首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxytocin is used widely for the induction and augmentation of labour, but there is little information about the dynamics of oxytocin receptors in human myometrium during parturition, and the possible effect of oxytocin infusion. This information is important because G protein-coupled receptors, such as the oxytocin receptor, undergo desensitization after prolonged or repeated stimulation. The concentration of myometrial oxytocin receptors and the steady state of its mRNA were measured in patients undergoing Caesarean sections before or during spontaneous or induced labour. The concentration of receptors before labour was 477 (175-641) fmol mg(-1) protein (median, quartile range), and decreased to 140 (72-206; P < 0.05) and 118 (69-75; P < 0.01) fmol mg(-1) protein during prolonged oxytocin-augmented and oxytocin-induced labour, respectively. The corresponding oxytocin receptor mRNA concentrations decreased by 60- and 300-fold, respectively. The decrease in receptor binding and mRNA in women receiving oxytocin infusion indicates that homologous receptor desensitization occurs in vivo.  相似文献   

2.
A total of 821 patients, 39-40 weeks pregnant, was obstetrically normal at admission. In 212 of them intra-uterine pressure (IUP) was monitored before and during inducing labor by oxytocin, in 212 patients delivery was also induced by oxytocin but not monitored, in 197 by combining oxytocin and amniotomy, and 200 had spontaneous delivery. Inducibility could be predicted by uterine baseline activity and a 50 mu i.v. shot of oxytocin, together with determination of cervical status and placental location. The duration of labour induction was affected by parity, placental location and cervical status, but was predicted only to a minor degree by baseline activity and uterine oxytocin sensitivity. Amniotomy did not affect caesarean, section rate. The newborn child benefited from IUP monitoring: fewer transfers to pediatrics were necessary, there was less neonatal jaundice and fewer blood exchanges. It is assumed that if labor is not monitored through IUP, oxytocin may cause neonatal hyperbilirubinaemia through episodes of increased uterine resting pressure.  相似文献   

3.
目的 :探讨运动对红细胞变形性和红细胞膜蛋白的影响及其相互关系。方法 :设计不同强度的训练方案 ,用激光衍射法测定红细胞变形能力 ,用SDS PAGE方法测定一定体积大鼠红细胞膜中的重要蛋白带 3蛋白 (band 3)和肌动蛋白 (actin)的含量 ,研究运动即刻和恢复后红细胞变形性及膜蛋白的变化。结果 :长期的运动训练会促进大鼠红细胞变形能力的改善和红细胞膜band 3蛋白和actin的良好发展 ,一次大强度训练会引起红细胞膜band 3蛋白和actin含量的减少 ,大鼠红细胞变形能力降低 ,一周和二周的大强度训练会提高恢复期大鼠红细胞的变形能力和红细胞膜band 3蛋白和actin含量。结论 :运动训练造成的红细胞膜蛋白含量的变化 ,导致了红细胞膜结构的改变 ,从而影响红细胞变形能力 ,可能是训练对红细胞变形能力的作用机制之一。  相似文献   

4.
In order to evaluate the changes in uterine oxytocin receptor-specific mRNA during pregnancy, receptor expression in Xenopus oocytes are examined electrophysiologically following microinjection of mRNA from human uterus. In voltage-clamped oocytes injected with term myometrial mRNA, oxytocin elicited an inward current response. The amplitude of the oxytocin-induced current increased with increasing dose of oxytocin, but no current was elicited following stimulation with vasopressin. The oxytocin-induced current was completely eliminated as a result of pretreatment with a specific oxytocin antagonist. 21 of 27 oocytes injected with term myometrial mRNA showed a large amplitude (77.0 +/- 16.1 nA) reaction to oxytocin. In comparison, only 3 of 13 oocytes injected with early gestational myometrial mRNA exhibited a small amplitude (4.6 +/- 1.4 nA) reaction to oxytocin. No oxytocin response was observed in oocytes injected with non-pregnant myometrial mRNA. These results indicate that the striking increment in oxytocin sensitivity in term uterus depends on the increase in mRNA encoding oxytocin receptors.  相似文献   

5.
Gao L  Yu LC 《Regulatory peptides》2004,120(1-3):53-58
Recent studies showed that oxytocin and opioid peptides play important roles in pain modulation at different levels in the central nervous system. The present study was performed to explore whether opioid system is involved in the oxytocin-induced antinociception in the brain of rats. The results showed that: (1) intracerebroventricular injection of oxytocin induced dose-dependent increases in hindpaw withdrawal latencies (HWL) to noxious thermal and mechanical stimulation in rats. (2) The antinociceptive effect of oxytocin was attenuated dose-dependently by intracerebroventricular injection of naloxone, indicating an involvement of opioid system in the oxytocin-induced antinociception. (3) It is interesting that the antinociceptive effect of oxytocin was attenuated by subsequent intracerebroventricular injection of the μ-opioid antagonist β-funaltrexamine (β-FNA) and the κ-opioid antagonist nor-binaltorphimine (nor-BNI), but not the δ-opioid antagonist naltrindole. The results indicate that oxytocin plays an antinociceptive role in the brain of rats; μ- and κ-opioid receptors, not δ-receptors, are involved in the oxytocin-induced antinociception in the central nervous system of rats.  相似文献   

6.
Studies of oxytocin-induced phosphorylation of myosin light chain (MLC), resulting in myometrial contraction, suggest that extracellular Ca(2+) influx is involved in its signal transduction. To explore the possibility that intracellular Ca(2+) mobilization by oxytocin may also contribute to MLC phosphorylation, we investigated the relative contributions of these Ca(2+) sources to oxytocin signal transduction in myometrium of pregnant rat. In pregnant rat myometrium, oxytocin-induced Ca(2+) influx occurs via an L-type voltage-dependent Ca(2+) channel. Treatment with verapamil, an antagonist specific for these channels, significantly diminished MLC phosphorylation observed in response to oxytocin administration without affecting the release of Ca(2+) from intracellular Ca(2+) stores. Furthermore, oxytocin-induced MLC phosphorylation was not observed when extracellular Ca(2+) was not present. Our results clearly indicate that extracellular Ca(2+) influx, rather than release from Ca(2+) storage sites, is essential for oxytocin-induced MLC phosphorylation.  相似文献   

7.
We studied erythrocyte deformability in an effort to develop diagnostic methods based on its measurement and thus aid in the development of therapies for circulatory diseases. In the reported work, we performed two-dimensional numerical simulations of blood flow through a microchannel (MC) to evaluate erythrocyte deformability, applying the immersed boundary method to simulate erythrocyte movement and deformation. To evaluate deformability, MC transit capacity and shape recoverability were considered, defined as the time required to pass through the MC and the time constant during the shape-recovery process after exiting the MC, respectively. The simulation results showed that the erythrocyte MC transit time increased when the viscosity of the inner solution or the stiffness of the membrane increased. The time constant for erythrocyte shape recovery increased as the inner solution viscosity increased. In contrast, the time constant decreased as the erythrocyte membrane stiffness increased. These time-constant trends were in agreement with a theoretical equation derived using the Kelvin model and with previous experimental results. This diagnostic method of measuring erythrocyte shape recoverability and MC transit capacity is anticipated to have clinical application.  相似文献   

8.
Recent studies showed that oxytocin plays an important role in nociceptive modulation in the central nervous system. The present study was undertaken to investigate the role of oxytocin in antinociception in the nucleus raphe magnus (NRM) of rats and the possible interaction between oxytocin and the opioid systems. Intra-NRM injection of oxytocin induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulation in rats. The antinociceptive effect of oxytocin was significantly attenuated by subsequent intra-NRM injection of the oxytocin antagonist 1-deamino-2-D-Tyr-(Oet)-4-Thr-8-Orn-oxytocin. Intra-NRM injection of naloxone dose-dependently antagonized the increased HWLs induced by preceding intra-NRM injection of oxytocin, indicating an involvement of opioid receptors in oxytocin-induced antinociception in the NRM of rats. Furthermore, the antinociceptive effect of oxytocin was dose-dependently attenuated by subsequent intra-NRM injection of the mu-opioid antagonist beta-funaltrexamine (beta-FNA), but not by the kappa-opioid antagonist nor-binaltorphimine (nor-BNI) or the delta-opioid antagonist naltrindole. The results demonstrated that oxytocin plays an antinociceptive role in the NRM of rats through activating the oxytocin receptor. Moreover, mu-opioid receptors, not kappa and delta receptors, are involved in the oxytocin-induced antinociception in the NRM of rats.  相似文献   

9.
Previous investigations have shown that the level of asymmetric dimethylarginine (ADMA) was increased in hypercholesterolemic animal and humans, and the decreased erythrocyte deformability has been suggested to be a factor contributing to atherogenesis. In the present study, we investigated the effect of ADMA, endogenous or exogenous, on atherogenesis and erythrocyte deformability in apolipoprotein E deficient (ApoE-/-) mice. On a regular chow diet, ApoE-/- mice or C57BL/6 J mice at 12 weeks of age were treated with ADMA (5 mg/kg/day) for 4 weeks. Atherosclerotic lesion area, erythrocyte deformability, plasma lipids and asymmetric dimethylarginine (ADMA) level were determined. Plasma concentrations of triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), ADMA, and atherosclerotic lesion area were significantly increased, and the level of plasma high-density lipoprotein-cholesterol (HDL-C), erythrocyte deformability in ApoE-/- mice were markedly decreased compared with that of C57BL/6J mice (P<0.05 or P<0.01). Exogenous ADMA treatment increased the plasma TG level, produced atherosclerotic lesions, and decreased erythrocyte deformability in C57BL/6J mice (P<0.05 or P<0.01). Treatment with exogenous ADMA further increased the plasma TG level and lesion areas, and decreased erythrocyte deformability in ApoE-/- mice. In vitro, exogenous ADMA caused a decrease of erythrocyte deformability in a concentration-dependent manner, and the effect of ADMA was reversed by L-arginine. The present results suggest that endogenous ADMA is an important contributor to the development of atherosclerosis and that reduction of erythrocyte deformability and impaired endothelial function induced by ADMA may be an important factor facilitating atherosclerotic lesions.  相似文献   

10.
The mechanical properties of vertebrate erythrocytes depend on their cytoskeletal protein networks. Membrane skeleton proteins spectrin and protein 4.1 (4.1R) cross-link with actin to maintain membrane stability under mechanical stress. Phosphorylation of 4.1R alters the affinity of 4.1R for spectrin–actin binding and this modulates the mechanical properties of human erythrocytes. In this study, phorbol 12-myristate-13-acetate (PMA)-induced phosphorylation of 4.1R was tested, erythrocyte deformability was determined and the erythrocyte elastic modulus was detected in human, chick, frog and fish. Furthermore, amino acid sequences of the functionally important domains of 4.1R were analyzed. Results showed that PMA-induced phosphorylation of 4.1R decreased erythrocyte deformability and this property was stable after 1 h. The values of Young’s modulus alteration gradually decreased from human to fish (0.388±0.035 kPa, 0.219±0.022 kPa, 0.191±0.036 kPa and 0.141±0.007 kPa). Ser-312 and Ser-331 are located within the consensus sequence recognized by protein kinase C (PKC); however, Ser-331 in zebrafish was replaced by Ala-331. The sequence of the 8 aa motif from vertebrate 4.1R showed only one amino acid mutation in frog and numerous substitutions in fish. Analyses of Young’s modulus suggested that the interaction between 4.1R with the spectrin–actin binding domain may have a special relationship with the development of erythrocyte deformability. In addition, amino acid mutations in 4.1R further supported this relationship. Thus, we hypothesize that alteration of membrane skeleton protein binding affinity may play a potential role in the development of erythrocyte deformability, and alteration of Young’s modulus values may provide a method for determining the deformability development of vertebrate erythrocytes.  相似文献   

11.
Glucose-6-phosphate dehydrogenase (G-6-PDH) deficiency is the most common known human genetic polymorphism. This study tested the hypothesis that G-6-PDH deficiency worsens sepsis-induced erythrocyte dysfunction. Sepsis (24 h) was induced by cecal ligation and puncture in wild-type (WT) and G-6-PDH-deficient (G-6-PDH activity 15% of WT) mice. Erythrocyte responses were tested in whole blood as well as in subpopulations of circulating erythrocytes. Whereas erythrocyte deformability was similar in unchallenged deficient and WT animals, sepsis decreased erythrocyte deformability that was more pronounced in deficient than WT animals. Sepsis also resulted in anemia and hemolysis in deficient compared with WT animals. Mean corpuscular hemoglobin content and erythrocyte deformability decreased in younger erythrocyte subpopulations from septic deficient compared with WT animals. Sepsis decreased the reduced-to-oxidized glutathione ratio in erythrocytes from both deficient and WT animals; however, plasma glutathione increased more in deficient than in WT animals. Erythrocyte content of band 3 associated with the cytoskeleton was elevated in deficient compared with WT erythrocytes. The antioxidant N-acetyl-l-cysteine in vivo alleviated the sepsis-induced decrease in erythrocyte deformability in deficient animals compared with sham-operated control animals. This study demonstrates that a mild degree of G-6-PDH deficiency (comparable to the human class III G-6-PDH deficiencies) worsens erythrocyte dysfunction during sepsis. Increased erythrocyte rigidity and tendency for hemolysis together with alterations in band 3-spectrin interactions may contribute to the immunomodulatory effects of G-6-PDH deficiency observed after major trauma and infections in humans.  相似文献   

12.
The basal rate of water reabsorption and its acceleration by oxytocin, cyclic AMP (cAMP) or serosal hypertonicity in frog urinary bladders were monitored before and after exposure of the mucosal surface to sulfhydryl (SH) reactive reagents. The following observations were made: 1. N-ethylmaleimide (NEM, 10(-5)M) did not modify the basal water flux, but did potentiate the hydrosmotic response to oxytocin. At higher NEM concentrations, an increase in the basal flux was observed, while the oxytocin-induced water flux was strongly inhibited, if not, nullified. 2. Iodoacetamide (IAM, 10(-3)M) did not modify the basal water flux but did inhibit the oxytocin-, cAMP-, and serosal hypertonicity-induced increase in water permeability. Furthermore, the time course of the hydrosmotic response to oxytocin was significantly increased. 3. 5,5' dithio-bis-(2-nitrobenzoic acid) (DTNB, 10(-3)M) modified neither the basal nor the oxytocin-induced water flux when incubated at pH 8.1, but potentiated the inhibitory effect of NEM. However, at a mucosal pH of 6.5, DTNB inhibited the response to oxytocin by 30%. These results suggest that: (1) the three SH reagents affect differently the basal and the oxytocin-induced water pathways; and that (2) each of the changes in the oxytocin-induced paths occurs at a step following the hormonally-induced increase in intracellular cAMP concentration.  相似文献   

13.
Oxytocin (0.25 IU/100 g body wt) was injected intraperitoneally only once to unilaterally splanchnic denervated pigeons. The effects were investigated after 0.5, 4, 12, 24, 72, 144 and 216 h of administration. The findings revealed that oxytocin caused the release of more norepinephrine (NE) from the denervated glands up to 24 h after treatment. In contrast, oxytocin-induced release of epinephrine (E) showed no significant difference in between the innervated and the denervated glands after 0.5 h of treatment. Strikingly, oxytocin brought about release of more E from the denervated glands after 24 h of treatment. This indicates that the first phase of NE release and the second phase of E release are neurally regulated. The findings further revealed that the resynthesis of both NE and E was faster in the innervated glands after 216 h of oxytocin treatment. This clearly points out that the splanchnic nerve accelerates resynthesis of both NE and E induced by oxytocin.  相似文献   

14.
Skeletal proteins play an important role in determining erythrocyte membrane biophysical properties. To study whether membrane deformability and stability are regulated by the same or different skeletal protein interactions, we measured these two properties, by means of ektacytometry, in biochemically perturbed normal membranes and in membranes from individuals with known erythrocyte abnormalities. Treatment with 2,3-diphosphoglycerate resulted in membranes with decreased deformability and decreased stability, whereas treatment with diamide produced decreased deformability but increased stability. N-ethylmaleimide induced time-dependent changes in membrane stability. Over the first minute, the stability increased; but with continued incubation, the membranes became less stable than control. Meanwhile, the deformability of these membranes decreased with no time dependence. Biophysical measurements were also carried out on pathologic erythrocytes. Membranes from an individual with hereditary spherocytosis and a defined abnormality in spectrin-protein 4.1 association showed decreased stability but normal deformability. In a family with hereditary elliptocytosis and an abnormality in spectrin self-association, the membranes had decreased deformability and stability. Finally, membranes from several individuals with Malaysian ovalocytosis had decreased deformability but increased stability. Our data from both pathologic membranes and biochemically perturbed membranes show that deformability and stability change with no fixed relationship to one another. These findings imply that different skeletal protein interactions regulate membrane deformability and stability. In light of these data, we propose a model of the role of skeletal protein interactions in deformability and stability.  相似文献   

15.
Seven bilaterally ovariectomized heifers were used in 4 experiments and received: (1) saline injections, as control; (2) one injection of oestradiol (3 mg; i.v.); (3) two i.v. injections of oxytocin (100 i.u.) 6 h apart; or (4) one oestradiol injection 30 min after the first oxytocin injection and a second oxytocin injection 6 h later. All experiments were performed without progesterone and then after 7, 14 and 21 days of progesterone treatment. Frequent blood samples were taken for 1 h before and 7 h after the first injection of oxytocin or oestradiol for the measurement of 13,14-dihydro-15-keto-PGF-2 alpha (PGFM) by radioimmunoassay. After 7, 14 and 21 days of progesterone priming, oestradiol caused a significant increase (P less than 0.001) in plasma PGFM after 6 h but not before. After 7, 14 and 21 days of progesterone, there was a significant increase (P less than 0.005) in PGFM after the first oxytocin injection and a similar increase following the second. The oxytocin-induced increase in PGFM after 14 and 21 days of progesterone was significantly higher (P less than 0.001) 6 h after oestradiol injection than before the oestradiol injection. There was no significant effect of oestradiol on the response to oxytocin in animals that received no progesterone or in those animals that received progesterone for only 7 days. These results show that, under the influence of progesterone, oestradiol enhances the oxytocin-induced release of PGF-2 alpha, and suggest a possible synergistic action of these hormones for the induction of luteolysis in heifers.  相似文献   

16.
Erythrocyte deformability and surface charge were studied in normal premenopausal women, oral contraceptive users, and pregnant women. The increased incidence of thrombosis in women taking oral contraceptives could not be explained by decreased erythrocyte deformability or surface charge. However, the decreased erythrocyte deformability of late pregnancy may relate to thrombosis during this period and to increased hemolysis in patients with certain hemoglobinopathies.  相似文献   

17.
With the use of the cecal ligation and puncture model in mice, this study tested whether sepsis-induced decreased erythrocyte deformability is restricted to a subpopulation of cells. Erythrocyte subpopulations were isolated by centrifugal elutriation. Lineweaver-Burk conversion of deformability-response curves to shear stress was used to determine the shear stress at half-maximal cell elongation (K(EI)) and maximal cell elongation (EI(max)). Sepsis decreased erythrocyte deformability in whole blood. K(EI) values were elevated (2.7 vs. 2.1 Pa) and EI(max) values decreased (0.56 vs. 0.50) in sepsis compared with sham mice. K(EI) values for cells eluted at 7 ml/min (smallest and oldest cells) were similar; however, K(EI) values for cells eluted at 8 ml/min were greater in septic than sham animals (2.50 vs. 2.10). Younger and larger subpopulations of erythrocytes (eluted at 9, 10, and 11 ml/min) also showed a tendency of decreased deformability in sepsis. Mean corpuscular hemoglobin content was decreased in cells eluted at 7 and 8 ml/min in sepsis (4.5 and 10.2 pg) compared to sham (7.4 and 11.4 pg) mice. This study indicates that an erythrocyte subpopulation that represents 20% of circulating cells shows the most pronounced decrease in cell deformability during sepsis. Increased rigidity together with decreased corpuscular hemoglobin content in these cells may contribute to microcirculatory dysfunction and immune modulation during sepsis.  相似文献   

18.
Oxytocin stimulates a rapid increase in ovine endometrial prostaglandin (PG) F2alpha synthesis. The overall objective of these experiments was to investigate the cellular mechanisms by which oxytocin induces endometrial PGF2alpha synthesis. The objective of experiment 1 was to determine whether G(i) proteins mediate oxytocin-induced PGF2alpha synthesis. Uteri were collected from four ovary-intact ewes on Day 14 postestrus. Caruncular endometrial explants were dissected and subjected to in vitro incubation. Pertussis toxin, an inhibitor of G(i) proteins, had no effect on the ability of oxytocin to induce PGF2alpha synthesis (P > 0.10). The objective of experiment 2 was to determine whether any of the three mitogen-activated protein kinases (MAPKs), extracellular signal regulated protein kinase (ERK1/2), c-Jun N-terminal/stress-activated protein kinase (JNK/SAPK), or p38 MAPK, mediate oxytocin-induced PGF(2alpha) synthesis. Eleven ovary-intact ewes were given an injection of oxytocin (10 IU; i.v.; n = 5) or physiological saline (i.v.; n = 6) on Day 15 postestrus. Uteri were collected 15 min after injection and caruncular endometrium was dissected. Endometrial homogenates were prepared and subjected to Western blotting. Membranes were probed for both total and phosphorylated forms of all three classes of MAPK. All classes of MAPK were detected in ovine endometrium, but oxytocin treatment had no effect on the expression of these proteins (P > 0.10). ERK1/2 was the only phosphorylated MAPK detected and its concentrations were higher in oxytocin-treated ewes (P < 0.01). The objective of experiment 3 was to further investigate the role of ERK1/2 during oxytocin-induced PGF2alpha synthesis. Uteri were collected from four ovary-intact ewes on Day 14 postestrus. Caruncular endometrial explants were dissected and subjected to in vitro incubation. PD98059, a specific inhibitor of ERK1/2 activity, blocked the ability of oxytocin to stimulate PGF(2alpha synthesis in a dose-dependent manner (P < 0.05). These results indicate that the ovine oxytocin receptor is not coupled to G(i) proteins. These results indicate that oxytocin induces phosphorylation of ERK1/2 and that this MAPK appears to mediate oxytocin-induced PGF2alpha synthesis in ovine endometrium.  相似文献   

19.
In a prospective study of 196 consecutive single births a significant increase in serum bilirubin concentrations was found in infants born after low amniotomy induction and oxytocin infusion compared with those born spontaneously. This relationship was not dose-dependent and may have been associated with artificial interruption of pregnancy rather than the oxytocin itself. Infants delivered after spontaneous labour accelerated by oxytocin showed no such increase. The hormonal surge at the spontaneous onset of labour may affect fetal enzyme induction, but other factors, such as methods of infant feeding and oral contraceptive use, were found not to be significant.  相似文献   

20.
Pregnancy and intrauterine infusion of ovine trophoblast protein one (oTP-1) decrease oxytocin-induced secretion of prostaglandin F2α (PGF) from the uterus. In the present study, effects of oTP-1 and pregnancy on endometrial secretion of PHF were examined in an in vitro perifusion system. In Experiment 1, endometrium from day 14 pregnant and cyclic ewes was perifused sequentially on both the lumenal and myometrial sides with Krebs Ringers Bicorbonate solution (KRB), KRB plus oxytocin (1 IU/ml) and KRB alone. Endormetrium pregnant ewes secreted more PGF fro both lumenal and myotrial sides than endometrium from cyclic ewes (P<0.05). Oxytocin stimulated secretion of PGF was greater from the lumenal surface of endometrium compared to myometrium was collected from day 15 cyclic ewes and perifused sequentially with KRB, KRB plus 300 ng/ml of either Bovine Serum Albumin (BSA) or oTP-1, KRB with or without BSA or oTP-1 plus oxytocin (1 IU/ml) and then KRB alon. Oxytocin stimulated greater release of PGF from oTP-1-treated than BSA-treated endometrium. Pretreament of endometrium with oTP-1 has the same effect on oxytocin-induced PGF section was cotreatment with oTP-1 and oxytocin. In Experiment 3, uterine horns of cyclic ewes were catheterized on day 10 of the estrous cycle, and infused with either oTP-1 or day 16 pregnant sheep serum proteins on days 12, 13 and 14. Endometrium was collected on day 15 and perifused sequentially with KRB, KRB plus oxytocin (1 IU/ml) and then KRB alone. Treatment of ewes with oTP-1 attenuated endometrial secretion of PGF in response to oxytocin. Results of this study indicate that: (1) preganancy stimulates basal secretion of PGF from endometrium and has no effect on oxytocin-induced secretion of PGF in vitro; (2) short-term oTP-1 treatment enhances oxytocin-induced PGF secretion from day 15 cyclic endometrium and (3) long-term oTP-1 treatment in vivo inhibits oxytocin-induced PGF secretion in ewes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号