首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semliki Forest virus was grown in BHK cells and labeled in vivo with radioactive monosaccharides. Pronase digests of the virus chromatographed on Bio-Gel P6 revealed glycopeptides of A-type and B-type. (For the nomenclature see Johnson, J. and Clamp, J.R. (1971) Biochem. J. 123, 739-745.) The former was labeled with [3H]fucose, [3H]galactose, [3H]mannose and [14C]glucosamine, the latter only with [3H]mannose and [14C]glucosamine. The three envelope glycoproteins E1, E2 and E3 were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to pronase digestion. The glycoproteins E1 and E3 revealed glycopeptides of A-type. E2 revealed glycopeptides of B-type. E2 yielded additionally a glycopeptide (Mr3100) which was heavily labeled from [3H]galactose, but only marginally from [14C]glucosamine, [3H]fucose and [3H]mannose. Whether this glycopeptide belongs to the A-type or not remains uncertain. The apparent molecular weights of the A-type units measured by gel filtration were 3400 in E1 and 4000 in E3; the B-type unit of E2 had an apparent molecular weight of 2000. Combined with the findings of our earlier chemical analysis these data suggest that E1 and E3 contain on the average one A-type unit; E2 probably contains one 3100 dalton unit plus one or two B-type units.  相似文献   

2.
Herpesvirus sylvilagus was propagated in juvenile cotton tail rabbit kidney cells and purified from the cytoplasmic fraction of the infected cells. The purification procedure included zonal centrifugation through a 5 to 30% dextran t-10 gradient, followed by equilibrium centrifugation in a 5 to 50% potassium tartrate gradient. H. sylvilagus formed one band after centrifugation through the tartrate gradient at a density of 1.22 g/cm3. Contamination of the purified virus preparation by cellular proteins was less than 0.2% as determined by the removal of radioactivity from an artificially mixed sample containing [35S]methionine-labeled control cells and nonlabeled infected cells. H. sylvilagus nucleocapsids were isolated from infected cell nuclei and purified by sedimentation through a 36% sucrose cushion, followed by equilibrium centrifugation in 5 to 50% tartrate gradient. Forty-four polypeptides ranging in molecular weight from 18,000 to 230,00 were resolved when [35S]methionine-labeled enveloped H. sylvilagus was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Seventeen polypeptides found within the enveloped virus were also identified with the nucleocapsid. Six additional nucleocapsid polypeptides han no counterparts within the enveloped virus. The major polypeptide within both the virus and the nucleocapsid had a molecular weight of 150,000.  相似文献   

3.
Polyoma virus complementary RNA, synthesized in vitro by using highly purified Escherichia coli RNA polymerase and nondefective form I polyoma DNA, was translated in a wheat germ cell-free system. Polypeptides were synthesized that comigrated on sodium dodecyl sulfate-polyacrylamide gels with the polyoma capsid proteins VP1 and VP2, although most of the cell-free products were of smaller molecular weights. The VP1-size protein specifically immunoprecipitated with anti-polyoma virus serum, and upon digestion by trypsin yielded [35S]methionine-labeled tryptic peptides that co-chromatographed with the [3H]methionine-labeled tryptic peptides of virion-derived VP1 on both cation-exchange and anion-exchange resins. The VP2-size in vitro product contained all the virion VP2 methionine-labeled tryptic peptides, as shown by cation- and anion-exchange chromatography and two-dimensional fingerprinting on cellulose. We conclude that full-length polyoma VP1 and VP2 are synthesized in response to complementary RNA and consequently that the viral capsid proteins VP1, VP2, and VP3 are entirely virus coded.  相似文献   

4.
Some Syrian hamster cell lines persistently infected with lymphocytic choriomeningitis virus (LCMV) do not produce extracellular virus particles but do contain intracytoplasmic infectious material. The proteins of these cells were labeled with [35S]methionine or with [3H]glucosamine and [3H]mannose, and immunoprecipitates were prepared with anti-LCMV sera. A substantial amount of the LCMV nucleocapsid protein (molecular weight about 58,000) was detected, along with GP-C, the precursor of the virion glycoproteins GP-1 and GP-2. GP-1 and GP-2 themselves were not detected. A new method of transferring proteins electrophoretically from sodium dodecyl sulfate-polyacrylamide gels to diazotized paper in high yield revealed several additional LCMV proteins present specifically in the persistently infected cells, at apparent molecular weights (X10(3] of 112, 107, 103, 89, 71 (probably GP-C), 58 (nucleocapsid protein), 42 to 47 (probably GP-1), and 40 (possibly GP-2). By iodinating intact cells with I3, GP-1 but not GP-2 or GP-C was revealed on the surfaces of the persistently infected cells, whereas both GP-1 and GP-C were found on the surfaces of acutely infected cells. The absence of GP-C from the plasma membrane of the persistently infected cells might be related to defective maturation of the virus in these cells. Cytoplasmic viral nucleoprotein complexes were labeled with [3H]uridine in the presence or absence of actinomycin D, purified partially by sedimentation in D2O-sucrose gradients, and adsorbed to fixed Staphylococus aureus cells in the presence of anti-LCMV immunoglobulin G. Several discrete species of viral RNA were released from the immune complexes with sodium dodecyl sulfate. Some were appreciably smaller than the 31S and 23S species of standard LCMV virions, indicating that defective interfering viral RNAs are probably present in the persistently infected cells. Ribosomal 28S and 18S RNAs, labeled only in the absence of actinomycin D, were coprecipitated with anti-LCMV serum but not with control serum, indicating their association with LCMV nucleoproteins in the cells.  相似文献   

5.
Analysis of [35S]methionine-labeled tryptic peptides of the large proteins induced by temperature-sensitive mutants of Semliki Forest virus was carried out. The 130,000-molecular-weight protein induced by ts-2 and ts-3 mutants contained the peptides of capsid protein and of both major envelope proteins E1 and E2. The ts-3-induced protein with molecular weight of 97,000 contained peptides of the capsid and envelope protein E2 but not those of E1. Two proteins with molecular weights of 78,000 and 86,000 from ts-1-infected cells did not contain the peptides of the virion structural proteins. They are evidently expressions of the nonstructural part of the 42S RNA genome of Semliki Forest virus.  相似文献   

6.
Monosaccharide Sequence of Protein-Bound Glycans of Uukuniemi Virus   总被引:3,自引:10,他引:3       下载免费PDF全文
Uukuniemi virus, a member of the Bunyaviridae family, was grown in BHK-21 cells in the presence of [3H]mannose. The purified virions were disrupted with sodium dodecyl sulfate and digested with pronase. The [3H]mannose-labeled glycopeptides of the mixture of the two envelope glycoproteins G1 and G2 were characterized by degrading the glycans with specific exo-and endoglycosidases, by chemical methods, and by analyzing the products with lectin affinity and gel chromatography. The glycopeptides of Uukuniemi virus fell into three categories: complex, high-mannose type, and intermediate. The complex glycopeptides probably contained mainly two NeuNAc-Gal-GlcNAc branches attached to a core (Man)3(GlcNAc)2 peptide. The high-mannose-type glycans were estimated to contain at least five mannose units attached to two N-acetylglucosamine residues. Both glycan species appeared to be similar to the asparagine-linked oligosaccharides found in many soluble and membrane glycoproteins. The results suggested that the intermediate glycopeptides contained a mannosyl core. In about half of the molecules, one branch appeared to be terminated in mannose, and one appeared to be terminated in N-acetylglucosamine. Such glycans are a novel finding in viral membrane proteins. They may represent intermediate species in the biosynthetic pathway from high-mannose-type to complex glycans. Their accumulation could be connected with the site of maturation of the members of the Bunyaviridae family. Electron microscopic data suggest that the virions bud into smooth-surfaced cisternae in the Golgi region. The relative amounts of [3H]mannose in the complex, high-mannose-type, and intermediate glycans were 25, 62, and 13%, respectively, which corresponded to the approximate relative number of oligosaccharide chains of 2:2.8:1, respectively, in the roughly equimolar mixture of G1 and G2. Endoglycosidase H digestion of isolated [35S]methionine-labeled G1 and G2 proteins suggested that most of the complex and intermediate chains were attached to G1 and that most of the high-mannose-type chains were attached to G2.  相似文献   

7.
We have examined and compared the host-cell-dependent glycosylation of the G glycoprotein of vesicular-stomatitis virus (Hazelhurst strain) and the E1 and E2 glycoproteins of Sindbis virus replicated by baby-hamster kidney, chicken-embryo fibroblast and mouse L929 monolayer cell cultures. The results of endo-beta-N-acetylglucosaminidase H digestion of viral proteins labelled with [3H]mannose or leucine and Pronase-digested glycopeptides labelled with [3H]mannose indicated that both the G protein and the E1 protein contained a similar mixture of endoglycosidase-resistant oligosaccharides of the complex acidic type and less extensively processed endoglycosidase-sensitive oligosaccharides of the neutral or hybrid type, with a relatively greater content of the endoglycosidase-sensitive oligosaccharides for virus replicated in the chicken as against hamster or mouse cells. A large fraction of the G protein and the majority of the E1 proteins from the mammalian host cells contained acidic-type oligosaccharides at both glycosylation sites, whereas most of the G and E1 glycoproteins from the avian host cells and essentially all of the E2 protein from all three host-cell types contained an acidic-type oligosaccharide at one site and neutral- or hybrid-type oligosaccharide at the other site. The relative increase in neutral- and hybrid-type oligosaccharides with five-mannose core structures observed for the G and E1 proteins of virus released from the avian host cells suggested that two specific steps in oligosaccharide processing (mediated by alpha-mannoside II and N-acetylglucosaminyltransferase I) were less efficient at one of the glycosylation sites of the vesicular-stomatitis-virus G protein and Sindbis-virus E1 protein in the avian as against mammalian host cells.  相似文献   

8.
Cells stably infected with Rous sarcoma virus were treated with tunicamycin to prevent the glycosylation of the precursor (pr92gp) to the two viral envelope glycoproteins gp85 and gp35. Pretreatment of the cells for 4 h with the antibiotic resulted in a 90% reduction in [3H]mannose incorporation into total cellular glycoproteins, intracellular viral glycoproteins, and released virus particles. Protein synthesis and virus particle formation were not significantly affected by the treatment. A new polypeptide made in the presence of the drug was identified by immunoprecipitation of pulse-labeled cell lysates with monospecific anti-gp85 and anti-gp35 sera. This polypeptide, migrating on sodium dodecyl sulfate-polyacrylamide gels as a molecule of 62,000 daltons (pr62), contained no [3H]mannose, was labeled with [S35]methionine and [3H]arginine, could not be chased into the higher-molecular-weight glycosylated form, and contained the same [3H]arginine tryptic peptides as pr92gp. The unglycosylated pr62 was still detectable 2 h after the pulse labeling of the cells. The lack of glycosylation of pr62 did not seem to reduce its stability. No clear evidence for the incorporation of this molecule or its cleavage products into viral particles could be obtained. To code for an envelope polypeptide of 62,000 daltons, only about 1,500 nucleotides or 15% of the total coding capacity of the virus are needed.  相似文献   

9.
Proteins associated with human parainfluenza virus type 3.   总被引:6,自引:6,他引:0       下载免费PDF全文
The polypeptides associated with human parainfluenza virus type 3 were identified. Five proteins were present in detergent- and salt-resistant viral cores. Of these, three proteins designated NP0, NP1, and NP2 of 68,000, 58,000, and 52,000 daltons, respectively, were stably associated with 50S RNA in CsCl gradient-purified nucleocapsids. The amounts of NP1 and NP2 were variable, and these proteins were shown to be structurally related to the major nucleocapsid protein (NP0) by partial Staphylococcus aureus V8 protease mapping. The other core proteins included a 240K protein designated L (candidate for the viral polymerase) and an 84K protein designated as the phosphoprotein (P) on the basis of a predominant incorporation of Pi. The viral envelope had four prominent proteins (72, 53, 40, and 12K) under reducing conditions of electrophoresis. The 72 and 53K proteins were specifically labeled with [3H]glucosamine and [3H]mannose. When sulfhydryl reagents were removed, a new 62K protein was visualized in place of the 72, 53, and 12K proteins. The 53 and 12K proteins were interpreted to be the two subunits (F1 and F2) of the fusion protein, and the 72K protein was designated as the HN (hemagglutinin-neuraminidase) glycoprotein. The unglycosylated 40K protein represented the viral matrix protein (M). Immunoprecipitation of infected cell lysates with rabbit hyperimmune antiserum against purified virus confirmed the viral origin of these polypeptides.  相似文献   

10.
Cell surface receptors for immunoglobulin E were isolated by repetitive affinity chromatography from rat basophilic leukemia cells biosynthetically labeled with L-[35S]methionine and D-[3H]mannose. Native immunoglobulin E receptor appeared as a very broad band in the 45,000 to 62,000 Mr region in sodium dodecyl sulfate polyacrylamide gels. However, from cells cultured in the presence of tunicamycin, a relatively narrow band with an apparent Mr of 38,000 was isolated. The 38,000 Mr band rebound to immunoglobulin E-Sepharose, was immunoprecipitated with antibodies to immunoglobulin E receptor, shared tryptic peptides with native receptor, and was labeled with L-[35S]methionine but not D-[3H]mannose, and thus appears to be immunoglobulin E receptor lacking N-linked oligosaccharides. It is demonstrated that N-linked oligosaccharides account for much of the apparent heterogeneity of native receptor in sodium dodecyl sulfate polyacrylamide gels and in two-dimensional gel electrophoresis. A receptor-associated protein with apparent Mr = 30,000, prominently labeled with L-[35S]methionine but not with D-[3H]mannose, did not have altered molecular properties when isolated from tunicamycin-cultured cells, and did not share tryptic peptides with receptor.  相似文献   

11.
Semliki Forest virus was grown in BHK cells and labeled in vivo with radio-active monosaccharides. promnase digenst of the virus chromatographer on Bio-Gel P 6 revealed glycopeptides of A-type and B-type. (For the nomenclature see Johnson J. and Clamp J.R. (1971) Biochem. J. 123, 739–745) The former was labeled with [3H]fucose, [3H]galactose, [3H]mannose and [14C]glucosamine, the latter only with [3H]mannose and [14C]glucosamine. The three envelope glycoproteins E1, E2 and E3 were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to pronase digestion. The glycoproteins E1 and E3 revealed glycopeptides of A-type. E2 revealed glycopeptides of B-type. E2 yielded additionally a glycopeptide (Mr3100) which was heavily labeled from [3H]galactose, but only marginally from [14C]glucosamine, [3H]fucose and [3H]mannose. Wether this glycopeptide belongs to the A-type or not remains uncertain. The apparent molecular weights of the A-type units measured by gel filtration were 3400 in E1 and 4000 in E3; the B-type unit of E2 had an apparent molecular weight of 2000. Combined with the findings of our earlier chemical analysis these data suggast that E1 and E3 contain on the average one A-type unit; E2 probably contains one 3100 dalton unit plus one or two B-type units.  相似文献   

12.
Polypeptides synthesized in Newcastle disease virus (NDV)-infected CHO cells in the absence of glycosylation were characterized. Incorporation of either [3H]mannose of [3H]glucosamine into NDV polypeptides was inhibited to greater than 99% by the antibiotic tunicamycin. Under these conditions, infected cells synthesized proteins which comigrated on polyacrylamide gels with the viral L protein, nucleocapsid protein, membrane protein, and a polypeptide with a molecular weight of 55,000 (P55). These cells did not synthesize polypeptides with the size of the hemagglutinin-neuraminidase (HN) protein or the fusion (F0) protein. They did, however, synthesize new polypeptides with molecular weights of 75,000 (P75), 67,000 (P67), and 52,000 (P52). Peptide analysis revealed that P75 was a host cell protein whose synthesis is enhanced by tunicamycin. P67 corresponded to the unglycosylated forms of the glycoproteins were found to be relatively stable in infected cells. P55, previously thought to correspond to the cleaved form of F0, was found to be a unique viral protein which is associated with intracellular nucleocapsid structures.  相似文献   

13.
Tryptic digests of four polypeptides found in Kunjin virus-infected Vero cells, NV5, NV4, V3, and NV3, were compared by peptide mapping. The polypeptides to be analyzed were labeled with radioactive methionine and separated by electrophoresis through polyacrylamide gels containing sodium dodecyl sulfate. Because infection of Vero cells by Kunjin virus does not inhibit host cell protein synthesis, radioactively labeled viral polypeptides prepared from infected cells migrate coincidentally during sodium dodecyl sulfate-gel electrophoresis with some of the labeled host proteins. Thus, the genuine viral methionine-containing peptides in tryptic digests of viral proteins have been identified by co-analyzing polypeptides from [3H]methionine-labeled uninfected cells and [35S]methionine-labeled infected cells and determining the 35S/3H ratio in the peptides resolved in two dimensions on thin-layer chromatography plates. The peptide map of NV3 demonstrated that it is host coded, whereas NV5, NV4, and V3 have unique peptide maps and, therefore, account for approximately one-half of the coding potential of Kunjin virus RNA.  相似文献   

14.
The antibiotic tunicamycin, which blocks the synthesis of glycoproteins, inhibited the production of infectious herpes simplex virus. In the presence of this drug, [14C]glucosamine and [3H]mannose incorporation was reduced in infected cells, whereas total protein synthesis was not affected. Gel electrophoresis of [2-3H]mannose-labeled polypeptides failed to detect glycoprotein D or any of the other herpes simplex virus glycoproteins. By use of specific antisera we demonstrated that in the presence of tunicamycin the normal precursors to viral glycoproteins failed to appear. Instead, lower-molecular-weight polypeptides were found which were antigenically and structurally related to the glycosylated proteins. Evidence is presented to show that blocking the addition of carbohydrate to glycoprotein precursors with tunicamycin results in the disappearance of molecules, possibly due to degradation of the unglycosylated polypeptides. We infer that the added carbohydrate either stabilizes the envelope proteins or provides the proper structure for correct processing of the molecules needed for infectivity.  相似文献   

15.
Hydrophobic envelope proteins were extracted by phenol from a glucosamine- and leucine-requiring mutant of Escherichia coli K-12 (E-110). Three protein fractions labelled with D-[1-1 4C]glucosamine and L-[4,5-3H]leucine were obtained by electrophoretic separation. Envelope were isolated from cells labeleed with D-[1-1 4C]glucosamine—HCL and acid hydrolyzed. At least 68% of the radioactivity was recovered as glucosamine and glucose with no random distribution of label. Fingerprinting of pronase digests of glucosamine-labelled proteins showed four radioactive spots associated with peptides. Te glycoproteins were pronase- and trypsin-sensitive and had apparent molecular weights of 11 000 (fast mobility), 35 000 (intermediate mobility) and 62 000 (slow mobility) as estimated by sodium dodecyl sulfate-polyacrylamide disc electrophoresis. The two heavier fractions were labelled with meso-diamino[1,7-1 4C2]pimelic acid, while ortho[3 2P]phosphate was not incorporated into any fraction. The glucosamine radioactivity of the fast fraction underwent rapid changes upon a chase with non-radioactive glucosamine. Using a Sephadex LH-20 column, the radioactive proteins were separated from the phenol and subsequently fractionated on a DEAS-cellulose column. The DEAE-cellulose fractions were distinct from each other in the number and composition of protein bands, when analyzed by sodium dodecyl sulfate-polyacrylamide disc electrophoresis. Radioactive bands with intermediate and fast electrophoretic mobilities were found in separate DEAE-cellulose fractions.  相似文献   

16.
Apolipoprotein E externally added to neuroblastoma cells in culture stimulates [35S]sulfate incorporation on cell and extracellular matrix glycosaminoglycans (sGAG). This stimulation is mainly observed for ApoE4 compared to ApoE3. The increase in sulfation is not due to increased synthesis as there is no corresponding increase in the [3H]glucosamine incorporation. Since the presence of ApoE is a risk factor for Alzheimer's disease (AD) and the presence of sGAG could facilitate the assembly of the main components, beta-amyloid and tau proteins, of the aberrant structures found in AD, the present study indicates a possible relation between those factors.  相似文献   

17.
Hydrophobic envelope proteins were extracted by phenol from a glucosamine- and leucine-requiring mutant of Escherichia coli K-12 (E-110). Three protein fractions labelled with D-[1-1 4C]glucosamine and L-[4,5-3H]leucine were obtained by electrophoretic separation. Envelope were isolated from cells labeleed with D-[1-1 4C]glucosamine—HCL and acid hydrolyzed. At least 68% of the radioactivity was recovered as glucosamine and glucose with no random distribution of label. Fingerprinting of pronase digests of glucosamine-labelled proteins showed four radioactive spots associated with peptides. Te glycoproteins were pronase- and trypsin-sensitive and had apparent molecular weights of 11 000 (fast mobility), 35 000 (intermediate mobility) and 62 000 (slow mobility) as estimated by sodium dodecyl sulfate-polyacrylamide disc electrophoresis. The two heavier fractions were labelled with meso-diamino[1,7-1 4C2]pimelic acid, while ortho[3 2P]phosphate was not incorporated into any fraction. The glucosamine radioactivity of the fast fraction underwent rapid changes upon a chase with non-radioactive glucosamine. Using a Sephadex LH-20 column, the radioactive proteins were separated from the phenol and subsequently fractionated on a DEAS-cellulose column. The DEAE-cellulose fractions were distinct from each other in the number and composition of protein bands, when analyzed by sodium dodecyl sulfate-polyacrylamide disc electrophoresis. Radioactive bands with intermediate and fast electrophoretic mobilities were found in separate DEAE-cellulose fractions.  相似文献   

18.
The propagation of the tick-borne encephalitis virus in the culture of the porcine embryo kidney cells containing the radioactive mannose and glucosamine results in incorporation of radioactive label into hemagglutinin V3(E) as well as into other structural proteins, the nucleocapsid protein V2(C) and membrane protein V1(M). The possible reasons for carbohydrates borne radioactivity incorporation into the proteins V2 and V1 are discussed.  相似文献   

19.
Rat ovarian granulosa cells were isolated from immature female rats after stimulation with pregnant mare's serum gonadotropin and maintained in culture. Proteoglycans were labeled using [35S]sulfate, [3H]serine, [3H]glucosamine, or [3H]mannose as precursors. A species of heparan sulfate proteoglycan was purified using DEAE-Sephacel chromatography under dissociative conditions in the presence of detergent. The heparan sulfate proteoglycan, which constituted approximately 15% of the 35S-labeled proteoglycans in the culture medium has a similar hydrodynamic size (Kd = 0.62 on Sepharose CL-2B) and buoyant density distribution in CsCl density gradients as the low buoyant density dermatan sulfate proteoglycan synthesized by the same granulosa cells and described in the accompanying report (Yanagishita, M., and Hascall, V. C. (1983) J. Biol. Chem. 258, 12847-12856). The heparan sulfate chains (average Mr = 28,000) have an average of 0.8-0.9 sulfate groups/repeating disaccharide, of which 50% are N-sulfate, 30% are alkaline-labile O-sulfate (presumably on the 6-position of glucosamine residues), and 20% are alkaline-resistant O-sulfate groups. Alkaline borohydride treatment released both N-linked oligosaccharide-peptides containing mannose, glucosamine, and sialic acid, and O-linked oligosaccharides. Trypsin digestion of the proteoglycan generated fragments which contain (a) glycosaminoglycan-peptides with an average of 2 heparan sulfate chains/peptide; (b) clusters of O-linked oligosaccharides on peptides; and (c) N-linked oligosaccharide-peptides, which are as small as single N-linked oligosaccharides. The compositions of the O-linked and N-linked oligosaccharides and the trypsin fragments of this heparan sulfate proteoglycan were very similar to those of the low buoyant density dermatan sulfate proteoglycan synthesized by the same cells.  相似文献   

20.
The effect of 4-deoxy-4-fluoro-D-mannose (4F-Man), a synthetic analog of D-mannose, on the synthesis of the glycoprotein (G) of vesicular stomatitis virus was examined. Nearly confluent monolayers of cultured BHK21 cells infected with vesicular stomatitis virus were incubated for 2 h with 4F-Man (0-10 mM) or for 1 h with tunicamycin (2 micrograms/ml) and then pulse-labeled with [35S]methionine or [3H]glucosamine. After a 90-min chase period, the cells were lysed and the viral proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. The 35S-labeled G protein from cells exposed to greater than or equal to 1 mM 4F-Man migrated more rapidly than G protein isolated from control cells and with the same electrophoretic mobility as the glycoprotein produced by cells treated with tunicamycin. When infected cells were labeled with [3H]glucosamine, little or no radioactivity was associated with G protein synthesized in the presence of greater than or equal to 1 mM 4F-Man. The conclusion that 4F-Man blocks the glycosylation of the G protein was supported by experiments which demonstrated that the fluorosugar inhibits the synthesis of lipid-linked oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号