首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial production of H2O2 is low with NAD substrates (glutamate/pyruvate, 3 and 2 mM) (G/P) and increases over ten times upon further addition of succinate, with the formation of a sigmoidal curve (semimaximal value at 290 μM, maximal H2O2 production at 600 μM succinate). Malate counteracts rapidly the succinate induced increased H2O2 release and moves the succinate dependent H2O2 production curve to the right. Nitric oxide (NO) and carbon monoxide (CO) are cytochrome c oxidase inhibitors which increase mitochondrial ROS production. Cyanide (CN) was used to mimic NO and CO. In the presence of G/P and succinate (300 μM), CN progressively increased the H2O2 release rate, starting at 1.5 μM. The succinate dependent H2O2 production curve was moved to the left by 30 μM CN. The Vmax was little modified. We conclude that succinate is the controller of mitochondrial H2O2 production, modulated by malate and CN. We propose that succinate promotes an interaction between Complex II and Complex I, which activates O2 production.  相似文献   

2.
Summary.  Methyl-jasmonate (MeJA) has been proposed to be involved in the evocation of defense reactions, as the oxidative burst in plants, substituting the elicitors or enhancing their effect. 48 h dark- and sterilely cultured (axenic) aeroponic sunflower seedling roots excised and treated with different concentrations of MeJA showed a strong and quick depression of the H+ efflux rate, 1.80 μM MeJA totally stopping it for approximately 90 min and then reinitiating it again at a lower rate than controls. These results were wholly similar to those obtained with nonsterilely cultured roots and have been interpreted as mainly based on H+ consumption for O2 •− dismutation to H2O2. Also K+ influx was strongly depressed by MeJA, even transitorily reverting to K+ efflux. These results were consistent with those associated to the oxidative burst in plants. MeJA induced massive H2O2 accumulation in the middle lamella and intercellular spaces of both the root cap cells and the inside tissues of the roots. The native acidic extracellular peroxidase activity of the intact (nonexcised) seedling roots showed a sudden enhancement (by about 52%) after 5 min of MeJA addition, maintained for approximately 15 min and then decaying again to control rates. O2 uptake by roots gave similar results. These and other results for additions of H2O2 or horseradish peroxidase, diphenylene iodonium, and sodium diethyldithiocarbamate trihydrate to the reaction mixture with roots were all consistent with the hypothesis that MeJA induced an oxidative burst, with the generation of H2O2 being necessary for peroxidase activity. Results with peroxidase activity of the apoplastic fluid were in accordance with those of the whole root. Finally, MeJA enhanced NADH oxidation and inhibited hexacyanoferrate(III) reduction by axenic roots, and diphenylene iodonium cancelled out these effects. Redox activities by CN- preincubated roots were also studied. All these results are consistent with the hypothesis that MeJA enhanced the NAD(P)H oxidase of a redox chain linked to the oxidative burst, so enhancing the generation of O2 •− and H2O2, O2 uptake, and peroxidase activity by roots. Received July 12, 2002; accepted October 2, 2002; published online May 21, 2003 RID="*"  相似文献   

3.
The role of oxidative stress in immune cell toxicity caused by the pesticides lindane, malathion and permethrin was investigated in thymic cells from C57BL/6 mice. Thymocytes treated with any of these pesticides (concentrations ranging between 50–150 μM) were found to generate both superoxide (O2 ) and H2O2. The production of O2 was detected with hydroethidine-ethidium bromide assay. H2O2 production was monitored with a flow cytometric fluorescent (DCFH-DA) assay. All three pesticides stimulated O2 release after 5 min exposure. Lindane and permethrin, but not malathion, continued to have significant (p ≤ 0.05) effects on O2 generation following 15 min of exposure. The lindane + malathion mixture was found to cause more-than-additive increase in O2 production compared to individual pesticide treatments (at both 5 and 15 min). However, the effect of the lindane + permethrin mixture was not significantly different than individual components of this mixture. The effects of these pesticides on levels of antioxidant enzymes were also investigated, and only mixtures were found to have significant (p ≤ 0.05) effects. Thus, lindane + malathion and lindane + permethrin mixtures increased total superoxide dismutase (SOD) specific activity, had no effect on catalase levels and inhibited GSH-peroxidase and GSH-reductase specific activities. Although the results of these studies do not explain the mechanism of action of these pesticides on the generation of O2 and H2O2, it is worthy of note that mixtures of these chemicals have oxidative responses greater than those of single chemicals. An erratum to this article can be found at  相似文献   

4.
Diabetes mellitus is a syndrome of impaired insulin secretion/sensitivity and frequently diagnosed by hyperglycemia, lipid abnormalities, and vascular complications. The diabetic ‘glucolipotoxicity’ also induces immunodepression in patients by redox impairment of immune cells. Astaxanthin (ASTA) is a pinkish-orange carotenoid found in many marine foods (e.g. shrimp, crabs, salmon), which has powerful antioxidant, photoprotective, antitumor, and cardioprotective properties. Aiming for an antioxidant therapy against diabetic immunodepression, we here tested the ability of prophylactic ASTA supplementation (30 days, 20 mg ASTA/kg BW) to oppose the redox impairment observed in isolated lymphocytes from alloxan-induced diabetic Wistar rats. The redox status of lymphocytes were thoroughly screened by measuring: (i) production of superoxide (O2?), nitric oxide (NO), and hydrogen peroxide (H2O2); (ii) cytosolic Ca2+; (iii) indexes of oxidative injury; and (iv) activities of major antioxidant enzymes. Hypolipidemic and antioxidant effects of ASTA in plasma of ASTA-fed/diabetic rats were apparently reflected in the circulating lymphocytes, since lower activities of catalase, restored ratio between glutathione peroxidase and glutathione reductase activities and lower scores of lipid oxidation were concomitantly measured in those immune cells. Noteworthy, lower production of NO and O2? (precursors of peroxynitrite), and lower cytosolic Ca2+ indicate a hypothetical antiapoptotic effect of ASTA in diabetic lymphocytes. However, questions are still open regarding the proper ASTA supplementation dose needed to balance efficient antioxidant protection and essential NO/H2O2-mediated proliferative capacities of diabetic lymphocytes.  相似文献   

5.
Ab initio calculations have been performed using the complete basis set model (CBS-QB3) to study the reaction mechanism of butane radical (C4H9•) with oxygen (O2). On the calculated potential energy surface, the addition of O2 to C4H9• forms three intermediates barrierlessly, which can undergo subsequent isomerization or decomposition reaction leading to various products: HOO• + C4H8, C2H5• + CH2CHOOH, OH• + C3H7CHO, OH• + cycle-C4H8O, CH3• + CH3CHCHOOH, CH2OOH• + C3H6. Five pathways are supposed in this study. After taking into account the reaction barrier and enthalpy, the most possible reaction pathway is C4H9• + O2 → IM1 → TS5 → IM3 → TS6 → IM4 → TS7 → OH• + cycle-C4H8O.  相似文献   

6.
Previous studies have shown that the in ovo injection of equol can markedly improve the water-holding capacity of muscles of broilers chickens at 7 wk of age through promotion of the antioxidant status. We aimed to investigate directly the antioxidant effects of equol on muscle cells in broilers. Muscle cells were separated from leg muscle of embryos on the 11th day of incubation and treated with equol and H2O2, either alone or together. Cells were pretreated with medium containing 1, 10, or 100 μM equol for 1 h prior to the addition of 1 mM H2O2 for a further 1 h. Photomicrographs of cells were obtained. Cell viability, malondialdehyde (MDA) content, and L-lactate dehydrogenase (LDH) activity in the cell supernatant, as well as intracellular total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities were determined. Treatment with 1 mM H2O2 caused serious damage to cells, indicated by comets with no clear head region but a very apparent tail of DNA fragments. Pretreatment with low (1 μM) but not high concentrations of equol (10 μM) inhibited cell damage, while 100 μM equol caused more serious damage than H2O2 alone. Pretreatment with 1 μM equol had no effect on cell viability, while pretreatment with 10 and 100 μM equol significantly decreased cell viability in a dose-dependent manner. Compared with H2O2 alone, pretreatment with low-dosage equol markedly decreased LDH activity and MDA production in the supernatant, significantly increased intracellular T-SOD activity (P < 0.05) and tended to increase intracellular GSH-Px activity (0.05 < P < 0.1). Pretreatment with high-dosage equol (10 and 100 μM) significantly enhanced LDH activity, but had no effect on MDA content, T-SOD or GSH-Px activity induced by H2O2, except for an obvious increase in GSH-Px activity caused by 10 μM equol. These results indicate that equol at low dosage can prevent skeletal muscle cell damage induced by H2O2, while pretreatment with high-dosage equol shows a synergistic effect with H2O2 in inducing cell damage.  相似文献   

7.
Cadmium-induced initial changes in the production of reactive oxygen species (ROS) and antioxidant mechanism were investigated in soybean (Glycine max L. cv. Don Mario 4800 RR) leaves. Whole plants (WP) and plants without roots (PWR) were exposed to 0.0, 10.0 and 40.0 μM Cd for 0, 4, 6 and 24 h. Compared to PWR, a higher level of endogenous Cd in WP was associated with a lower oxidative stress measured in terms of lipid peroxidation. Furthermore, O2 •− content decreased in the leaves of Cd-treated WP, whereas it increased in those of Cd-treated PWR. Although O2 •− accumulation in PWR was associated with a decrease in superoxide dismutase (SOD) activity, O2 •− diminution in WP leaves was not related to any increase in SOD activity. H2O2 content increased in the leaves of both Cd-treated WP and PWR, and it was concomitant with a corresponding decline in catalase (CAT) and ascorbate peroxidase (APX) activities. When diphenyl iodonium (DPI), an inhibitor of NADPH oxidase, was added, H2O2 content remained unchanged in Cd-treated WP, suggesting that NADPH oxidase does not participate in the early hours of Cd toxicity. Taken together, our results showed that early ROS evolution and oxidative damage were different in WP and PWR. This suggests that the response in soybean leaves during the early hours of Cd toxicity is probably modulated by the root.  相似文献   

8.
The protective properties of a prenylated coumarin, umbelliprenin (UMB), on the human lymphocytes DNA lesions were tested. Lymphocytes were isolated from blood samples taken from healthy volunteers. DNA breaks and resistance to H2O2-induced damage were measured using a single-cell microgel electrophoresis technique under alkaline conditions (comet assay). Human lymphocytes were incubated in UMB (10, 25, 50, 100, 200, and 400 μM) alone or a combination of different concentrations of UMB (10, 25, 50, 100, 200, and 400 μM) and 25 μM H2O2. Untreated cells, ascorbic acid (AA; 25, 50, 100, 200, and 400 μM) and H2O2 (25 μM) were considered as negative control, positive control, and the standard antioxidant agent for our study, respectively. Single cells were analyzed with “TriTek Cometscore version 1.5” software. The DNA damage was expressed as percent tail DNA. UMB exhibited a concentration-dependent increase in protection activity against DNA damage induced by 25 μM H2O2 (from 67.28% to 39.17%). The antigenotoxic activity of AA, in the range 0–50 μM, was greater than that of UMB. However, no significant difference (p > 0.05) in the protective activity was found between UMB and AA at concentrations of approximately higher than 50 μM.  相似文献   

9.
This work was designed in order to gain an insight on the mechanisms by which antioxidants prevent pancreatic disorders. We have examined the properties of cinnamtannin B-1, which belongs to the class of polyphenols, against the effect of hydrogen peroxide (H2O2) in mouse pancreatic acinar cells. We have studied Ca2+ mobilization, oxidative state, amylase secretion, and cell viability of cells treated with cinnamtannin B-1 in the presence of various concentrations of H2O2. We found that H2O2 (0.1–100 μM) increased CM-H2DCFDA-derived fluorescence, reflecting an increase in oxidation. Cinnamtannin B-1 (10 μM) reduced H2O2-induced oxidation of CM-H2DCFDA. CCK-8 induced oxidation of CM-H2DCFDA in a similar way to low micromolar concentrations of H2O2, and cinnamtannin B-1 reduced the oxidant effect of CCK-8. In addition, H2O2 induced a slow and progressive increase in intracellular free Ca2+ concentration ([Ca2+]c). Cinnamtannin B-1 reduced the effect of H2O2 on [Ca2+]c, but only at the lower concentrations of the oxidant. H2O2 inhibited amylase secretion in response to cholecystokinin, and cinnamtannin B-1 reduced the inhibitory action of H2O2 on enzyme secretion. Finally, H2O2 reduced cell viability, and the antioxidant protected acinar cells against H2O2. In conclusion, the beneficial effects of cinnamtannin B-1 appear to be mediated by reducing the intracellular Ca2+ overload and intracellular accumulation of digestive enzymes evoked by ROS, which is a common pathological precursor that mediates pancreatitis. Our results support the beneficial effect of natural antioxidants in the therapy against oxidative stress-derived deleterious effects on cellular physiology.  相似文献   

10.
The present in vitro study was designed to examine the antioxidative activity of red cabbage anthocyanins (ATH) in the protection of blood plasma proteins and lipids against damage induced by oxidative stress. Fresh leaves of red cabbage were extracted with a mixture of methanol/distilled water/0.01% HCl (MeOH/H2O/HCl, 50/50/1, v/v/w). Total ATH concentration [μM] was determined with cyanidin 3-glucoside as a standard. Phenolic profiles in the crude red cabbage extract were determined using the HPLC method. Plasma samples were exposed to 100 μM peroxynitrite (ONOO) or 2 mM hydrogen peroxide (H2O2) in the presence/absence of ATH extract (5–15 μM); oxidative alterations were then assessed. Pre-incubation of plasma with ATH extract partly reduced oxidative stress in plasma proteins and lipids. Dose-dependent reduction of both ONOO and H2O2-mediated plasma protein carbonylation was observed. ATH extract partly inhibited the nitrative action of ONOO, and significantly decreased plasma lipid peroxidation caused by ONOO or H2O2. Our results demonstrate that anthocyanins present in red cabbage have inhibitory effects on ONOO and H2O2-induced oxidative stress in blood plasma components. We suggest that red cabbage ATH, as dietary antioxidants, should be considered as potentially usable nutraceuticals in the prevention of oxidative stress-related diseases.  相似文献   

11.
Cyanobacterial contamination of water has been a serious problem in recent years. Thus, the effective control of undesired cyanobacteria has become an urgent issue. We studied therefore the effects of ρ-coumaric acid and vanillic acid on toxic Microcystis aeruginosa and the allelopathic mechanisms. The results showed that the growth of toxic M. aeruginosa was significantly inhibited by ρ-coumaric acid and vanillic acid, with an EC50 of 0.26 ± 0.07 and 0.34 ± 0.05 mmol L−1, respectively. Our data also demonstrated that both ρ-coumaric acid and vanillic acid triggered the generation of superoxide anion radicals (O2 •−). The O2 •− might induce a lipid peroxidation which may change cell membrane penetrability, thereby leading to the eventual death of M. aeruginosa. Our current studies further provide evidence that some phenolic acids such as ρ-coumaric acid and vanillic acid may be a potential effective solution for aquatic management.  相似文献   

12.
Inactivation of PerR by oxidative stress and a corresponding increase in expression of the perR regulon genes is part of the oxidative stress defense in a variety of anaerobic bacteria. Diluted anaerobic, nearly sulfide-free cultures of mutant and wild-type Desulfovibrio vulgaris (105–106 colony-forming units/ml) were treated with 0 to 2,500 μM H2O2 for only 5 min to prevent readjustment of gene expression. Survivors were then scored by plating. The wild type and perR mutant had 50% survival at 58 and 269 μM H2O2, respectively, indicating the latter to be 4.6-fold more resistant to killing by H2O2 under these conditions. Significantly increased resistance of the wild type (38-fold; 50% killing at 2188 μM H2O2) was observed if cells were pretreated with full air for 30 min, conditions that did not affect cell viability. The resistance of the perR mutant increased less (4.6-fold; 50% killing at 1230 μM H2O2), when similarly pretreated. Interestingly, no increased resistance of either was achieved by exposure with 10.6 μM H2O2 for 30 min, the highest concentration that could be used without killing the cells. Hence, in environments with low D. vulgaris biomass only the presence of external O2 effectively activates the perR regulon. As a result, mutant strains lacking one of the perR regulon genes ahpC, dvu0772, rbr1 or rbr2 displayed decreased resistance to H2O2 stress only following pretreatment with air.  相似文献   

13.
Tumor cells have a high tolerance for acidic and hypoxic microenvironments, also producing abundant lactic acid through accelerated glycolysis in the presence or absence of O2. While the accumulation of lactate is thought to be a major contributor to the reduction of pH-circumscribing aggressive tumors, it is not known if other endogenous metabolic products contribute this acidity. Furthermore, anaerobic metabolism in cancer cells bears similarity to homo-fermentative lactic acid bacteria, however very little is known about an alternative pathway that may drive adenosine triphosphate (ATP) production independent of glycolysis. In this study, we quantify over 40 end-products (amines, acids, alcohols, aldehydes, or ketones) produced by malignant neuroblastoma under accelerated glycolysis (+glucose (GLU) supply 1–10 mM) ± mitochondrial toxin; 1-methyl-4-phenylpyridinium (MPP+) to abate aerobic respiration to delineate differences between anaerobic vs. aerobic cell required metabolic pathways. The data show that an acceleration of anaerobic glycolysis prompts an expected reduction in extracellular pH (pHex) from neutral to 6.7 ± 0.006. Diverse metabolic acids associated with this drop in acidity were quantified by ionic exchange liquid chromatography (LC), showing concomitant rise in lactate (Ctrls 7.5 ± 0.5 mM; +GLU 12.35 ± 1.3 mM; +GLU + MPP 18.1 ± 1.8 mM), acetate (Ctrl 0.84 ± 0.13 mM: +GLU 1.3 ± 0.15 mM; +GLU + MPP 2.7 ± 0.4 mM), fumarate, and a-ketoglutarate (<10 μM) while a range of other metabolic organic acids remained undetected. Amino acids quantified by o-phthalaldehyde precolumn derivatization/electrochemical detection–LC show accumulation of l-alanine (1.6 ± .052 mM), l-glutamate (285 ± 9.7 μM), l-asparagine (202 ± 2.1 μM), and l-aspartate (84.2 ± 4.9 μM) produced during routine metabolism, while other amino acids remain undetected. In contrast, the data show no evidence for accumulation of acetaldehyde, aldehydes, or ketones (Purpald/2,4-dinitrophenylhydrazine—Brady's reagent), acetoin (Voges–Proskauer test), or alcohols (NAD+-linked alcohol dehydrogenase). In conclusion, these results provide preliminary evidence to suggest the existence of an active pyruvate–alanine transaminase or phosphotransacetylase/acetyl-CoA synthetase pathway to be involved with anaerobic energy metabolism of cancer cells.  相似文献   

14.
We previously demonstrated that the γ-glutamyl 16 amine derivative of vasoactive intestinal peptide (VIP) acts as structural VIP agonist with affinity and potency higher than VIP. Herein, we have evaluated the effects of VIP and γ-Gln16-diaminopropane derivative of VIP (VIP-DAP3) on the proliferation and protection from oxidative stress induced by hydrogen peroxide (H2O2) on epidermoid carcinoma cell lines. We have found that 10−11 M VIP-DAP3 completely antagonized the inhibition induced by H2O2 on both cell proliferation and S-phase distribution while these effects were only partially antagonized by equimolar concentrations of VIP. Moreover, both oxidative stress and intracellular lipid oxidation induced by H2O2 were reduced by VIP and completely antagonized by VIP-DAP3. Thereafter, we have found that H2O2 increased p38 kinase activity and both HSP70 and HSP27 expression. VIP and VIP-DAP3 again antagonized these effects partially or totally, respectively. H2O2 reduced the activity of extracellular signal-regulated kinases Erk-1/2 and Akt, signalling proteins involved in proliferation/survival pathways. Again VIP restored the activity of both kinases while VIP-DAP3 caused indeed an increase of their activity as compared to untreated cells. These data suggest that VIP-DAP3 has a stronger anti-oxidative activity as compared to VIP likely based on its super-agonistic binding on the putative receptor.  相似文献   

15.
We measured the self-diffusion coefficients of water in a Nafion membrane and two sulfonated polyethersulfone (SPES) membranes with varying ion-exchange capacities (IEC) in terms of relative humidity using the pulse field gradient NMR (PFG-NMR) technique. The self-diffusion coefficients were plotted against the number of water molecules per sulfonic acid group, λ, and compare these values with the results of molecular dynamics (MD) simulations. Classical MD simulations for all membranes were carried out using a consistent force field at λ = 3, 6, 9, 12, and 15. The dynamic properties of water (H2O) and hydronium (H3O+) on a molecular level were estimated as self-diffusion coefficients and residence times around a sulfonate group ( \textSO3- {\text{SO}}_3^{-} ). The diffusion coefficients of H2O and H3O+ followed the order, Nafion > SPES with IEC = 1.4 > SPES with IEC = 1.0 > SPES with IEC = 0.75, which agreed with the experimental data. The residence time distribution of H2O around \textSO3- {\text{SO}}_3^{-} in Nafion was in the range of 1–6 ps, whereas H2O in the SPES exhibited a residence time of greater than 20 ps.  相似文献   

16.
Soybean (Glycine max L. Merr.) Cell-suspension cultures inoculated with avirulent Pseudomonas syringae pv. glycinea bacteria generated a sustained oxidative burst 3–6 h after the infection. The H2O2 production was not dependent on protein biosynthesis but, surprisingly, cycloheximide itself was a very strong inducer of the oxidative burst and of the alkalinization measured in the cell culture medium. Both responses were activated in a very similar manner by inhibitors of protein phosphatases, implicating a phosphorylation change evoked by cycloheximide as a trigger for the elicitation. The activation of the oxidative burst was totally blocked by the kinase inhibitor K252a. The alkalinization response preceded the oxidative burst. The generation of H2O2 depleted the medium of H+ but the expected alkalinization of about one pH-unit did not occur. The H2O2 production by the plasma membrane oxidase must therefore be charge-compensated, likely via H+-channel activity. Received: 4 October 1997 / Accepted: 12 May 1998  相似文献   

17.
A total of 62 samples of commercial horse feed preparations (complementary feeds) containing cereal mixtures (“muesli” or mash, n = 39; pelleted feeds, n = 12), and plain horse feed grains (maize, n = 5; oats, n = 4; barley, n = 2) were purchased from 21 different producers/distributors from the German market. All samples were analysed by competitive enzyme immunoassays (EIA) for six different mycotoxins (mycotoxin groups). Analytes (detection limit, mean recovery) were: deoxynivalenol (DON, 10 μg/kg, 84%), zearalenone (ZEA, 5 μg/kg, 93%), fumonisin B1 (FB1, 2 μg/kg, 113%), T-2 toxin (T-2, 0.1 μg/kg, 71%), sum of T-2 + HT-2 toxin (T-2/HT2, 0.2 μg/kg, 97%), ochratoxin A (OTA, 0.2 μg/kg, 67%), and total ergot alkaloids (Generic Ergot Alkaloids “GEA”, 30 μg/kg, 132%). All samples contained DON (16–4,900 μg/kg, median 220 μg/kg), T-2/HT-2 (0.8–230 μg/kg, median 24 μg/kg), and T-2 (0.3–91 μg/kg, median 7 μg/kg). ZEA was detected in 98% of the samples (7–310 μg/kg, median 61 μg/kg). Most samples (94%) were positive for FB1 (2–2,200 μg/kg, median 27 μg/kg). Ergot alkaloids were detected in 61% of samples (28–1,200 μg/kg, median 97 μg/kg), OTA was found in 42% of samples (0.2–4 μg/kg, median 0.35 μg/kg). The results demonstrate that a co-contamination with several mycotoxins is very common in commercial horse feed from the German market. The toxin concentrations were in most cases well below the levels which are usually considered as critical or even toxic. The highest mycotoxin concentrations were mostly found in single-grain cereal feed: the maximum values for DON and FB1 were found in maize, the highest T-2/HT-2 toxin concentrations were found in oats, and the highest concentration of ergot alkaloids was found in barley. In composed feeds, no correlation between cereal composition and mycotoxin levels could be found.  相似文献   

18.
 Reactions (25  °C) of galactose oxidase, GOaseox from Fusarium NRRL 2903 with five different primary-alcohol-containing substrates RCH2OH:- D-galactose (I) and 2-deoxy-d-galactose (II) (monosaccharides); methyl-β-d-galactopyranoside (III) (glycoside);d-raffinose (IV) (trisaccharide); and dihydroxyacetone (V) have been studied in the presence of O2. The GOaseox state has a tyrosyl radical coordinated at a square-pyramidal CuII active site, and is a two-equivalent oxidant. Reactant concentrations were [GOaseox] (0.8–10 μM), RCH2OH (1.0–6.0 mM), and O2 (0.14–0.29 mM), with I=0.100 M (NaCl). The reactions, monitored at 450 nm by stopped-flow spectrophotometry, terminated with depletion of the O2. Each trace was fitted to the competing reactions GOaseox+RCH2 OH → GOaseredH2+RCHO (k 1), and GOaseredH2+O2→ GOaseox+H2O2 (k 2), with GOaseredH2 written as the doubly protonated two-electron-reduced CuI product. It was necessary to avoid auto-redox interconversion of GOaseox and GOasesemi . Information obtained at pH 7.5 indicates a 5 : 95 (ox : semi) "native" mix equilibration complete in ∼3 h. At pH >7.5, rate constants 10–4k 1 / M–1 s–1 for the reactions of GOaseox with (I) (1.19), (II) (1.07), (III) (1.29), (IV) (1.81), (V) (2.94) were determined. On decreasing the pH to 5.5, k 1 values decreased by factors of up to a half, and acid dissociation pK as in the range 6.6–6.9 were obtained. UV-Vis spectrophotometric studies on GOaseox gave an independently determined pK a of 6.7. No corresponding reactions of the Tyr495Phe variant were observed, and there are no similar UV-Vis absorbance changes for this variant. The pK a is therefore assigned to protonation of Tyr-495 which is a ligand to the Cu. The rate constant k 2 (1.01×107 M–1 s–1) is independent of pH in the range 5.5–9.0 investigated, suggesting that H+ (or H-atoms) for the O2 → H2O2 change are provided by the active site of GOasered . The CuI of GOasered is less extensively complexed, and a coordination number of three is likely. Received: 4 February 1997 / Accepted: 16 May 1997  相似文献   

19.
Direct electron transfer of hemoglobin modified with quantum dots (QDs) (CdS) has been performed at a normal graphite electrode. The response current is linearly dependent on the scan rate, indicating the direct electrochemistry of hemoglobin in that case is a surface-controlled electrode process. UV–vis spectra suggest that the conformation of hemoglobin modified with CdS is little different from that of hemoglobin alone, and the conformation changes reversibly in the pH range 3.0–10.0. The hemoglobin in a QD film can retain its bioactivity and the modified electrode can work as a hydrogen peroxide biosensor because of its peroxidase-like activity. This biosensor shows an excellent response to the reduction of H2O2 without the aid of an electron mediator. The catalytic current shows a linear dependence on the concentration of H2O2 in the range 5 × 10−7–3 × 10−4 M with a detection limit of 6 × 10−8 M. The response shows Michaelis–Menten behavior at higher H2O2 concentrations and the apparent Michaelis–Menten constant is estimated to be 112 μM.  相似文献   

20.
The main product of the conversion of puerarin by unpermeabilized cells of bacterium Microbacterium oxydans CGMCC 1788 was puerarin-7-O-glucoside (241 ± 31.9 μM). Permeabilization with 40% ethanol could not increase conversion yield, whereas it resulted in change of main product; a previous trace product became a main product (213 ± 48.0 μM) which was identified as a novel puerarin-7-O-fructoside by electrospray ionization time-of-flight MS, 13C NMR, 1H NMR, and GC-MS analysis of sugar composition, and puerarin-7-O-glucoside became a trace product (14.8 ± 5.4 μM). However, the extract from cells of M. oxydans CGMCC 1788 permeabilized with ethanol converted puerarin to form 113.9 ± 27.7 μM puerarin-7-O-glucoside and 187.8 ± 29.5 μM puerarin-7-O-fructoside under the same conditions. When unpermeabilized intact cells were recovered and used repeatedly for the conversion of puerarin, with increase of reuse times, the yield of puerarin-7-O-glucoside gradually decreased, whereas the yield of puerarin-7-O-fructoside increased gradually in the conversion mixture. The main product of the conversion of puerarin by the tenth recycled unpremerbilized cells was puerarin-7-O-fructoside (288.4 ± 24.0 μM). Therefore, the change of permeability of cell membrane of bacterium M. oxydans CGMCC 1788 contributed to the change of conversion of the product’s composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号