首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gonadotrope function during continuous infusion of estradiol (E2) was evaluated in orchidectomized sheep (wethers). Serum concentrations of LH were reduced (p less than 0.05) within 3 h of introduction of E2 and remained depressed for the period of E2 delivery (48 h). Gonadotrope responsiveness (change in LH secretion induced by a 500-ng GnRH challenge, i.v.) was assessed 0, 3, 6, 12, 24, or 48 h after initiation of E2 infusion. Gonadotrope responsiveness was augmented (p less than 0.05) 12, 24, and 48 h after first introduction of E2. In a companion study, anterior pituitary tissue was collected 0, 3, 6, 12, 24, or 48 h after the beginning of E2 infusion. Tissue concentration of GnRH receptor was increased 3-fold within 12 h of first introduction of E2. Tissue stores of LH were also increased (p less than 0.05) during E2 infusion. Passive immunization against GnRH increased (p less than 0.05) tissue stores of LH, but had no effect on GnRH receptor concentration. Passive immunization against GnRH and concurrent infusion of E2 increased (p less than 0.05) both tissue stores of LH and tissue concentrations of GnRH receptor. The acute suppression of LH secretion induced by infusion of E2 was not affected by concurrent episodic administration of GnRH (200 ng/hourly pulse). However, serum concentrations of LH were restored to pretreatment levels within 12 h of initiation of E2 infusion and episodic delivery of GnRH. These data indicate that E2 acts in wethers to suppress gonadotropin secretion while simultaneously increasing GnRH receptor concentration, tissue stores of LH, and gonadotrope responsiveness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Objectives were to determine if neuropeptide Y (NPY) had direct effects GnRH induced secretion of LH from the anterior pituitary gland, and if endogenous steroids modulated the effect of NPY. To accomplish these objectives, 15 Hereford heifers were assigned to one of three ovarian status groups: follicular, luteal, or ovariectomized. One animal from each of the three ovarian status groups was slaughtered on each of 5 days and anterior pituitary gland harvested. Anterior pituitary gland cells within ovarian status were equally distributed and randomly assigned to one of three cell culture treatments: no NPY or GnRH (control), 10 nM GnRH, or 100 nM NPY+10 nM GnRH. Anterior pituitary cell cultures were incubated with or without NPY for 4 h and further incubated for an additional 2 h with or without GnRH and supernatant collected for quantification of LH. Treatment of anterior pituitary cell cultures with GnRH or GnRH+NPY did not affect LH release in cultures obtained from follicular (S.E.=5%; P=0.58) or ovariectomized (S.E.=7%; P=0.22) heifers. Both GnRH and GnRH+NPY increased LH release from anterior pituitary cell cultures from heifers in the luteal phase (S.E.=14%; P < or = 0.05) compared to control cultures. Cultures from luteal phase heifers treated with GnRH did not differ from those treated with GnRH+NPY (P=0.34). These data provide evidence to suggest that effects of NPY on LH release may occur primarily at the level of the hypothalamus.  相似文献   

3.
The objectives of this study were to determine whether activation of estrogen receptor 1 (ESR1; also known as ERalpha), or estrogen receptor 2 (ESR2; also known as ERbeta), or both are required to: 1) acutely inhibit secretion of LH, 2) induce the preovulatory-like surge of LH, and 3) inhibit secretion of FSH in ovariectomized (OVX) ewes. OVX ewes (n = 6) were administered intramuscularly 25 micrograms estradiol (E2), 12 mg propylpyrazoletriol (PPT; a subtype-selective ESR1 agonist), 21 mg diaprylpropionitrile (DPN; a subtype-selective ESR2 agonist), or PPT + DPN. Like E2, administration of PPT, DPN, or combination of the two rapidly decreased (P < 0.05) secretion of LH. Each agonist induced a gradual, prolonged rise in secretion of LH after the initial inhibition, but neither agonist alone nor the combined agonists was able to induce a "normal" preovulatory-like surge of LH similar to that induced by E2. Compared with E2-treated ewes, the beginning of the increase in secretion of LH occurred earlier (P < 0.01) in DPN-treated ewes, later (P < 0.05) in PPT-treated ewes, and at a similar interval in ewes receiving the combined agonist treatment. Like E2, PPT decreased (P < 0.05) secretion of FSH, but the duration of suppression was much longer in PPT-treated ewes. DPN did not alter secretion of FSH in this study. Modulation of the number of GnRH receptors by PPT and DPN was examined in primary cultures of ovine pituitary cells. In our hands, both PPT and DPN increased the number of GnRH receptors, but the dose of DPN required to stimulate synthesis of GnRH receptors was 10 times higher than that of PPT. We conclude that in OVX ewes: 1) ESR1 and ESR2 mediate the negative feedback of E2 on secretion of LH at the level of the pituitary gland, 2) ESR1 and ESR2 do not synergize or antagonize the effects of each other; however, they do interact to synchronize the beginning of the stimulatory effect of E2 on secretion of LH, 3) ESR1 and ESR2 may mediate at least partially the positive feedback of E2 on LH secretion by increasing the number of GnRH receptors, and 4) only ESR1 appears to be involved in the negative feedback of E2 on secretion of FSH.  相似文献   

4.
A substance in the seminal plasma of llamas and alpacas has been discovered that induces ovulation and growth of the corpus luteum (CL) in the female of the same species. The ovarian effects of the ovulation-inducing factor (OIF) are associated with a surge release of LH into circulation. We hypothesize that OIF stimulates LH release from gonadotroph cells in the anterior pituitary gland. Four experiments were done to determine if purified OIF isolated from llama seminal plasma stimulates LH secretion in pituitary cells using tissue from an induced ovulator (llama) and spontaneous ovulator (cattle). Anterior pituitary cells were cultured in vitro for two days, and on the third day, wells were incubated for 2 h with media containing no treatment (control), GnRH or OIF. Concentrations of LH in the culture medium were measured using radioimmunoassay and compared among groups by analysis of variance. In all experiments, GnRH and OIF treatments induced more LH secretion than untreated controls (P<0.05). A dose-related effect was evident in the llama pituitary cell cultures in that mean LH concentrations were greater (P<0.05) in wells treated with a higher dose of OIF (5.41 ± 0.28 ng/mL) compared to wells treated with a lower dose (2.70 ± 0.50 ng/mL), both of which were higher (P<0.05) than in wells with no treatment (0.87 ± 0.18 ng/mL). Although OIF stimulated LH release in bovine cell cultures, a dose-related effect was not detected. We conclude that OIF stimulates LH secretion from pituitary gonadotrophs in vitro.  相似文献   

5.

Background  

Luteinizing hormone secreted by the anterior pituitary gland regulates gonadal function. Luteinizing hormone secretion is regulated both by alterations in gonadotrope responsiveness to hypothalamic gonadotropin releasing hormone and by alterations in gonadotropin releasing hormone secretion. The mechanisms that determine gonadotrope responsiveness are unknown but may involve regulators of G protein signaling (RGSs). These proteins act by antagonizing or abbreviating interaction of Gα proteins with effectors such as phospholipase Cβ. Previously, we reported that gonadotropin releasing hormone-stimulated second messenger inositol trisphosphate production was inhibited when RGS3 and gonadotropin releasing hormone receptor cDNAs were co-transfected into the COS cell line. Here, we present evidence for RGS3 inhibition of gonadotropin releasing hormone-induced luteinizing hormone secretion from cultured rat pituitary cells.  相似文献   

6.
Our previous work has suggested that glucocorticoid pretreatment suppresses the enhanced responsiveness to GnRH seen in serum LH 12 h after castration. By contrast, serum FSH continues to show the castration-induced hypersensitivity to GnRH. Our attempts to replicate this LH suppression in static pituitary culture in vitro were not successful. This suggested to us the possibility that corticoids in vivo might be preventing castration-induced increases in pituitary GnRH receptor levels. We tested this at 24 h post-castration and, in fact, corticoids did not suppress the increase in GnRH receptors. In addition to the aforementioned effects of corticoids, we have seen that cortisol reverses the castration-induced drop in pituitary FSH content. It does this for 7 days post-castration, even though it no longer has an effect in suppressing serum LH. Thus, our accumulated data reveal that glucocorticoids have a differential effect on LH and FSH synthesis and secretion. Further studies are needed to clarify the site(s) of action of glucocorticoids in gonadotropin secretion and synthesis. Glucocorticoids may well prove to be a key in unlocking the mystery of the mechanism of differential control of regulation of LH and FSH.  相似文献   

7.
D A Dumesic  M Renk  F Kamel 《Life sciences》1989,44(6):397-406
This study investigated whether phenolsulfonphthalein (PR), a common pH indicator in tissue culture media, affects luteinizing hormone (LH) secretion from rat pituitary cells or 17 beta-estradiol (E2) augmentation of pituitary responsiveness to gonadotropin-releasing hormone (GnRH). PR enhanced GnRH-stimulated LH secretion and shifted the GnRH dose-response curve leftward with a relative potency ratio of 0.24 +/- 0.09 (+/- SE; p less than 0.01). The effect of E2 on LH release was significantly diminished by PR, which elevated GnRH-stimulated LH secretion in the absence of E2. This phenomenon was elicited by PR from different sources and was inhibited by the antiestrogen Cl628. Thus, PR exerted estrogen-like effects on rat pituitary cells and caused an underestimation of the degree to which E2 enhanced GnRH-stimulated LH secretion.  相似文献   

8.
Thirty-two ovariectomized cows were used to determine the time course for the negative feedback effect of estradiol-17beta (E) on secretion of the luteinizing hormone (LH). The cows were injected with gonadotropin releasing hormone (GnRH; 40 mug) 2.5 or 5 h after pretreatment with E (1 mug/kg body weight) or with a vehicle for control (C). Pretreatment with E resulted in lower serum concentrations of LH at 2.5 h (0.27 vs 0.90 ng/ml; P < 0.01) and at 5 h (0.27 vs 0.67 ng/ml; P < 0.01); less LH was released in response to GnRH at 2.5 h after treatment compared to cows treated with C (10 +/- 4.9 vs 27 +/- 3.8 ng/ml; P < 0.001). However, when GnRH was administered 5 h after E or C, there was no difference in the total amount of LH released (34 +/- 1.8 vs 26 +/- 4.4 ng/ml; P > 0.2). Time to half area (estimate of decay for the induced surge of LH) was longer for cows treated with E when compared to those treated with C (1.3 vs 0.9 h, P < 0.001; 1.5 vs 0.8 h, P < 0.001). Time to half area was not affected by the time of administration of GnRH after E (P > 0.4). These results suggest that E acts in the pituitary to cause the initial decrease in concentrations of LH. Pituitaries in animals pretreated with E regained the capacity to release as much LH at 5 h after treatment as those treated with C at a time when LH concentrations were still suppressed by E. Thus, the hypothalamus or an extra-hypothalamic area may be involved in maintaining the suppression of LH secretion after the initial effect on the pituitary has declined.  相似文献   

9.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

10.
Acute (0.5–4 h) treatment of estradiol (E)-primed female rat pituitary cells with progesterone (P) augments gonadotropin-releasing hormone (GnRH)-induced LH release, whereas chronic (48 h) P-treatment reduces pituitary responsiveness to the hypothalamic decapeptide. Dispersed E-primed (48 h, 1 nM) rat pituitary cells were cultured for 4 or 48 h in the presence of 100 nM P to assess the effects of the progestagen on GnRH receptors and on gonadotrope responsiveness to the decapeptide. P-treatment (4 h) significantly augmented GnRH-receptor concentrations (4.44 ± 0.6 fmol/106 cells) as compared to cells treated only with E (2.6 ± 0.5fmol/106 cells). Parallel significant changes in GnRH-induced LH secretion were observed. The acute increase in GnRH-receptor number was nearly maximal (180% of receptor number in cells treated with E alone) within 30 min of P addition. Chronic P-treatment (48 h) significantly reduced pituitary responsiveness to GnRH as compared to E-treatment. The GnRH-receptor concentrations (3.9 ± 0.6 fmol/106 cells), however, remained elevated above those in E-primed cells. GnRH-receptor affinity was not influenced by any of the different treatments. These results indicate that the acute facilitatory P-effect on GnRH-induced LH release is at least chronologically closely related to an increase in GnRH-receptor concentration. The chronic negative P-effect on pituitary responsiveness to GnRH, however, shows no relation to changes in available GnRH receptors.  相似文献   

11.
Ovariectomized (OVX), hypothalamo/pituitary-disconnected (HPD) ewes were used to ascertain the short-term effects of estradiol on the number of gonadotropin-releasing hormone (GnRH) receptors in the pituitary gland. The time course of the study was such that measurements were made during the period of short-term negative feedback and positive feedback. Groups of 4 OVX-HPD ewes were given 250-ng pulses of GnRH each hour and an i.m. injection of oil (Group 1) or 50 micrograms estradiol benzoate in oil (Groups 2-4). Blood samples were collected from each ewe prior to treatment with estradiol or oil and again immediately before slaughter. Groups 2, 3, and 4 were killed 6, 16, and 20 h, respectively, after administration of estradiol. Amplitudes of luteinizing hormone (LH) pulses and average plasma concentrations of LH were reduced 6 h after estradiol treatment. Sixteen and 20 h after injection, the average plasma LH levels were elevated, but pulse amplitudes were similar to preinjection values. The number of GnRH receptors was significantly (p less than 0.01) increased within 6 h of estrogen treatment and further increased 16 and 20 h after treatment. Pituitary content of LH was similar in all groups. These data indicate that the number of GnRH receptors in the pituitary gland of ewes can be acutely influenced by a direct effect of estradiol. However, the magnitude and direction of the change in receptors number does not account for the changes in pituitary responsiveness to GnRH, suggesting estradiol also modifies post-receptor mechanisms that influence secretion of LH.  相似文献   

12.
Metformin is an insulin sensitizer molecule used for the treatment of infertility in women with polycystic ovary syndrome and insulin resistance. It modulates the reproductive axis, affecting the release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). However, metformin's mechanism of action in pituitary gonadotropin-secreting cells remains unclear. Adenosine 5' monophosphate-activated protein kinase (PRKA) is involved in metformin action in various cell types. Here, we investigated the effects of metformin on gonadotropin secretion in response to activin and GnRH in primary rat pituitary cells (PRP), and studied PRKA in rat pituitary. In PRP, metformin (10 mM) reduced LH and follicle-stimulating hormone (FSH) secretion induced by GnRH (10(-8) M, 3 h), FSH secretion, and mRNA FSHbeta subunit expression induced by activin (10(-8) M, 12 or 24 h). The different subunits of PRKA are expressed in pituitary. In particular, PRKAA1 is detected mainly in gonadotrophs and thyrotrophs, is less abundant in lactotrophs and somatotrophs, and is undetectable in corticotrophs. In PRP, metformin increased phosphorylation of both PRKA and acetyl-CoA carboxylase. Metformin decreased activin-induced SMAD2 phosphorylation and GnRH-induced mitogen-activated protein kinase (MAPK) 3/1 (ERK1/2) phosphorylation. The PRKA inhibitor compound C abolished the effects of metformin on gonadotropin release induced by GnRH and on FSH secretion and Fshb mRNA induced by activin. The adenovirus-mediated production of dominant negative PRKA abolished the effects of metformin on the FSHbeta subunit mRNA and SMAD2 phosphorylation induced by activin and on the MAPK3/1 phosphorylation induced by GnRH. Thus, in rat pituitary cells, metformin decreases gonadotropin secretion and MAPK3/1 phosphorylation induced by GnRH and FSH release, FSHbeta subunit expression, and SMAD2 phosphorylation induced by activin through PRKA activation.  相似文献   

13.
P M Conn  D C Rogers 《Life sciences》1979,24(26):2461-2465
GnRH-stimulated, but not basal, luteinizing hormone (LH) release from cultured pituitary cells requires extra-cellular calcium. The present studies were designed to show whether cells which had lost responsiveness to GnRH in the absence of extracellular calcium (“Ca2+-depleted cells”) could regain responsiveness by readdition of calcium to the media. The addition of calcium-containing medium to cells which were preincubated (75 min) in calcium-free medium resulted in elevated basal LH release. Addition of GnRH to the media in the presence of calcium did not cause additional stimulation of LH release above the elevated basal level. Incubation of Ca2+-depleted cells in calcium-containing media for 2 h before measuring responsiveness depressed the basal level to near that seen in control cells and GnRH was able to stimulate LH release, but not to as high a level as in control cells (which were preincubated in 1 mM Ca2+-containing media). After incubation of calcium depleted cells in calcium-containing media for 3 h or 5 h, the basal and stimulated levels of LH response were statistically indistinguishable from those seen in control cells.  相似文献   

14.
Price CA 《Theriogenology》1995,43(3):543-549
Previous work has shown a suppressive effect of superovulatory treatments on pulsatile LH release in cattle. This study tested the hypothesis that this suppression may be caused, at least in part, by a direct effect of commercial gonadotropin preparations on the hypothalamus/pituitary gland. Crossbred Holstein heifers, ovariectomized 20 d before the start of the experiment, received 6 injections of FSH (50 mg Folltropin) at 12-h intervals (n = 6); a single injection of 2500 IU eCG followed by 5 injections of sterile saline at 12-h intervals (n = 6); or 6 injections of saline at 12-h intervals (controls; n = 5). Blood samples were taken every 10 min for 8 h the day before and 3 d after the beginning of treatment to assess LH pulsatility. At the end of these sampling periods, a bolus injection of GnRH (7 ng/kg) was given to assess pituitary responsiveness. There were no effects of the superovulatory drugs on mean LH concentrations, nor on LH pulse frequency or amplitude (P > 0.05). The pituitary response to GnRH was significantly elevated in eCG- but not FSH-treated animals (paired t test; P < 0.05). These data demonstrate that superovulatory preparations do not suppress pulsatile LH secretion independently of the ovaries in cattle.  相似文献   

15.
The neuropeptide EI (NEI) is derived from proMCH. It activates GnRH neurons, and has been shown to stimulate the LH release following intracerebroventricular administration in several experimental models. The aim of the present paper was to evaluate NEI actions on pituitary hormone secretion and cell morphology in vitro. Pituitary cells from female rats were treated with NEI for a wide range of concentrations (1–400 × 10−8 M) and time periods (1–5 h). The media were collected and LH, FSH, PRL, and GH measured by RIA. The interaction between NEI (1, 10 and 100 × 10−8 M) and GnRH (0.1 and 1 × 10−9 M) was also tested. Pituitary cells were harvested for electron microscopy, and the immunogold immunocytochemistry of LH was assayed after 2 and 4 h of NEI incubation. NEI (100 × 10−8 M) induced a significant LH secretion after 2 h of stimulus, reaching a maximum response 4 h later. A rapid and remarkable LH release was induced by NEI (400 × 10−8 M) 1 h after stimulus, attaining its highest level at 2 h. However, PRL, GH and FSH were not affected. NEI provoked ultrastructural changes in the gonadotrophs, which showed accumulations of LH-immunoreactive granules near the plasma membrane and exocytotic images, while the other populations exhibited no changes. Although NEI (10 × 10−8 M), caused no action when used alone, its co-incubation with GnRH (1 × 10−9 M), promoted a slight but significant increase in LH. These results demonstrate that NEI acts at the pituitary level through a direct action on gonadotrophs, as well as through interaction with GnRH.  相似文献   

16.
The purpose of the present experiments was to examine the short- and long-term effects of estradiol-17 beta (E2), progesterone (P), and 5 alpha-dihydrotestosterone (DHT), alone and in combination, on the gonadotrophin-releasing hormone (GnRH)-induced luteinizing hormone (LH) secretion, using an ovariectomized rat pituitary cells culture model. After 72 h in steroid-free medium, pituitary cells were further cultured for 24 h in medium with or without E2 (1 nM), P (100 nM), or DHT (10 nM). Cultures were then incubated for 5 h in the absence or presence of 1 nM GnRH with or without steroids. LH was measured in the medium and cell extract by radioimmunoassay. The results show that the steroid hormones exert opposite effects on the release of LH induced by GnRH, which seems to be dependent upon the length of time the pituitary cells have been exposed to the steroids. In fact, short-term (5 h) action of E2 resulted in a partial inhibition (64% of control) of LH release in response to GnRH, while long-term (24 h) exposure enhanced (158%) GnRH-induced LH release. Similar results were obtained with DHT, although the magnitude of the effect was lower than with E2. Conversely, P caused an acute stimulatory action (118%) on the LH released in response to GnRH and a slightly inhibitory effect (90%) after chronic treatment. GnRH-stimulated LH biosynthesis was also influenced by steroid treatment. Significant increases in total (cells plus medium) LH were observed in pituitary cells treated with E2 or DHT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effects of gonadotropin-releasing hormone (GnRH) on the development of gonadotropes were investigated by the use of organ culture and by means of immunocytochemistry and radioimmunoassay. Pituitary primordia from rat fetuses were cultured in a medium with or without 10-9 M GnRH during the first 24 h of culture. The ratio of the number of immunoreactive LH cells to the total number of cells in the explants derived from 13.5-day fetuses was increased by the GnRH treatment after 6 or 8 days of culture, while the total number of cells was not altered. LH released into the medium and LH content of explants were not affected by the GnRH treatment. Subsequent treatment with 10-9 M GnRH for 4 h after 7 days of culture resulted in a marked release of LH, accompanying a significant decline in LH content, in both explants exposed or unexposed to the first GnRH treatment. However, the former explants contained a lower amount of LH than the latter explants. The present results indicate that pituitary primordia at 13.5 days of gestation are capable to respond to GnRH, and that GnRH is effective in stimulating the responsiveness of gonadotropes to GnRH during early pituitary cytodifferentiation.  相似文献   

18.
19.
P H Li 《Life sciences》1987,41(22):2493-2501
The effect of cortisol or adrenocorticotropic hormone (ACTH) on basal and gonadotropin-releasing hormone (GnRH)-induced secretion of luteinizing hormone (LH) was studied in vitro using dispersed pig pituitary cells. Pig pituitary cells were dispersed with collagenase and DNAase and then grown in McCoy's 5a medium containing 10% dextran charcoal-pretreated horse serum and 2.5% fetal calf serum for 3 days. Cells were preincubated with cortisol or ACTH before GnRH was added. When pituitary cells were incubated with 400 micrograms cortisol/ml medium for 6 h or longer, increase basal secretion of LH was observed. However, GnRH-induced LH release was reduced by cortisol. The degree of this reduction was dependent on cortisol, and a concentration of cortisol higher than 100 micrograms/ml was needed. Cortisol also inhibited the 17 beta-estradiol-induced increase in GnRH response. ACTH-(1-24), ACTH-(1-39), or porcine ACTH had no influence on GnRH-induced LH secretion. Our results show that cortisol can act directly on pig pituitary to inhibit both normal and estradiol-sensitized LH responsiveness to GnRH.  相似文献   

20.
The hormonal interactions required for the generation of a secondary surge of FSH on the evening of proestrus have not been clearly defined. The role of GnRH in driving a surge of FSH has been questioned by findings in previous studies. In the current study, gonadotropin secretion was measured from pituitary fragments obtained from rats at 0900 and 2400 h on each day of the estrous cycle. Pituitary fragments were perifused in basal (unstimulated) conditions or in the presence of GnRH pulses to determine whether a selective increase in basal release of FSH and/or an increase in the responsiveness to GnRH occurs during the secondary FSH surge. Each anterior pituitary was cut into eighths and placed into a microchamber for perifusion. Seven pulses of GnRH (peak amplitude = 50 ng/ml; duration = approximately 2 min) were administered at a rate of one per hour starting at 30 min. Fractions of perfusate were collected every 5 min and frozen until RIA for LH and FSH. The mean total amount of LH or FSH secreted during the hour interval following each of the last six pulses of GnRH (or the corresponding basal hour) was calculated. Analysis of variance with repeated measures indicated that the evening secretion of LH on proestrus (2400 h) dropped significantly (p less than 0.05) from a maximum on the morning of proestrus (0900 h), whereas the FSH secretion remained elevated at this time. Therefore, the ratio of FSH to LH secreted in response to GnRH pulses was highest during the secondary FSH surge and lowest on the morning of proestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号