首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
Rifamycins, the clinically important antibiotics, target bacterial RNA polymerase (RNAP). A proposed mechanism in which rifamycins sterically block the extension of nascent RNA beyond three nucleotides does not alone explain why certain RNAP mutations confer resistance to some but not other rifamycins. Here we show that unlike rifampicin and rifapentin, and contradictory to the steric model, rifabutin inhibits formation of the first and second phosphodiester bonds. We report 2.5 A resolution structures of rifabutin and rifapentin complexed with the Thermus thermophilus RNAP holoenzyme. The structures reveal functionally important distinct interactions of antibiotics with the initiation sigma factor. Strikingly, both complexes lack the catalytic Mg2+ ion observed in the apo-holoenzyme, whereas an increase in Mg2+ concentration confers resistance to rifamycins. We propose that a rifamycin-induced signal is transmitted over approximately 19 A to the RNAP active site to slow down catalysis. Based on structural predictions, we designed enzyme substitutions that apparently interrupt this allosteric signal.  相似文献   

3.
4.
5.
RNA polymerase (RNAP) from thermophilic Thermus aquaticus is characterized by higher temperature of promoter opening, lower promoter complex stability, and higher promoter escape efficiency than RNAP from mesophilic Escherichia coli. We demonstrate that these differences are in part explained by differences in the structures of the N-terminal regions 1.1 and 1.2 of the E. coli σ(70) and T. aquaticus σ(A) subunits. In particular, region 1.1 and, to a lesser extent, region 1.2 of the E. coli σ(70) subunit determine higher promoter complex stability of E. coli RNAP. On the other hand, nonconserved amino acid substitutions in region 1.2, but not region 1.1, contribute to the differences in promoter opening between E. coli and T. aquaticus RNAPs, likely through affecting the σ subunit contacts with DNA nucleotides downstream of the -10 element. At the same time, substitutions in σ regions 1.1 and 1.2 do not affect promoter escape by E. coli and T. aquaticus RNAPs. Thus, evolutionary substitutions in various regions of the σ subunit modulate different steps of the open promoter complex formation pathway, with regions 1.1 and 1.2 affecting promoter complex stability and region 1.2 involved in DNA melting during initiation.  相似文献   

6.
7.
Nucleic acid polymerases have evolved elaborate mechanisms that prevent incorporation of the non-cognate substrates, which are distinguished by both the base and the sugar moieties. While the mechanisms of substrate selection have been studied in single-subunit DNA and RNA polymerases (DNAPs and RNAPs, respectively), the determinants of substrate binding in the multisubunit RNAPs are not yet known. Molecular modeling of Thermus thermophilus RNAP-substrate NTP complex identified a conserved beta' subunit Asn(737) residue in the active site that could play an essential role in selection of the substrate ribose. We utilized the Escherichia coli RNAP model system to assess this prediction. Functional in vitro analysis demonstrates that the substitutions of the corresponding beta' Asn(458) residue lead to the loss of discrimination between ribo- and deoxyribonucleotide substrates as well as to defects in RNA chain extension. Thus, in contrast to the mechanism utilized by the single-subunit T7 RNAP where substrate selection commences in the inactive pre-insertion site prior to its delivery to the catalytic center, the bacterial RNAPs likely recognize the sugar moiety in the active (insertion) site.  相似文献   

8.
9.
10.
11.
12.
Three independent, recessive, temperature-sensitive (Ts-) conditional lethal mutations in the largest subunit of Saccharomyces cerevisiae RNA polymerase II (RNAP II) have been isolated after replacement of a portion of the wild-type gene (RPO21) by a mutagenized fragment of the cloned gene. Measurements of cell growth, viability, and total RNA and protein synthesis showed that rpo21-1, rpo21-2, and rpo21-3 mutations caused a slow shutoff of RNAP II activity in cells shifted to the nonpermissive temperature (39 degrees C). Each mutant displayed a distinct phenotype, and one of the mutant enzymes (rpo21-1) was completely deficient in RNAP II activity in vitro. RNAP I and RNAP III in vitro activities were not affected. These results were consistent with the notion that the genetic lesions affect RNAP II assembly or holoenzyme stability. DNA sequencing revealed that in each case the mutations involved nonconservative amino acid substitutions, resulting in charge changes. The lesions harbored by all three rpo21 Ts- alleles lie in DNA sequence domains that are highly conserved among genes that encode the largest subunits of RNAP from a variety of eucaryotes; one mutation lies in a possible Zn2+ binding domain.  相似文献   

13.
14.
15.
Since their discovery in Metazoa, the three nuclear RNA polymerases (RNAPs) have been found in fungi, plants, and diverse protists. In all eukaryotes studied to date, RNAPs I, II, and III collectively transcribe all major RNAs made in the nucleus. We have found genes for the largest subunit (RPD1/RPE1) of a new DNA-dependent RNAP, RNAP IV, in all major land plant taxa and in closely related green algae. Genes for the second-largest subunit (RPD2) of this enzyme were found in all land plants. Phylogenetic study indicates that RNAP IV genes are sister to the corresponding RNAP II genes. Our results show the genesis of RNAP IV to be a multistep process in which the largest and second-largest subunit genes evolved by independent duplication events in the ancestors of Charales and land plants. These findings provide insights into evolutionary mechanisms that can explain the origin of multiple RNAPs in the eukaryotic nucleus. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Patrick Keeling]  相似文献   

16.
Huang J  Brieba LG  Sousa R 《Biochemistry》2000,39(38):11571-11580
We have characterized the misincorporation properties of wild-type (wt) T7 RNAP and of 45 T7RNAP point mutants. The wt enzyme selects strongly against incorporation of an incorrect nucleotide. From the measured rates of misincorporation, an average error frequency of 1 in 2 x 10(4) is estimated. RNAs bearing 3'-mismatches are extended more slowly than correctly paired 3'-termini, and mismatches one or two bases away from the RNA 3'-end can also slow extension severely even when the 3'-base is correctly paired. Though it has been reported that T7RNAP has a 3' --> 5' nuclease activity, we were unable to detect any endogenous T7RNAP RNase activity in elongation complexes. Pyrophosphorolysis was detected but does not appear to contribute to proofreading. Therefore, unlike other RNAPs, T7RNAP fidelity appears to depend entirely on discrimination against incorporation of the incorrect nucleotide and not on post-misincorporation proofreading. Alanine substitution of the H784 side chain, which interacts with the 3' RNA.template base pair, increases both misincorporation and mismatch extension, while substitutions at G640, F644, and G645 increase misincorporation, but not mismatch extension. The latter three amino acids are in a part of the RNAP which interacts with the templating base and with the base immediately 5' to the templating base. Mutation of these amino acids not only increases misincorporation, but also eliminates pausing during promoter clearance. The effects of these mutations and the interactions observed in a crystal structure of a transcribing complex indicate that these mutations disrupt interactions which limit misincorporation rates by stabilizing the catalytically incompetent open conformation of the RNAP.  相似文献   

17.
18.
We have isolated and characterized a number of bacteriophage T7 RNAP (RNA polymerase) null mutants. Most of the mutants found to be completely inactive in vitro map to one of the well-conserved blocks of residues in the family of RNAPs homologous to T7 RNAP. The in vitro phenotypes of a smaller number of partially active T7 RNAP mutants, mapping outside these well-conserved regions, support the following assignment of functions in T7 RNAP: (1) the N-terminal region of T7 RNAP contains a nascent RNA binding site that functions to retain the nascent chain within the ternary complex; (2) the region surrounding residue 240 is involved in binding the initiating NTP; (3) residues at the very C terminus of T7 RNAP are involved in binding the elongating NTP.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号