首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pasteurella multocida toxin (PMT) stimulates and subsequently uncouples phospholipase C (PLC) signal transduction through its selective action on the Gq subunit. This review summarizes what is currently known about the molecular action of PMT on Gq and the resulting cellular effects. Examples are presented illustrating the use of PMT as a powerful tool for dissecting the molecular mechanisms involving pertussis toxin (PT)-insensitive heterotrimeric G proteins.  相似文献   

2.
1. The aims of the present study were (a) to determine the identity of the G proteins with which the endothelin receptor interacts and whether this interaction is subtype specific and (b) to determine whether agonist exposure can result in specific coupling between the endothelin receptor and G proteins.2. Coupling between endothelin A (ETA) or endothelin B (ETB) receptors and G proteins was assessed in two fibroblast cell lines, each expressing one receptor subtype. Four ligands, ET-1, ET-3, SRTXb, and SRTXc, were used for receptor stimulation. The G protein -subunit coupled to the receptor was identified by immunoprecipitation with an antibody against the endothelin receptor and immunoblotting with specific antibodies against different G protein -subunits.3. Unstimulated ETA and ETB receptors (ETAR and ETBR, respectively) were barely coupled to Go. The unstimulated ETAR coimmunoprecipitated with Gi3, whereas the unstimulated ETBR was much less strongly coupled to Gi3. The coupling of ETBR to Gi1Gi2 -subunits was much stronger than the coupling of ETAR to these -subunits. Stimulation with the different ET agonists also resulted in differential coupling of G proteins to the receptor subtypes. All four ligands caused a strong increase in coupling of the ETBR to Gi3, whereas coupling of the ETAR to this subunit was not affected by ET-1 and was even decreased by SRTXc. On the other hand, all four ligands caused a much greater increase in the coupling of ETAR to Gq/G11 than in the coupling of ETBR to these -subunits. Ligand-induced coupling between the receptors and the Gi1 and Gi2 -subunits is similar for the two receptor subtypes. The same was true for ligand-induced coupling of the receptors to Go, except that ET-3 increased the coupling of this -subunit to ETBR and decreased the coupling to ETAR. Taken together, the results of this study show that coupling between ET receptors and G proteins is ligand and receptor subtype specific.4. It remains to be established whether this diversity of receptor–G protein coupling is of relevance for the various endothelin signaling pathways and/or pathological states.  相似文献   

3.
Heterotrimeric G proteins play important roles as signal transducing components in various mammalian sperm functions. We were interested in the distribution of G proteins in human sperm tails. Prior to membrane preparation, spermatozoa were separated from contaminating cells which are frequently present in human ejaculates. Enriched human sperm tail membranes were generated by using hypoosmotic swelling and homogenization procedures. Antisera against synthetic peptides were used to identify G proteins in immunoblots. AS 8, an antiserum directed against an amino acid sequence that is found in most G protein α-subunits, and A 86, which detects all known pertussis toxin-sensitive α-subunits, reacted specifically with a 40-kDa protein. Antisera against individual G protein α-subunits failed to detect any specific antigens in enriched tail membranes AS 36, recognizing the ã2-subunit of G proteins, identified a 35-kDa protein in sperm tail membranes. Antisera against the 36-kDa β1-subunit did not detect any relevant proteins in the membrane fraction. Neither G protein α-subunits nor G protein β-subunits were found in the cytosol. ADP ribosylation of spermatozoal membrane or cytosolic proteins revealed no pertussis toxin-sensitive α-subunits. However, membrane preparations of nonpurified human spermatozoa contained α2 subunits, as shown immunologically and by ADP ribosylation; they most probably derived from somatic cells which are frequently present in human ejaculates. Our results stress the fact that spermatozoa need to be purified before sperm membrane preparation to avoid misinterpretations caused by contaminating cells. Furthermore, we suggest that G proteins in membranes of human sperm tails belong to a novel subtype of G protein α-subunits; the putative β-subunit was identified as a β2-subunit. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Summary Epithelial cells from the intrahepatic bile duct contribute to bile formation, but little is known of the cellular mechanisms responsible. In these studies, we have characterized the endogenous GTP-binding proteins (G proteins) present in these cells and evaluated their role in regulation of high conductance anion channels. G proteins were identified in purified plasma membranes of isolated bile duct epithelial cells using specific antisera on Western blots, and ion channel activity was measured in excised inside-out membrane patches using patch-clamp recording techniques. In patches without spontaneous channel activity, addition of cholera toxin to the cytoplasmic surface had no effect (n=10). Addition of pertussis toxin caused an activation of channels in 13/34 (38%) attempts, as detected by an increase in channel open probability. Activated channels were anion selective (gluconate/Cl permeability ratio of 0.17±0.04) and had a unitary conductance of 380 pS. Channel open probability was also increased by the nonhydrolyzable GDP analogue guanosine 5-0-(2-thiodiphosphate) in 8/14 (57%) attempts. In contrast, channel open probability was rapidly and reversibly decreased by the nonhydrolyzable analogue of GTP 5guanylylimidodiphosphate in 7/9 (78%) attempts. Western blotting with specific antisera revealed that both Gi –2 and Gi –3 were present in significant amounts, whereas Gi –1 and Go were not detected. These studies indicate that in bile duct epithelial cells, high conductance anion channels are inhibited, in a membrane-delimited manner, by PTX-sensitive G proteins.We gratefully acknowledge the assistance of Marwan Farouk, M.D. in the preparation of bile duct epithelial cells, Lucy Seger in the identification of the G proteins, C.F. Starmer in channel analysis, and P.J. Casey for the gift of bacteria expressing the different G-protein -subunits. This work was supported in part by grants from the National Institutes of Health DK43278 (to J.G.F.), DK42486 (to T.W.G.), and DK07568 (to J.M.M.); American Gastroenterological Association/G.D. Searle Research Scholar Award (to J.G.F.) and an American Gastroenterological Association Advanced Research Training Award (J.M.M.).  相似文献   

5.
Luteinizing hormone (LH) and its homologue, human chorionic gonadotropin (hCG), are very important regulators of the reproductive system. These hormones stimulate various types of G proteins—primarily, Gs and Gq proteins—by binding to the specific LH-hCG receptor, which leads to the activation of adenylate cyclase (AC) and phospholipase C, respectively. It has been suggested that many side effects of LH and hCG are associated with low selectivity of their effect on G proteins. Low-molecular agonists of LH-hCG receptor developed on the basis of thienopyrimidine derivatives do not cause these side effects, and differences in the interaction with G proteins may be ones of the cause for this. To test this, a comparative study of the effect of hCG and synthesized by us thienopyrimidine derivative, 5-amino-N-tert-butyl-2-(methylsulfanyl)-4-(3-(nicotinamido)phenyl)thieno[2,3-d]pyrimidine-6-carboxamide (TP03) on the AC activity and GTP binding of G proteins in plasma membranes isolated from the rat ovaries and testes was performed. Cholera toxin (CT) and pertussis toxin (PT) were used to selectively switch off the signal transduction via Gs and Gi/o proteins, the peptide corresponding to the C-terminal segment 349–359 of the Gαq subunit was used to suppress Gq-dependent cascades. It was shown that treatment of ovarian and testicular membranes with CT resulted in suppression of TP03 and hCG stimulatory effects on the AC activity, but in different ways influenced the GTP binding stimulation: it completely blocked the effect of 10–6 M TP03 and reduced by 45–46% the effect of hCG (10–8 M). Preincubation of membranes with the peptide 349–359 reduced the hCG stimulatory effect on GTP binding by 34 (ovaries) and 45% (testes), but did not affect the corresponding effect of 10–6 M TP03. Preincubation with the peptide 349–359 also reduced the GTP stimulatory effect of 10–4 M TP03, but to a small extent. The obtained data indicate that, in contrast to hCG, the targets of which in the ovaries and testes are Gs and Gq proteins, the action of TP03 is realized mainly via Gs proteins. Only at a concentration that exceeds EC50 by two orders TP03 is capable to relatively weakly activate Gq proteins. The PT treatment of the membranes did not affect the effects of TP03 and hCG, which indicates the lack of their effective interaction with Gi/o proteins. Thus, the selectivity of activation of Gs-dependent cascades responsible for the synthesis and production of steroid hormones is a significant advantage of low-molecular agonists of LH-hCG receptor over gonadotropins.  相似文献   

6.
The GnRH receptor is coupled to G proteins of the families Gq and G11. Gq and G11 coupling leads to intracellular signaling through the phospholipase C pathway. GnRHR coupling to other G proteins is controversial. This study provides evidence that G protein families Gs, Gi, Gq and G11 complete for binding with the GnRHR. We quantified interactions of over-expressed G proteins with GnRHR by a competitive binding approach, using measurements of second messengers, IP and cAMP. Transient co-transfection of HEK293 cells with human WT GnRHR and with stimulatory and inhibitory G proteins (Gq, G11 and Gs, Gi) led to either production or inhibition of total inositol phosphate (IP) production, depending on the G protein that was over-expressed. Studies were conducted in different human (COS7, HeLa) and rodent-derived (CHO-K1, GH3) cell lines in order to confirm that G protein promiscuity observed with the GnRHR was not limited to a particular cell type.  相似文献   

7.
8.
The presence of the pertussis toxin (PTX) insensitive GTP-binding proteins (G-proteins) Gq and/or G11 has been demonstrated in three different prolactin (PRL) and growth hormone (GH) producing pituitary adenoma cell lines. Immunoblocking of their coupling to hormone receptors indicates that Gq and/or G11 confer throliberin (TRH) responsive phospholipase C (PL-C) activity in these cells. The contention was substantiated by immunoprecipitation analyses snowing that anti Gq/11-sera coprecipitated PL-C activity. In essence, only Gq/11 (but neither Gi2, Gi3 nor Go) seems to mediate the TRH-sensitive PL-C activity, while Go may be coupled to a basal or constitutive PL-C activity. Immunoblocking studies imply that the B-complex also, to some extent, may stimulate GH3 pituitary cell line PL-C activity. Finally, the steady state levels of Gq/11 mRNA and protein were downregulated upon long term exposure of the GH3 cells to TRH (but not to vasoactive intestinal peptide = VIP).  相似文献   

9.
Gh, a high molecular weight GTP-binding protein that couples 1-adrenoceptors in heart and liver to phosphatidylinositol (Ptdlns)-specific phospholipase C (PLC), has recently been shown to be a tissue transglutaminase type 11. Transglutaminases have been suggested to play a role in the maintenance of blood vessel structure, and therefore it is possible that changes in their expression may accompany pathological states which involve phenotypic modulation of smooth muscle. Hence, we investigated the expression of Gh during differentiation of rat aortic smooth muscle cells in culture. Gh content was reduced markedly in cultured smooth muscle cells compared to freshly isolated cells as determined by Western blotting using a Gh-specific monoclonal antibody. In contrast, the level of Gq, a heterotrimeric G-protein that couples 1-adrenoceptors to PLC, was maintained throughout the culture period. These findings indicate that changes in G, expression accompany phenotypic modulation of vascular smooth muscle cells. These changes in Gh protein expression may be important in the altered responsiveness of vessels in pathological disease states.  相似文献   

10.
We have identified by immunoblotting and ADP-ribosylation by cholera toxin and pertussis toxin the presence of Mr 43 and 46 KDa Gs, and 39 and 41 KDa Gi;.. subunits in rat parotid gland plasma membranes but not in granule membranes. A Mr 28 KDa polypeptide that served as substrate for ADP-ribosylation by both cholera toxin and pertussis toxin was present exclusively in granule membranes. Photoaffinity crosslinking of [-32P]GTP showed the presence of high molecular weight GTP-binding proteins (Mr 160,100 KDa) in granule membranes. Six low molecular weight GTP-binding proteins (Mr 21–28 KDa) were differentially distributed in both plasma membranes and granule membranes. The present study identifies various GTP-binding proteins in rat parotid gland plasma membranes and granule membranes, and demonstrates the presence of distinct molecular weight GTP-binding proteins in granule membranes. These granule-associated GTP-binding proteins may be involved in secretory processes.  相似文献   

11.
Modulation of the Ca- and voltage-dependent K channel—KCa—by receptors coupled to the G proteins G i /G o and G s has been studied in insulin-secreting cells using the patch clamp technique. In excised outside-out patches somatostatin (somatotropin-releasing inhibitory factor; SRIF) caused concentration-dependent inhibition of the KCa channel, an effect that was prevented by pertussis toxin (PTX). In inside-out patches, exogenous subunits of either G i or G o -type G proteins also inhibited the KCa channel (IC50 5.9 and 5.7 pM, respectively). These data indicate that SRIF suppresses KCa channel activity via a membrane-delimited pathway that involves the subunits of PTX-sensitive G proteins G i and/or G o . In outside-out patches, activation of G s either by -agonists or with cholera toxin (CTX) increased KCa channel activity, consistent with a membrane-delimited stimulatory pathway linking the -adrenergic receptor to the KCa channel via G s . In outside-out patches, channel inhibition by SRIF suppressed the stimulatory effect of -agonists but not that of CTX, while in inside-out patches CTX reversed channel inhibition induced by exogenous i or o . Taken together these data suggest that KCa channel activity is enhanced by activation of G s and blocked by activated G i and/or G o . Further, KCa channel stimulation by activated G s may be direct, while inhibition by G i /G o may involve deactivation of G s . In inside-out patches KCa channel activity was reduced by an activator of protein kinase C (PKC) and enhanced by inhibitors of PKC, indicating that PKC also acts to inhibit the KCa channel via a membrane delimited pathway. In outside-out patches, chelerythrine, a membrane permeant inhibitor of PKC prevented the inhibitory effect of SRIF, and in inside-out patches PKC inhibitors prevented the inhibitory effect of exogenous i or o . These data indicate that PKC facilitates the inhibitory effect of the PTX-sensitive G proteins which are activated by coupling to SRIF receptors. To account for these results a mechanism is proposed whereby PKC may be involved in G i /G o -induced deactivation of G s .The authors would like to thank Dr. S. Ciani for many helpful discussions, Dr. A.E. Boyd III for supplying the HIT cells, Drs. J. Codina and L. Birnbaumer for supplying the alpha subunits of the G proteins G i and G o , and Mrs. Satoko Hagiwara for preparing and maintaining the cell cultures.This work was supported by grant DCB-8919368 from the National Science Foundation and a research grant (W-P 880513) from the American Diabetes Association to B.R., and by grant RO1-DK39652 from the National Institutes of Health to G.T.E.  相似文献   

12.
Abstract: Levels of the guanine nucleotide binding proteins G11α and Gqα, which produce receptor regulation of phosphoinositidase C., were measured immunologically in 13 regions of rat central nervous system. This was achieved by immunoblotting membranes from these regions with antisera (CQ series) that identify these two polypeptides equally, following separation of the membranes using sodium dodecyl sulphate-polyacrylamide gel electrophoresis conditions that can resolve Gqα and G11α. In all regions examined, Gqα was more highly expressed than G11α. Ratios of levels of Gqα to G11α varied between the regions from 5:1 to 2:1. Quantitative measurements of the levels of Gqα and G11α in each region were obtained by comparison with known amounts of purified liver Gqα and G11α and with E. coli expressed recombinant Gqα. Areas that expressed Gqα highly included olfactory bulb (930 ng/ mg of membrane protein), frontal cortex (700 ng/mg of membrane protein), parietal occipital cortex (670 ng/mg of membrane protein), caudate putamen (1,003 ng/mg of membrane protein), hippocampus (1,045 ng/mg of membrane protein), hypothalamus (790 ng/mg of membrane protein), and cerebellum (950 ng/mg of membrane protein). More modest levels were observed in thalamus (450 ng/mg of membrane protein), pituitary (480 ng/mg of membrane protein), optic chiasma (330 ng/mg of membrane protein), and spinal cord (350 ng/mg of membrane protein). Gna was more evenly expressed with values ranging from about 170 ng/mg of membrane protein in spinal cord and optic chiasma to close to 300 ng/mg of membrane protein in regions expressing high levels of Gqα. A third polypeptide could be identified by the CQ antisera in all brain regions. The possibility that this polypeptide is the α subunit of G14 is discussed.  相似文献   

13.
Parathyroid hormone (PTH) is the major hormone regulating bone remodeling. Binding of PTH to the PTH1 receptor (PTH1R), a heterotrimeric G protein coupled receptor (GPCR), can potentially trigger multiple signal transduction pathways mediated through several different G proteins. In this study, we employed G protein antagonist minigenes inhibiting Gαs, Gαq or Gα12 to selectively dissect out which of these G proteins were responsible for effects of PTH(1-34) in targeted signaling and osteogenesis arrays consisting of 159 genes. Among the 32 genes significantly regulated by 24 h PTH treatment in UMR-106 osteoblastic cells, 9 genes were exclusively regulated through Gs, 6 genes were solely mediated through Gq, and 3 genes were only controlled through G12. Such findings support the concept that there is some absolute specificity in downstream responses initiated at the G protein level following binding of PTH to the PTH1R. On the other hand, 6 PTH-regulated genes were regulated by both Gs and Gq, 3 genes were regulated by both Gs and G12, and 3 genes were controlled by Gs, Gq and G12. These findings indicate potential overlapping or sequential interactions among different G protein-mediated pathways. In addition, two PTH-regulated genes were not regulated through any of the G proteins examined, suggesting that additional signaling mechanisms may be involved. Selectivity was largely maintained over a 2-48-hour time period. The minigene effects were mimicked by downstream inhibitors. The dissection of the differential effects of multiple G protein pathways on gene regulation provides a more complete understanding of PTH signaling in osteoblastic cells.  相似文献   

14.
We monitored the radioligand-binding characteristics of thyrotropin-releasing hormone (TRH) receptors, functional activity of Gq/11α proteins, and functional status of the whole signaling cascade in HEK293 expressing high levels of TRH receptors and G11α. Our analyses indicated that disruption of plasma membrane microdomains by cholesterol depletion did not markedly influence the binding parameters of TRH receptors, but it altered efficacy of signal transduction. The functional coupling between TRH receptor and Gq/11α was assessed by agonist-stimulated [35S]GTPγS binding, and results of these measurements pointed out to significantly lower potency of TRH to mediate G protein activation in the plasma membrane fraction isolated from cholesterol-depleted cells; there was a shift in sensitivity by one order of magnitude to the higher concentrations. A markedly lower sensitivity to stimulation with TRH was also observed in our experiments dealing with determination of hormone-induced Ca2+ response. These data suggest that the intact structure of plasma membranes is an important optimum signal transduction initiated by TRH receptors and mediated by Gq/11α proteins.  相似文献   

15.
The expression of human G protein-coupled receptors (GPCRs) in Saccharomyces cerevisiae containing chimeric yeast/mammalian Gα subunits provides a useful tool for the study of GPCR activation. In this study, we used a one-GPCR-one-G protein yeast screening method in combination with molecular modeling and mutagenesis studies to decipher the interaction between GPCRs and the C-terminus of different α-subunits of G proteins. We chose the human adenosine A2B receptor (hA2BR) as a paradigm, a typical class A GPCR that shows promiscuous behavior in G protein coupling in this yeast system. The wild-type hA2BR and five mutant receptors were expressed in 8 yeast strains with different humanized G proteins, covering the four major classes: Gαi, Gαs, Gαq, and Gα12. Our experiments showed that a tyrosine residue (Y) at the C-terminus of the Gα subunit plays an important role in controlling the activation of GPCRs. Receptor residues R1033.50 and I1073.54 are vital too in G protein-coupling and the activation of the hA2BR, whereas L213IL3 is more important in G protein inactivation. Substitution of S2356.36 to alanine provided the most divergent G protein-coupling profile. Finally, L2366.37 substitution decreased receptor activation in all G protein pathways, although to a different extent. In conclusion, our findings shed light on the selectivity of receptor/G protein coupling, which may help in further understanding GPCR signaling.  相似文献   

16.
The Ca2+-sensing receptor (CaR) couples to multiple G proteins involved in distinct signaling pathways: Gi to inhibit the activity of adenylyl cyclase and activate ERK, Gq to stimulate phospholipase C and phospholipase A2, and G to stimulate phosphatidylinositol 3-kinase. To determine whether the receptor also couples to G12/13, we investigated the signaling pathway by which the CaR regulates phospholipase D (PLD), a known G12/13 target. We established Madin-Darby canine kidney (MDCK) cell lines that stably overexpress the wild-type CaR (CaRWT) or the nonfunctional mutant CaRR796W as a negative control, prelabeled these cells with [3H]palmitic acid, and measured CaR-stimulated PLD activity as the formation of [3H]phosphatidylethanol (PEt). The formation of [3H]PEt increased in a time-dependent manner in the cells that overexpress the CaRWT but not the CaRR796W. Treatment of the cells with C3 exoenzyme inhibited PLD activity, which indicates that the CaR activates the Rho family of small G proteins, targets of G12/13. To determine which G protein(s) the CaR couples to in order to activate Rho and PLD, we pretreated the cells with pertussis toxin to inactivate Gi or coexpressed regulators of G protein-signaling (RGS) proteins to attenuate G protein signaling (RGS4 for Gi and Gq, and a p115RhoGEF construct containing the RGS domain for G12/13). Overexpression of p115RhoGEF-RGS in the MDCK cells that overexpress CaRWT inhibited extracellular Ca2+-stimulated PLD activity, but pretreatment of cells with pertussis toxin and overexpression of RGS4 were without effect. The involvement of other signaling components such as protein kinase C, ADP-ribosylation factor, and phosphatidylinositol biphosphate was excluded. These findings demonstrate that the CaR couples to G12/13 to regulate PLD via a Rho-dependent mechanism and does so independently of Gi and Gq. This suggests that the CaR may regulate cytoskeleton via G12/13, Rho, and PLD. calcium-sensing receptor; G proteins; RGS proteins  相似文献   

17.
Summary Three G proteins from human brain membranes were purified to near homogeneity by conventional techniques including preparative electrophoresis. These G proteins were characterized by their ability to bind GTP, GDP and GTP analogs. Two of these proteins have molecular weights of 50,000 (G50) and 36,000 (G36), as determined on SDS-gels. G36 was ADP-ribosylated by pertussis toxin. Thus, G50 could represent a Gsα subunit, whereas G36 could be Giα or Goα. G50 was phosphorylated by cAMP dependent protein kinase and protein kinase C. G36 was phosphorylated by a protein kinase independent of calcium and phospholipid, a proteolytic product of protein kinase C, analogous to protein kinase M. Phosphorylation of G36 by this protein kinase induced a dramatic decrease in its GTPase activity. The third G protein, of molecular weight 22,000 probably belongs to the group of monomeric G proteins possessing functional similarities withras gene products. The regulation of G proteins involving calcium-dependent and independent pathways is delineated.  相似文献   

18.
Melanocortin-4 receptor (MC4R)-induced anorexigenic signaling in the hypothalamus controls body weight and energy homeostasis. So far, MC4R-induced signaling has been exclusively attributed to its coupling to Gs proteins. In line with this monogamous G protein coupling profile, most MC4R mutants isolated from obese individuals showed a reduced ability to activate Gs. However, some mutants displayed enhanced Gs coupling, suggesting that signaling pathways independent of Gs may be involved in MC4R-mediated anorexigenic signaling. Here we report that the Gs signaling-deficient MC4R-D90N mutant activates G proteins in a pertussis toxin-sensitive manner, indicating that this mutant is able to selectively interact with Gi/o proteins. Analyzing a hypothalamic cell line (GT1-7 cells), we observed activation of pertussis toxin-sensitive G proteins by the wild-type MC4R as well, reflecting multiple coupling of the MC4R to Gs and Gi/o proteins in an endogenous cell system. Surprisingly, the agouti-related protein, which has been classified as a MC4R antagonist, selectively activates Gi/o signaling in GT1-7 cells. Thus, the agouti-related protein antagonizes melanocortin-dependent Gs activation not only by competitive antagonism but additionally by initiating Gi/o protein-induced signaling as a biased agonist.The melanocortin system has been shown to play a pivotal role in food intake and energy homeostasis. Therefore, dysfunction of the melanocortin system inevitably leads to an obese phenotype in mammals. Accordingly, targeted disruption of the melanocortin-4 receptor (MC4R)2 gene in mice causes an obesity-diabetes syndrome characterized by hyperphagia, hyperinsulinemia, and hyperglycemia (1). The importance of MC4R signaling in the regulation of human metabolism has been highlighted by the finding that mutations in the MC4R gene are the most frequent monogenic cause of severe obesity (27).Signaling pathways involved in MC4R-mediated regulation of energy homeostasis have been attributed to its coupling to Gs proteins and the resulting activation of the protein kinase A pathway (8, 9). Agouti and agouti-related protein (AGRP) are the only known endogenously occurring neuropeptides that block GPCR activity and are, therefore, classified as MCR antagonists. AGRP has been shown to block melanocortin signaling at MC3R and MC4R subtypes (10). In addition, it has been proposed that AGRP decreases basal as well as forskolin-promoted adenylyl cyclase activity, thus also acting as an inverse agonist on basal MCR activity (11). However, recent studies revealed that the effects of AGRP on appetite control are independent of melanocortin signaling (12, 13). For example, in mice deficient of the melanocortin precursor proopiomelanocortin starvation after AGRP neuron ablation is independent of melanocortin signaling (13). Thus, the orexigenic effects induced by AGRP appear to be mediated in a melanocortin-independent manner by a so far unknown mechanism.Interestingly, the aforementioned MC4R mutants isolated from obese patients exerted inconsistent effects on Gs signaling. For example, the MC4R-G181D or -S94R mutants showed a loss-of-function phenotype, whereas the MC4R-P78L or -R165W variants exhibited reduced function, whereas other mutants (MC4R-G253S, -I317T, -I251L) showed no functional alterations. Even more surprisingly, some mutants (MC4R-S127L, -P230L) constitutively increased Gs-dependent adenylyl cyclase activity (5). Therefore, no clear correlation could be drawn between the cellular phenotype resulting from these mutations and obesity observed in vivo.Melanocortin-independent actions of AGRP and non-uniform effects of obesity-associated mutations on Gs signaling suggest that the MC4R receptor may interact with G proteins other than Gs. The D90N mutation of the MC4R has also been associated with severe early onset obesity (14). This MC4R variant binds melanocortins with unchanged high affinity, but agonist binding does not initiate Gs signaling (14). Thus, the D90N variant represents an excellent tool to analyze putative Gs-independent signaling pathways of the MC4R.Directly measuring incorporation of GTPγ35S, we show herein that the wild-type MC4R and the MC4R-D90N mutant activate pertussis toxin (PTX)-sensitive Gi/o proteins. Multiple coupling of the MC4R to Gs and Gi/o proteins in HEK293 cells is reflected by cAMP accumulation, as treatment of cells with PTX significantly increased melanocortin-induced cAMP accumulation, indicative of simultaneous activation of adenylyl cyclase stimulating and inhibiting pathways. Using a hypothalamic cell line (GT1-7 cells) endogenously expressing MC4R, we demonstrate PTX-sensitive melanocortin-induced GTPγ35S incorporation and an increase in MC4R-mediated cAMP accumulation in response to toxin treatment. In addition, we show that AGRP, assumed to be an antagonist of the MC4R, promotes PTX-sensitive signaling in GT1-7 cells and, thus, exhibits biased agonistic actions on MC4R in hypothalamic cells. These data may explain melanocortin-independent AGRP signaling and define the MC4R as an interface integrating anorexigenic and orexigenic signaling depending on the stimulus received.  相似文献   

19.
Metabotropic glutamate receptors (mGluRs) control intracellular signaling cascades through activation of G proteins. The inwardly rectifying K+ channel, GIRK, is activated by the βγ subunits of Gi proteins and is widely expressed in the brain. We investigated whether an interaction between mGluRs and GIRK is possible, using Xenopus oocytes expressing mGluRs and a cardiac/brain subunit of GIRK, GIRK1, with or without another brain subunit, GIRK2. mGluRs known to inhibit adenylyl cyclase (types 2, 3, 4, 6, and 7) activated the GIRK channel. The strongest response was observed with mGluR2; it was inhibited by pertussis toxin (PTX). This is consistent with the activation of GIRK by Gi/Go-coupled receptors. In contrast, mGluR1a and mGluR5 receptors known to activate phospholipase C, presumably via G proteins of the Gq class, inhibited the channel''s activity. The inhibition was preceded by an initial weak activation, which was more prominent at higher levels of mGluR1a expression. The inhibition of GIRK activity by mGluR1a was suppressed by a broad-specificity protein kinase inhibitor, staurosporine, and by a specific protein kinase C (PKC) inhibitor, bis-indolylmaleimide, but not by PTX, Ca2+ chelation, or calphostin C. Thus, mGluR1a inhibits the GIRK channel primarily via a pathway involving activation of a PTX-insensitive G protein and, eventually, of a subtype of PKC, possibly PKC-μ. In contrast, the initial activation of GIRK1 caused by mGluR1a was suppressed by PTX but not by the protein kinase inhibitors. Thus, this activation probably results from a promiscuous coupling of mGluR1a to a Gi/Go protein. The observed modulations may be involved in the mGluRs'' effects on neuronal excitability in the brain. Inhibition of GIRK by phospholipase C–activating mGluRs bears upon the problem of specificity of G protein (GIRK interaction) helping to explain why receptors coupled to Gq are inefficient in activating GIRK.  相似文献   

20.
The lipoglycoproteins of the WNT family act on seven transmembrane-spanning Class Frizzled receptors. Here, we show that WNT-5A evokes a proliferative response in a mouse microglia-like cell line (N13), which is sensitive to pertussis toxin, thus implicating the involvement of heterotrimeric G proteins of the Gi/o family. We continue to show that WNT-5A stimulation of N13 membranes and permeabilized cells evokes the exchange of GDP for GTP of pertussis toxin-sensitive G proteins employing [γ-35S]GTP assay and activity state-specific antibodies to GTP-bound Gi proteins. Our functional analysis of the PTX-sensitivity of WNT-induced G protein activation and PCR analysis of G protein and FZD expression patterns suggest that WNT-5A stimulation leads to the activation of Gi2/3 proteins in N13 cells possibly mediated by FZD5, the predominant FZD expressed. In summary, we provide for the first time molecular proof that WNT-5A stimulation results in the activation of heterotrimeric Gi2/3 proteins in mammalian cells with physiological protein stochiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号