effects of fetal calf serum (FCS) supplementation of culture medium on blastulation and hatching of bovine morulae cultured in vitro. The presumptive zygotes derived from in vitro maturation and fertilization (IVM/IVF) were cultured in the modified synthetic oviduct fluid medium containing 3 mg/ml BSA (mSOF-BSA). At 120 h post insemination, morulae were randomly assigned to culture with mSOF-BSA (control) or mSOF containing 5% FCS (mSOF-FCS) instead of BSA. The replacement of BSA with FCS in mSOF significantly increased the percentage of blastocyst formation from Day 6 to Day 10 (Day 0 = the day of in vitro insemination) and the hatching rate of embryos on Days 8 and 9. The total number of cells in morulae and blastocysts on Day 6, in blastocysts on Day 7, and in blastocysts and hatched blastocysts on Day 8 were similar among the treatments. However, the replacement of BSA with FCS in mSOF significantly increased the total number of cells in hatched blastocysts on Day 10. Although the time of blastulation of embryos was significantly accelerated by the replacement of BSA with FCS in mSOF, the total number of cells in embryos at blastulation was lowered. The total number of cells in embryos at blastulation showed a time-dependent decrease when the embryos were cultured in mSOF-BSA. In contrast, the total number of cells in embryos that were cultured in mSOF-FCS depended little on the time after in vitro insemination. The results indicate that FCS supplementation of culture medium increased the percentage of embryos developing to the blastocyst stage without an increase in the total number of cells. However, an acceleration in the hatching rate and an increase in the total number of cells in hatched blastocysts were observed, compared with that in BSA-supplemented medium. It is suggested that FCS in the culture medium initiates earlier blastulation with fewer total numbers of cells in the morulae than BSA during in vitro culture of bovine embryos.  相似文献   

16.
This study was conducted to examine the effect of a quick-freezing protocol on morphological survival and in vitro development of mouse embryos cryopreserved in ethylene glycol (EG) at different preimplantation stages. One-cell embryos were harvested from 6-to 8-wk-old CB6F1 superovulated mice, 20 to 23 h after pairing with males of the same strain and hCG injection. The embryos were cultured in human tubal fluid (HTF) containing 4 mg/ml BSA under mineral oil at 37 degrees C in 5% CO(2) plus 95% room air at maximal humidity. Twenty-four to 96 h after collection, the embryos were removed from culture and frozen at the 2 cell, 4 to 8-cell, compact morula, early blastocyst, expanding blastocyst and expanded blastocyst stages. To perform the quick-freeze procedure, embryos were equilibrated in Dulbecco's phosphate buffered saline (DPBS) + 10 % fetal bovine serum (FBS) + 0.25 M sucrose + 3 M ethylene glycol (freeze medium) for 20 min at room temperature (22 to 26 degrees C) and loaded in a single column of freeze medium into 0.25-ml straws (4 to 5 embryos per straw). The straws were held in liquid nitrogen vapor for 2 min and immersed in liquid nitrogen. Embryos were thawed by gentle agitation in a 37 degrees C water bath for 20 sec and transferred to DPBS + 10 % FBS + 0.5 M sucrose (re-hydration medium) for 10 min at room temperature, rinsed 2 times in HTF plus 4 mg/ml BSA and then cultured for 24 to 96 h. Survival of embryos was based on their general morphological appearance after thawing and their ability to continue development upon subsequent culture in vitro. Survival of blastocysts after thawing also required expansion or reexpansion of the blastocoel after several hours in culture. Significant differences were found in the survival and development of mouse embryos at different developmental stages quick-frozen in ethylene glycol and sucrose: 2-cell embryos 43/84 (51%), 4 to 8-cell embryos 44/94 (47%), morulae and early blastocysts 56/70 (80%; P相似文献   

17.
The regulation of trophectoderm differentiation in mouse embryos was studied by inhibiting DNA synthesis with aphidicolin, a specific inhibitor of DNA polymerase alpha. Embryos were exposed to aphidicolin (0.5 micrograms/ml) for 16 h at various preimplantation stages and scored for their ability to form a blastocyst and develop beyond the blastocyst stage. Embryos were most sensitive to aphidicolin at the late 4-cell stage and became progressively less sensitive as they developed. Aphidicolin inhibited blastocyst formation by 70%, 100%, 77%, and 24% after treatment at the 2-cell, 4-cell, noncompacted 8-cell, and compacted 8-cell stages, respectively. Although the inhibitory effect of aphidicolin on blastocyst formation decreased markedly as 8-cell embryos underwent compaction, developmental capacity beyond the blastocyst stage was poor after treatment of either noncompacted or compacted 8-cell embryos. Treatment at the morula and early blastocyst stages was less harmful to embryos than treatment at earlier stages but reduced the number of trophoblast outgrowths by interfering with hatching. Autoradiographic analysis showed that during aphidicolin treatment, incorporation of 3H-thymidine was inhibited over 90% at all stages examined, indicating an inhibition of DNA synthesis. Because inhibition of blastocyst formation by aphidicolin decreased at the compacted 8-cell stage, we suggest that approximately the first half of the fourth DNA replication cycle is critical for subsequent blastocyst formation. Furthermore, the poor further development of blastocysts formed after aphidicolin treatment of compacted 8-cell embryos suggests that the DNA replication requirements for initial trophectoderm differentiation are distinct from requirements for further development of blastocysts in vitro.  相似文献   

18.
Frozen-thawed spermatozoa collected from a beef bull (Japanese Black) were used for in vitro fertilization (IVF) of matured oocytes obtained from dairy (Holstein) and beef (Japanese Black) females. Embryos were examined for fertilization, cleavage rate, interval between insemination and blastocyst production (experiment I), total cell number per embryo and sex ratio during blastocyst formation (experiment II), and blastocyst production rate of zygotes that developed to 2-, 4-, and 8-cell stages at 48h post-fertilization (experiment III). Fertilized oocytes were cultured in vitro on a cumulus cell co-culture system. The fertilization and cleavage rate of oocytes groups were similar, however, the blastocyst production rate was greater (P<0.05) in hybrid than from purebred embryos (27% versus 20%). Development of blastocysts produced from hybrid embryos developed at a faster rate than blastocysts produced from the straightbred embryos. In hybrid embryos, blastocyst production was significantly greater on day 7 (56%) and gradually decreased from 20% on day 8 to 17% on day 9. In contrast, blastocyst production rate from the purebred embryos was lower on day 7 (17%), increasing on day 8 to 59% and then decreased on day 9 to 24%. The total number of cells per embryo and sex ratio of in vitro-produced blastocysts were not different between hybrid and purebred embryos. The number of blastocysts obtained from embryos at the 8-cell stage of development by 48h post-fertilization (94%) was greater (P<0.01) than the number of zygotes producing blastocysts that had developed to the 4-cell stage (4%) and the 2-cell stage (2%) during the same interval. These results show that the blastocyst production rate and developmental rate to the blastocyst stage were different between hybrid and purebred embryos, and that almost all of the in vitro-produced blastocysts were obtained from zygotes that had developed to the 8-cell stage 48h post-fertilization.  相似文献   

19.
Yang BK  Yang X  Foote RH 《Theriogenology》1993,40(3):521-530
Growth factors were studied as a means of increasing the development of in vitro matured (IVM) and in vitro fertilized (IVF) oocytes into morulae or blastocysts. Cell numbers of blastocysts were also counted. In Experiment 1, 2- to 8-cell embryos derived from bovine IVM/IVF oocytes were randomly allotted to one of 3 culture groups: a) synthetic oviduct fluid (SOF); b) SOF + 10 ng/ml epidermal growth factor (EGF); or c) SOF + 100 ng/ml EGF; all 3 culture media contained 10% fetal bovine serum. Culture resulted in 12%, 23% and 14% (P>0.05), respectively, developing into morulae and blastocysts. In Experiment 2, 5 ng/ml of transforming growth factor B (1) (TGFB (1)) added to CR(1aa) medium containing BSA increased the percentage of blastocysts to 56% vs 40% for the control (P<0.05). In Experiment 3, EGF and TGFB(1), added singly and in combination to CR(1aa) did not produce a synergistic effect. More embryos developed into morulae and blastocysts (45%) in a bovine oviduct epithelial co-culture than in any other treatment except in CR(1aa) + EGF (34%; P>0.05). In Experiment 4, 0, 1 and 5 ng/ml of platelet derived growth factor (PDGF) added to CR(1aa) yielded 39%, 70% and 52% morulae and blastocysts, respectively (P<0.05). Cell number was not increased, indicating that growth factors can increase the proportion of embryos that develop into morulae and blastocysts without an increase in the cell number.  相似文献   

20.
Development of in vitro-produced bovine embryos was studied in 3 two-step culture media: synthetic oviduct fluid (SOF), Gardner's G1/G2, and control (hamster embryo culture medium with 11 amino acids [HECM-6] followed by tissue culture medium 199 + 10% bovine calf serum). Modifications were made to reduce or eliminate protein. Glycolysis and Krebs cycle activity of morulae and blastocysts developed from selected immature oocytes were measured. There were no differences in development to the morula and blastocyst stages between SOF, G1/G2, or control (41%, 36%, and 46%, respectively), although more blastocysts developed in control medium than in G1/G2 (46%, 30%, respectively). Reducing or removing BSA during the initial culture period did not significantly reduce development to blastocyst (31%, 33%, respectively), although development was reduced in SOF with BSA removed from the final culture period (19%). There were no differences in development to the blastocyst stage between SOF, SOF with BSA removed during the initial culture period, and control (44%, 32%, 49%, respectively), but development was reduced in chemically defined protein-free medium throughout the culture period (21%). Krebs cycle activity did not differ between treatments; however, glycolysis was highest in the control embryos and lowest in embryos cultured in protein-free medium. Embryos that developed in the presence of serum appeared dark and granular and had elevated glycolytic rates compared to embryos developed in completely defined medium. This study shows that both metabolism and blastocyst development of embryos are altered by different culture media, implying a functional linkage between these two indicators of successful embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号