首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diverse benthic communities in streams include a wide variety of predators with different habitat preferences, e.g. for pools or riffles. We hypothesised that these preferences result in mesohabitat-specific predator community structures with quantitative differences concerning predation intensity by vertebrate and invertebrate predators, importance of intraguild predation, or top–down pressure. This hypothesis was evaluated for a small submontane stream by means of mesohabitat-specific quantification of prey consumption by two benthivorous fish species (Gobio gobio and Barbatula barbatula) and several invertebrate predators. The estimation was based on daily food rations and diet composition of predators and mesohabitat-specific predator biomass. We found clear differences between the two mesohabitat types. Predator food webs were less complex in pools than in riffles. Fish predation was more important than invertebrate predation in pools, and intraguild predation had a higher relative importance in these mesohabitats. These differences were probably caused by the mesohabitat use of G. gobio, the largest top predator, which preferred pools. Consequently, the predator food webs were more similar between the mesohabitats when fish were absent. Top–down pressure on primary consumers by all predators together was lowest in pools without fish, but the effect was not significant. Omnivory (including cannibalism) was intense, but its potentially destabilising effects were probably counterbalanced by mesohabitat connectivity. From the results of our experimental study, we conclude that even in small stream ecosystems, food web structures and predation pathways can differ between mesohabitats and that a mesohabitat-specific consideration will help to explain the variety of top–down effects on benthic communities.  相似文献   

2.
Neural networks and multiple linear regression models of the abundance of brown trout (Salmo trutta L.) on the mesohabitat scale were developed from combinations of physical habitat variables in 220 channel morphodynamic units (pools, riffles, runs, etc.) of 11 different streams in the central Pyrenean mountains. For all the 220 morphodynamic units, the determination coefficients obtained between the estimated and observed values of density or biomass were significantly higher for the neural network (r 2 adjusted= 0.93 and r 2 adjusted=0.92 (p<0.01) for biomass and density respectively with the neural network, against r 2 adjusted=0.69 (p<0.01) and r 2 adjusted = 0.54 (p<0.01) with multiple linear regression). Validation of the multivariate models and learning of the neural network developed from 165 randomly chosen channel morphodynamic units, was tested on the 55 other channel morphodynamic units. This showed that the biomass and density estimated by both methods were significantly related to the observed biomass and density. Determination coefficients were significantly higher for the neural network (r 2 adjusted =0.72 (p<0.01) and 0.81 (p<0.01) for biomass and density respectively) than for the multiple regression model (r 2 adjusted=0.59 and r 2 adjusted=0.37 for biomass and density respectively). The present study shows the advantages of the backpropagation procedure with neural networks over multiple linear regression analysis, at least in the field of stochastic salmonid ecology.  相似文献   

3.
Since periphytic biofilm is an important source of food in lotic ecosystems, it is important to understand how key ecological factors affect the accrual and loss of algal biomass and sediment in the biofilm. We designed a field experiment to evaluate the effects of mesohabitat type (pools and riffles), grazing fish (control and exclusion), and substrate roughness (smooth and rough) on chlorophyll a, ash-free dry mass (AFDM), and total dry mass in a subtropical stream. Mesohabitat type did not influence the effect of grazers on periphyton. However, rough substrates accumulated more total dry mass in pools than in riffles, while smooth substrates accumulated similar amounts of total dry mass in both mesohabitats. The accrual of AFDM and chlorophyll a was greater on rough than on smooth substrates, regardless of mesohabitat. Treatments without fish accrued more total dry mass, AFDM, and chlorophyll a than treatments with fish, showing that fish play a major role in this stream by removing sediment and algal biomass. These results suggest that habitat simplification in the scale of substrate roughness and loss of large grazers may impact the accrual and loss of algal biomass and sediment in lotic ecosystems.  相似文献   

4.
1. The spatial heterogeneity of ecosystems as well as temporal activity patterns of organisms can have far‐reaching effects on predator–prey relationships. We hypothesised that spatiotemporal constraints in mesohabitat use by benthic fish predators would reduce habitat overlap with benthic invertebrates and lead to mesohabitat‐specific predation risks. 2. We analysed the spatiotemporal activity patterns of two small‐bodied benthivorous fishes, gudgeon (Gobio gobio) and stone loach (Barbatula barbatula), and of benthic invertebrates in a small temperate stream during three 24‐h field experiments. By applying a novel method of field video observation, we monitored the spatiotemporal foraging behaviour of the fish in their natural environment. A parallel analysis of invertebrate mesohabitat use by means of small area Hess sampling allowed a direct estimation of habitat overlap at a pool–riffle scale. 3. Gudgeon showed a dominant spatial activity pattern preferring pools at all times of day, whereas stone loach used both mesohabitats but with a distinct temporal (nocturnal) activity pattern. The patterns of residence were not identical with those of active foraging. Invertebrate community composition differed significantly between mesohabitats but not between times of day. More than half of the total dissimilarity between pools and riffles was accounted for by six invertebrate taxa. Five of these were subject to higher fish predation in pools than in riffles. The total prey consumption of the two fish species together in pools was about three times as high as in riffles. Trophic niche breadth of stone loach and thus its predation range was broader than that of gudgeon. 4. These results indicate that the potential predation risk for stream invertebrates depends on the combination of spatial and temporal patterns of both predator and prey. Given the distinct differences in predation risk found between pools and riffles, we conclude that spatial heterogeneity at the mesohabitat scale can influence mechanisms and consequences of selective predation. We also suggest that the analysis of spatiotemporal predator–prey relationships should not be based on the premise that the main residence habitat and active foraging habitat of a predator are identical.  相似文献   

5.
In this study, we focused on the drivers of micro- and mesohabitat variation of drift in a small trout stream with the goal of understanding the factors that influence the abundance of prey for drift-feeding fish. We hypothesized that there would be a positive relationship between velocity and drift abundance (biomass concentration, mg/m3) across multiple spatial scales, and compared seasonal variation in abundance of drifting terrestrial and aquatic invertebrates in habitats that represent the fundamental constituents of stream channels (pools, glides, runs, and riffles). We also examined how drift abundance varied spatially within the water column. We found no relationship between drift concentration and velocity at the microhabitat scale within individual pools or riffles, suggesting that turbulence and short distances between high- and low-velocity microhabitats minimize changes in drift concentration through settlement in slower velocity microhabitats. There were also minimal differences in summer low-flow drift abundance at the mesohabitat scale, although drift concentration was highest in riffle habitats. Similarly, there was no differentiation of drifting invertebrate community structure among summer samples collected from pools, glides, runs, and riffles. Drift concentration was significantly higher in winter than in summer, and variation in drift within individual mesohabitat types (e.g., pools or riffles) was lower during winter high flows. As expected, summer surface samples also had a significantly higher proportion of terrestrial invertebrates and higher overall biomass than samples collected from within the water column. Our results suggest that turbulence and the short length of different habitat types in small streams tend to homogenize drift concentration, and that spatial variation in drift concentrations may be affected as much by fish predation as by entrainment rates from the benthos. Handling editor: Robert Bailey  相似文献   

6.
7.
Habitat composition and connectivity within a stream vary with changing flows but the influence of changing flow on habitat use by fish is not well understood. Meso- and microhabitat surveys were used to investigate habitat use by bullhead (Cottus gobio Linnaeus) in response to discharge variation in a small tributary of the Upper Severn, England. Mesohabitat mapping surveys were carried out over a range of summer flows (0.016–0.216 m3 s−1) and were coupled with direct underwater observations (snorkelling) of fish location. Five mesohabitat types—glides, runs, riffles, chutes and pools—were present in the reach at all flows surveyed and ‘backwaters’ were found at three flows. The macro-morphology of the reach comprised six riffle–pool sequences divided into 27 mesohabitats with the maximum diversity (23 mesohabitats) at intermediate flows (Q 43) and only 15 mesohabitats at Q 95. Despite low numbers of fish (N = 78), bullhead displayed a strong association (51% of the fish) with glides—relatively deep habitats having high rates of velocity increase with flow. However, 54% of the fish were observed in two large, persistent mesohabitats, a glide (34%) and a pool (20%), both located below a faster flowing mesohabitat. Habitat use curves based upon micro-habitat data showed bullhead favoured low velocities (<0.30 m s−1), depths less than 0.30 m and a cobble substratum. This study illustrates the value of cross-scale investigations in linking fish ecology, flow and physical habitat variability and suggests mesohabitat size, persistence and arrangement may influence fish distribution.  相似文献   

8.
To examine the effects of selective timber extraction on fish communities in Sabah, Malaysia, quantitative samples of fishes were taken from thirteen streams running through undisturbed rainforest or through forest that had been selectively logged 3–18 years previously. Multivariate analysis (canonical discriminant analysis and cluster analysis) indicated that mesohabitats within streams (riffles and pools) and differences in stream size were more important in determining community structure than logging history. Riffles in streams running through logged or undisturbed forest were indistinguishable using relative biomass or abundance data, as were pools from small streams (approximate order 2). Fish communities from pools in larger streams showed some separation in multivariate space corresponding to a complex set of relative changes in abundance and/or biomass between species. However it was difficult to unambiguously assign such changes to logging regime alone. There appeared to be some differences in fish communities between streams in recently-logged (3–7 years) and old-logged (17–18 years) areas related to abundance or biomass of three cyprinids (Garra borneensis, Lobocheilos bo and Osteochilus chini). Only one species, Pangio mariarum, was not found in streams in logged forest, but it was only found at one location in undisturbed forest. A number of other species showed significant differences in abundance or biomass between sites but most of these were only present at some sites and in low abundance. Principal components analysis of habitat data showed that riffle sites were homogeneous whatever their logging history as were pools in unlogged large streams. Pools in logged large streams were significantly more heterogeneous but in a random rather than systematic manner. It is concluded that the type of selective logging practices used locally have low impact on fish communities through mechanisms of persistence and/or rapid recolonisation.  相似文献   

9.
Dippers from the genus Cinclus are highly specialised predators on aquatic invertebrates, and occupy linear territories along rivers where measurements of variations in quality are relatively straightforward. For these reasons, they are ideal model species in which to examine factors affecting territory size. In this paper, we investigated the influence of stream habitats on the territory length of the Brown Dipper (Cinclus pallasii) in Taiwan. The biomass of aquatic insects and other stream habitat variables were analyzed to determine their relationships with the territory length of Brown Dippers from November 1988 to May 1989. Compared with slow-moving waters, riffle areas contained significantly greater insect biomass (paired t test, t 11 = 3.49, P < 0.01), of which trichopteran larvae contributed about 70%. Dippers spent more time foraging in riffles than in slow-moving waters. In addition, dippers preferred foraging in shallow riffles, but avoided deep, slow-moving waters (G = 62.53, df = 3, P < 0.001). Territory length (1,045 ± 165 m [SE], n = 14) was negatively related to proportion of riffles (r 2 = 0.5715, P < 0.01), total aquatic insect biomass (r 2 = 0.5840, P < 0.01), and altitude (r 2 = 0.7176, P < 0.001). In factor analysis, four factors were extracted from the 14 stream variables. However, only factor 1 was significantly related to territory length (r 2 = 0.5207, P < 0.01). Factor 1 explained 42.8% of the total variance and collectively revealed the importance of high food abundance. In other words, Brown Dipper territories were the shortest along high-altitude streams with abundant riffles, fewer pools and abundant aquatic insects. These results indicate that abundant supply of accessible invertebrate prey is the most important factor affecting the territory length of Brown Dippers. This is consistent with Cinclus species elsewhere, and reveals the importance of clean, productive river ecosystems.  相似文献   

10.
Walters  D. M.  Leigh  D. S.  Bearden  A. B. 《Hydrobiologia》2003,494(1-3):5-10
We tested the hypothesis that urbanization alters stream sediment regimes and homogenizes fish assemblages in 30 sub-basins of the Etowah River. Sediment variables included average particle size (mean phi) of the stream bed, percent fines (<2 mm) in riffles, and baseflow turbidity (NTU). Homogenization was quantified as ratios of endemic to cosmopolitan species richness (Er:Cr) and abundance (Ea:Ca). High NTU and fine stream beds were associated with homogenized assemblages (i.e., lower E:C ratios). Mean phi and NTU were significantly correlated with E:C ratios (r = –0.74 to –0.76) and, when combined using multiple regression, accounted for 73% of the variance in ratios. Stream slope strongly covaried with mean phi (r = –0.92) and percent fines in riffles (r = –0.79), but multiple regression models showed that urbanized sites had finer beds and riffles than predicted by slope alone. Urban land cover was the primary predictor of NTU (r 2 = 0.42) and, combined with slope in multiple regression, explained 51% of the variance in NTU. Our results indicate that stream slope is a background variable predicting particle size and E:C ratios in these streams. Urbanization disrupts these relationships by transforming clear streams with coarse beds into turbid streams with finer beds. These conditions favor cosmopolitan species, ultimately homogenizing fish assemblages. Bed texture was linked to urbanization; however, NTU was the best indicator of urban impacts because it was statistically independent from slope.  相似文献   

11.
Whitledge  Gregory W.  Rabeni  Charles F. 《Hydrobiologia》2000,437(1-3):165-170
Benthic community metabolism was measured in three habitats (riffles, runs and pools) during spring (May), summer (July) and fall (October) in the Jacks Fork River, Missouri, using an in situ chamber technique. Net community productivity (NCP) and gross community productivity (GCP) were highest in riffles, lowest in pools and intermediate in runs. Rates of NCP and GCP during spring and fall were similar for both riffles and runs, but NCP and GCP increased significantly during summer in both habitats. Pool substrates were always heterotrophic and exhibited no significant seasonal changes in NCP or GCP. Community respiration (CR) was highest in riffles, intermediate in runs and lowest in pools, but interhabitat differences in CR were generally smaller than for NCP. Rates of CR during spring and fall were similar, but CR increased significantly during summer. Results indicate that the physical conditions associated with each habitat strongly affect benthic community metabolism in this stream and that the relative proportions of these habitats will influence the ratio of living algal:detrital organic matter potentially available for consumers.  相似文献   

12.
Photosynthesis and respiration by the epilithic community on cobble in an arctic tundra stream, were estimated from oxygen production and consumption in short-term (4–12 h), light and dark, chamber incubations. Chlorophyll a was estimated at the end of each incubation by quantitatively removing the epilithon from the cobble. Fertilization of the river with phosphate alone moderately increased epilithic chlorophyll a, photosynthesis, and respiration. Fertilization with ammonium sulfate and phosphate, together, greatly increased each of these variables. Generally, under both control and fertilized conditions, epilithic chlorophyll a concentrations (mg m−2), photosynthesis, and respiration (mg O2 m−2, h−1) were higher in pools than in riffles. Under all conditions, the P/R ratio was consistent at ∼ 1.8 to 2.0. The vigor of epilithic algae in riffles, estimated from assimilation coefficients (mg O2 [mg Chl a]−1 h−1) was greater than the vigor of epilithic algae in pools. However, due to the greater accumulation of epilithic chlorophyll a in pools, total production (and respiration) in pools exceeded that in riffles. The epilithic community removed both ammonium and nitrate from water in chambers. Epilithic material, scoured by high discharge in response to storm events and suspended in the water column, removed ammonium and may have increased nitrate concentrations in bulk river water. However, these changes were small compared to the changes exerted by attached epilithon.  相似文献   

13.
Controls on production of bryophytes in an arctic tundra stream   总被引:2,自引:0,他引:2  
1. Two bryophyte taxa (Hygrohypnum spp. and, to a lesser extent, Fontinalis neomexicana) were abundant in riffles within phosphorus-fertilized reaches of the Kuparuk River (North Slope, Alaska), but were much less common in fertilized pools and virtually absent in unfertilized reaches of the river. We conducted field experiments using stems and clumps of both species and artificial bryophytes to test the hypotheses that bryophyte growth was strongly limited by low phosphorus concentrations in unfertilized reaches, and limited by epiphytes in fertilized pools. 2. Stem tips of Hygrohypnum spp. did not elongate when grown in unfertilized pool and riffle environments. In fertilized reaches, Hygrohypnum elongated significantly, although there was no significant difference in elongation of stem tips placed in pools [2.5 ± 0.9 cm (SD)] as opposed to riffles (2.8 ± 0.9 cm) for 32 days. 3. Stem tips of F. neomexicana elongated significantly in all sites. There was a significant difference in elongation of stem tips in control and fertilized riffles (2.1 ± 1.1 and 4.7 ± 0.1 cm, respectively) but not in tips grown in control and fertilized pools (2.8 ± 0.8 and 2.7 ± 0.9 cm, respectively). 4. Biomass increments in clumps of these same species followed similar patterns except in fertilized pools. Hygrohypnum spp. lost weight in control riffle environments and did not grow in pools, but accumulated 181 ± 44 and 335 ± 200% of initial biomass in fertilized riffles in 1992 (over 32 days) and 1993 (over 44 days), respectively. F. neomexicana accumulated 38 ± 39 and 98 ± 47% of initial biomass in 1992 in unfertilized and fertilized riffles, respectively. Total phosphorus concentrations of both bryophytes in 1992 were significantly greater when grown in fertilized riffles than control riffles. 5. Artificial mosses (untwisted, natural fibre rope) and clumps of Hygrohypnum spp. were used to assess effects of flow regime on derrital and epiphyte accumulation in the fertilized zone. Epiphyte and detrital mass was 4–4.5 times greater on average on artificial mosses in slow-flowing pool environments than in fast-flowing riffle environments. Epiphyte chlorophyll a was 4 times greater on Hygrohypnum clumps in pools than in riffles. This difference was probably brought about by increased detrital deposition and reduced grazing by invertebrates in pools. It is likely that both Hygrohypnum spp. and F. neomexicana could grow throughout the river, but are limited strongly by low phosphorus concentrations in unfertilized reaches and secondarily by detritus accumulation and interference competition with epiphytic algae in fertilized pools.  相似文献   

14.
1. The effects of predation risk, fish density and discharge on habitat use by juvenile brown trout, Salmo trutta, in four artificial streams were studied. Each stream contained three habitats, riffles, runs and pools, the latter two each being further divided into shallow margins and deeper mid-regions. 2. The presence of northern pike, Esox Indus, caused trout to decrease use of pool midregions, where pike also occurred, and to increase use of other habitats. Increasing the number of trout caused trout to increase use of pools and the shallow margins of runs. Decreasing discharge reduced the area of the run and pool margins covered by water, thereby reducing use of these areas by trout. 3. Habitat selection indices for the different treatments were calculated. The data indicated that riffles and the mid-regions of runs were preferred habitats, whereas run margins and pools were inferior habitats used when intraspecific fish densities were high. 4. Despite density- and discharge-dependent habitat use by trout, the number of trout consumed by pike was independent of trout density and discharge. 5. The results reveal the flexibility of habitat use by trout and illustrate the potential danger of applying data on habitat use in one stream to others where habitat availability and bioric interactions may differ.  相似文献   

15.
The study presents length–weight relationships (LWRs) and length–length relationships (LLRs) for three algae‐scraper species; Capoeta coadi from the Kouhrang River (Iran; 32°23′N, 50°08′E) a part of the Tigris drainage basin, Capoeta pyragyi from Cheshmeh Langan River (32°55′N, 50°10′E) a part of Zayanderud River basin and Capoeta umbla from Chooman River (35°57′N, 45°47′E). Fish were sampled by electro fishing (Samus1000; Power Out: 200 watts) in August, September and October 2017. Sampling was carried out each months in sites covering an area of about 100 m2 including runs, riffles and pools at a water depth of 10–60 cm. The obtained LWRs and LLRs showed a high level of correlation (r> 0.99).  相似文献   

16.
The physical structure of two riffles in a lowland Danish stream was studied and its importance for the composition and density of the macroinvertebrate communities was evaluated. The two riffles were visually assessed to be very similar, but measurements revealed that they differed in overall hydraulic conditions, stability, substratum composition and consolidation. Differences affected abundance of both burrowing and surface dwelling macroinvertebrates. The unstable unconsolidated riffle had higher total macroinvertebrate abundance (4137 m−2 vs. 1698 m−2), diptera abundance (2329 m−2 vs. 386 m−2) and total estimated species richness (31.7 vs. 28.8) as well as lower evenness (0.77 vs. 0.83) than the compact riffle. Among samples within the unconsolidated riffle, variations in macroinvertebrate communities were related to differences in mean substratum particle size. Here a linear log–log relationship existed between macroinvertebrate abundance, the abundance of EPT taxa and the median particle size (r 2 total = 0.46, p = 0.002; r 2 EPT = 0.73, p < 0.001). No similar relationships were evident on the consolidated riffle. Moreover, macroinvertebrate communities on the unconsolidated riffle were dominated by species with a high colonising potential. Despite being assessed to the same morphological unit, physical variation between riffles was surprisingly high as the riffles differed substantially with respect to consolidation, substratum heterogeneity and overall hydraulic structure. Macroinvertebrate community structure and composition also differed between riffles despite being drawn from the same species pool. The findings address the question if we use the correct methods and parameters when assessing the macroinvertebrate communities at the scale of the morphological unit.  相似文献   

17.
王强  袁兴中  刘红 《生态学报》2012,32(21):6726-6736
浅滩和深潭是山地河流中常见的河流生境结构。2011年7月,在重庆开县东河上游双河口-杉木桥河段,选择21个浅滩和深潭,调查大型底栖动物,研究影响不同生境中底栖动物组成、分布和多样性的生态机理。结果表明:调查河段浅滩和深潭中大型底栖动物分别为31种和24种,密度分别为450.62 个/m2和86.24 个/m2,生物量分别为2.88 g/m2和0.55 g/m2。浅滩有指示种11种,即纹石蛾(Hydropsyche sp.)、假蜉(Iron sp.)、假二翅蜉(Pseudocloeon sp.)、舌石蛾(Glossosoma sp.)、高翔蜉(Epeorus sp.1)、背刺蜉(Notacanthurus sp.)、Heterocloeon sp、锯形蜉(Serratella sp.)、朝大蚊(Antocha sp.)、等蜉(Isonychia sp.)、溪颏蜉(Rhithrogena sp.)。深潭指示种仅蜉蝣(Ephemera sp.)和黑大蚊(Hexatoma sp.)两种。刮食者为两类生境的优势功能摄食类群。浅滩中滤食者和刮食者比例显著高于深潭,而收集者和捕食者显著低于深潭。两类生境中大型底栖动物群落结构差异显著。浅滩中大型底栖动物的密度、生物量、丰富度指数、Shannon-Wiener 指数、改进的Shannon-Wiener指数均明显高于深潭。受地貌形态、水力特征和冲淤变化规律影响的生境稳定性和异质性差异是导致大型底栖动物群落差异的主要原因。  相似文献   

18.
《Global Change Biology》2018,24(1):308-321
Conserving native biodiversity in the face of human‐ and climate‐related impacts is a challenging and globally important ecological problem that requires an understanding of spatially connected, organismal‐habitat relationships. Globally, a suite of disturbances (e.g., agriculture, urbanization, climate change) degrades habitats and threatens biodiversity. A mosaic approach (in which connected, interacting collections of juxtaposed habitat patches are examined) provides a scientific foundation for addressing many disturbance‐related, ecologically based conservation problems. For example, if specific habitat types disproportionately increase biodiversity, these keystones should be incorporated into research and management plans. Our sampling of fish biodiversity and aquatic habitat along ten 3‐km sites within the Upper Neosho River subdrainage, KS, from June‐August 2013 yielded three generalizable ecological insights. First, specific types of mesohabitat patches (i.e., pool, riffle, run, and glide) were physically distinct and created unique mosaics of mesohabitats that varied across sites. Second, species richness was higher in riffle mesohabitats when mesohabitat size reflected field availability. Furthermore, habitat mosaics that included more riffles had greater habitat diversity and more fish species. Thus, riffles (<5% of sampled area) acted as keystone habitats. Third, additional conceptual development, which we initiate here, can broaden the identification of keystone habitats across ecosystems and further operationalize this concept for research and conservation. Thus, adopting a mosaic approach can increase scientific understanding of organismal‐habitat relationships, maintain natural biodiversity, advance spatial ecology, and facilitate effective conservation of native biodiversity in human‐altered ecosystems.  相似文献   

19.
According to the guidelines of the European Water Framework Directive, assessment of the ecological quality of streams and rivers should be based on type-specific reference conditions. Moreover to support biological indicators an hydromorphological analysis is also requested for each river type. The rationale for including an habitat assessment in biomonitoring study is that a biological community can be influenced by habitat quality just as water chemistry.In the present work benthic macroinvertebrates were analysed in a specific river type of Central Italy (small-sized streams, volcanic-siliceous), to identify taxa assemblages at the mesohabitat scale and to test how common measures of benthic community used in biomonitoring differ between riffles and pools in order to evaluate if differences may influence water quality classification.Macroinvertebrates were collected in 10 selected streams, covering the whole quality range present in the geographic area from ‘reference sites’ to human-impacted sites, along a pool–riffle sequence following a multihabitat sampling protocol.We compared assemblage of macroinvertebrates found in different mesohabitats using principal component analysis (PCA). Similar site grouping was obtained in riffle, pool and abiotic analysis.The measures of diversity and abundance were used as replicates in ANOVA analysis to test differences between pools and riffles within the groups of sites. There were no significant differences in terms of taxa richness and total abundance.When we compared the abundance of each taxon we found significant differences only in the group of reference sites with 18 taxa (about 25%) that showed a significant habitat preference.Our findings support that macroinvertebrates assemblages reflected primarily the environmental conditions and differences at mesohabitat scale are strongly correlated to hydromorphological condition and are maximized in reference sites. However such differences do not influence the ecological status assessment in this typology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号