首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NAD-dependent succinic semialdehyde dehydrogenase (EC 1.2.1.24) has been purified to homogeneity from human brain via ion-exchange chromatography and affinity chromatography employing Blue Sepharose and 5'-AMP Sepharose. Succinic semialdehyde dehydrogenase was never previously purified to homogeneity from any species; this preparation therefore allows the determination of its molecular weight, subunit molecular weight, subunit composition, isoelectric points, and substrate specificity for the first time. The enzyme is a tetramer of Mr230,000 to 245,000 and consists of weight-nonidentical subunits (Mr 61,000 and 63,000). On isoelectric focusing the enzyme separates into five bands with the following isoelectric points: 6.3, 6.6, 6.8, 6.95, and 7.15. Its substrates include glutaric semialdehyde, nitrobenzaldehyde, and short chain aliphatic aldehydes in addition to succinic semialdehyde which is the best substrate. The Km values for succinic semialdehyde, acetaldehyde, and propionaldehyde are 1,875, and 580 microM, respectively. The enzyme is inactive with 3,4-dihydroxyphenylacetaldehyde and indole-3-acetaldehyde as substrates. Its subcellular localization is in the mitochondrial fraction. Succinic semialdehyde dehydrogenase is sensitive to inhibition by disulfiram (a drug used therapeutically to produce alcohol aversion) resembling, in this respect, aldehyde dehydrogenase (EC 1.2.1.3). It does not, however, interact with the antibody developed in the rabbit vs aldehyde dehydrogenase, suggesting that the two enzymes are structurally distinct.  相似文献   

2.
Fructose-6-P,2-kinase:fructose-2,6-bisphosphatase has been purified to homogeneity from beef heart. The enzyme was bifunctional and the specific activities of the kinase and the phosphatase of the pure enzyme were 60 and 30 milliunits/mg, respectively. The molecular weight of the enzyme was 118,000, consisting of two subunits of 58,000. In some preparations of the enzyme a minor protein with a subunit Mr of 54,000 was present. This minor protein (54,000) was also bifunctional and showed the same immunoreactivity as the major protein. The specific activity of fructose-6-P,2-kinase of the minor component was three times higher than that of the major enzyme (58,000), but fructose-2,6-bisphosphatase activity was the same. These two forms have been separated by phosphocellulose chromatography. The tryptic peptide maps of these enzymes were very similar. The 58,000 enzyme was phosphorylated by cAMP-dependent protein kinase but the 54,000 enzyme was not. These results indicated that the minor 54,000 protein might be a proteolytically digested form of the 58,000 enzyme. The Km of the kinase for fructose-6-P and ATP was 70 microM and 260 microM, respectively for both the 58,000 and the 54,000 enzymes. Km for fructose-2,6-P2 and Ki for fructose-6-P of the phosphatase was approximately 40 and 11 microM, respectively. The enzyme was phosphorylated by fructose-2,6-P2 but the stoichiometry of the phosphate incorporation was 0.05 mol/mol subunit, while 0.4 mol/mol was incorporated in rat liver enzyme under the same conditions.  相似文献   

3.
Abstract: We have identified succinic semialdehyde dehydrogenase protein in rat and human neural and nonneural tissues. Tissue localization was determined by enzymatic assay and by western immunoblotting using polyclonal antibodies raised in rabbit against the purified rat brain protein. Although brain shows the highest level of succinic semialdehyde dehydrogenase activity, substantial amounts of enzyme activity occur in mammalian liver, pituitary, heart, and ovary. We further demonstrate the absence of succinic semialdehyde dehydrogenase enzyme activity and protein in brain, liver, and kidney tissue samples from an individual affected with succinic semialdehyde dehydrogenase deficiency, thereby verifying the specificity of our antibodies.  相似文献   

4.
Abstract: Monoclonal antibodies against bovine brain succinic semialdehyde reductase were produced and characterized. A total of nine monoclonal antibodies recognizing different epitopes of the enzyme were obtained, of which two inhibited the enzyme activity and three stained cytosol of rat spinal cord neurons as observed by indirect immunofluorescence microscopy. When unfractionated total proteins of bovine brain homogenate were separated by gel electrophoresis and immunoblotted, the antibodies specifically recognized a single protein band of 34 kDa, which comigrates with purified bovine succinic semialdehyde reductase. Using the antisuccinic semialdehyde reductase antibodies as probes, we investigated the cross-reactivities of brain succinic semialdehyde reductases from some mammalian and an avian species. The immunoreactive bands on western blots appeared to be the same in molecular mass—34 kDa—in all animal species tested, including humans. The result indicates that brain succinic semialdehyde reductase is distinct from other aldehyde reductases and that mammalian brains contain only one succinic semialdehyde reductase. Moreover, the enzymes among the species are immunologically very similar, although some properties of the enzymes reported previously were different from one another.  相似文献   

5.
The effects of inhibitors of aldehyde reductase (alcohol:NADP+ oxidoreductase, EC 1.1.1.2) on the formation of 3-methoxy-4-hydroxyphenethylene glycol from normetanephrine have been studied in rat brain homogenates. The reaction pathway was shown to be unaffected by several inhibitors of the major (high Km) form of aldehyde reductase such as sodium valproate. Two isoenzymes of aldehyde reductase have been separated and characterized from rat brain. The minor (low Km) isoenzyme is shown to be relatively insensitive to sodium valproate and exhibits a similar inhibitor-sensitivity profile to that obtained for methoxyhydroxyphenethylene glycol formation. The low Km isoenzyme is therefore implicated in catecholamine metabolism. The metabolism of succinic semialdehyde and xylose by rat brain cytosol has also been examined. Aldose metabolism may also be attributed to the action of the low Km reductase, but the existence of a separate succinic semialdehyde reductase is postulated. The possible roles of aldehyde reductases in brain metabolism and the relationship between these enzymes and aldose reductase (alditol:NADP+ 1-oxidoreductase, EC 1.1.1.21) are discussed.  相似文献   

6.
Succinic semialdehyde reductase, a NADP+-dependent enzyme, was purified from whole pig brain homogenates. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. Succinic semialdehyde reductase (Mr 110,000) catalyzes the reduction of succinic semialdehyde to 4-hydroxybutyrate. The equilibrium constant of the reaction is Keq = 5.8 X 10(7) M-1 at pH 7 and 25 degrees C. The inhibition kinetic patterns obtained when 4-hydroxybutyrate or substrate analogs are used as inhibitors of the reaction catalyzed by the reductase are consistent with an ordered sequential mechanism, in which the coenzyme NADPH adds to the enzyme before the aldehyde substrate. A specific aldehyde reductase was also purified to homogeneity from brain mitochondria preparations. Its catalytic properties are identical to those of the enzyme isolated from whole brain homogenates. It is postulated that two enzymes, i.e. a NAD+-dependent dehydrogenase and a NADP+-dependent reductase, participate in the metabolism of succinic semialdehyde in the mitochondria matrix.  相似文献   

7.
Isozymes of adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3) were purified from skeletal muscle and liver of rats to essentially homogeneous states by acrylamide gel electrophoresis and sodium dodecyl sulfate gel electrophoresis. The isozyme from muscle was purified by acidification to pH 5.0, and column chromatography on phosphocellulose, Sephadex G-75 and Blue Sepharose CL-6B, while that from liver was purified by column chromatography on Blue Sepharose CL-6B, Sephadex G-75 and carboxymethyl cellulose. By these procedures the muscle isozyme was purified about 530-fold in 29% yield, and the liver isozyme about 3600-fold in 27% yield from the respective tissue extracts. The molecular weights of the muscle and liver isozymes were estimated as about 23 500 and 30 500, respectively, by both sodium dodecyl sulfate gel electrophoresis and molecular sieve chromatography, and no subunit of either isozyme was detected. The isoelectric points of the muscle and liver isozymes were 7.0 and 8.1, respectively. The Km values of the respective enzymes for ATP and ADP were similar, but the Km(AMP) of the liver isozyme was about one-fifth of that of the muscle isozyme. Immunological studies with rabbit antiserum against the rat muscle isozyme showed that the muscle isozyme was abundant in muscle, heart and brain, while the liver isozyme was abundant in liver and kidney.  相似文献   

8.
The conversion of succinic semialdehyde into gamma-aminobutyric acid (GABA) by GABA-transaminase was measured in rat brain homogenate in the presence of different concentrations of the cosubstrate glutamate. The calculated kinetic parameters of succinic semialdehyde for GABA-transaminase were a limiting Km value of 168 microM and a limiting Vmax value of 38 mumol g-1 h-1. Combination with previously obtained data for the conversion of GABA into succinic semialdehyde revealed a kEq value of 0.04, indicating that equilibrium of GABA-transaminase is biased toward the formation of GABA. The increased formation of GABA in the presence of succinic semialdehyde was not due to an increased conversion of glutamate into GABA by glutamic acid decarboxylase. Therefore these results indicate that succinic semialdehyde can act as a precursor for GABA synthesis.  相似文献   

9.
Ornithine decarboxylase (ODC) was purified about 2,000-fold from the kidney of androgen-treated mice and its molecular properties were examined and compared with those of the enzyme from rat liver. The purified enzyme showed two protein staining bands on SDS-polyacrylamide gel electrophoresis, corresponding to Mr of about 54,000 and 52,000. The apparent Mr of the enzyme determined by gel filtration was 57,000 in the presence of 0.25 M NaCl and 110,000 in its absence. The apparent Km value for L-ornithine was about 0.1 mM in the absence of NaCl and 0.7 mM in the presence of 0.25 M NaCl. Thus, salts appeared to cause subunit dissociation and also an increase in the Km value for the substrate. Putrescine and D-ornithine acted as inhibitors competing with the substrate. Antizyme from the rat liver inhibited the activities of the mouse enzyme and the rat enzyme similarly. The mouse and the rat enzymes exhibited a very similar immunological cross-reactivity to rabbit antibody raised against the mouse enzyme but, when the antibody directed against the rat enzyme was used, the cross-reactivity of the rat enzyme was higher than that of the mouse enzyme. Thus, the molecular properties of mouse ODC were very similar to those of the rat enzyme.  相似文献   

10.
C Cash  L Ciesielski  M Maitre  P Mandel 《Biochimie》1977,59(3):257-268
Succinic semialdehyde dehydrogenase from rat brain has been purified to electrophoretic homogeneity. It has a molecular weight of about 140, 000 and is composed of two apparently identical subunits. The reaction catalized by the pure protein is entirely dependent on endogenous --SH groups. The Kim (limits) for NAD and succinic semialdehyde are 2 X 10(-5) M and 1 X 10(-4) M respectively at the optimum pH of 8.6. Inhibition studies show that the reaction mechanism is a compulsory ordered on where NAD binds first followed by succinic semialdehyde.  相似文献   

11.
Abstract— Two NADPH-linked aldehyde reductases (alcohol:NADP+oxidoreductase, EC 1.1.1.2) capable of reducing succinic semialdehyde to the anaesthetic Chydroxybutyrate have been purified from human brain to electrophoretic homogeneity. The first of these enzymes, which is typical of its category, is not specific for succinic semialdehyde and can reduce some aromatic aldehydes at a high rate. It is a monomer of molecular weight about 45,000 and is strongly inhibited by various hypnotics and anticonvulsants. The second enzyme is, in contrast, fairly specific for succinic semialdehyde. It is a dimer of molecular weight about 90,000 and is not inhibited by the hypnotics and anticonvulsants which inhibit the first enzyme. It is thus different from previously described aldehyde reductases from human brain.  相似文献   

12.
Euglena gracilis z contained two succinic semialdehyde dehydrogenases (EC 1.2.1.16), one requiring NAD and the other NADP, and these isozymes were separated from each other and partially purified. The NAD-linked isozyme was relatively stable on storage at 5 degrees C whereas the NADP-linked one was extremely unstable unless 30% glycerol or ethyleneglycol was added. The optimum pH was 8.7 and optimum temperature 35-45 degrees C for both isozymes. They were inhibited by Zn2+ and activated, particularly the NAD-linked enzyme, by K+. Sulfhydryl reagents activated both isozymes. The Km values for succinic semialdehyde were 1.66 - 10(-4) M with the NAD-linked isozyme and 1.06 - 10(-3) M with the NADP-linked one. The NADP-linked isozyme was induced by glutamate while the NAD-linked one was not. Probable roles of these isozymes in the physiology of Euglena gracilis are discussed.  相似文献   

13.
Two forms of succinic semialdehyde dehydrogenase have been isolated in Klebsiella pneumoniae M5a1. The two enzymes could be separated by filtration on Sephacryl S-300 and their apparent molecular weights were approx. 275,000 and 300,000. The large enzyme is specific for NADP. The smaller enzyme, which is induced by growth on 3-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid and gamma-aminobutyrate, has been purified to 96% homogeneity by affinity chromatography. The NAD-linked succinic semialdehyde dehydrogenase was able to use NADP as cofactor. Its induction is coordinated with 3- and 4-hydroxylase, the enzymes which initiate degradation of 3- and 4-hydroxyphenylacetic acid. The NAD-linked form is also induced by exogenous succinic semialdehyde. The large enzyme is specific for NADP and has been isolated from a defective mutant which lacked the activity of the NAD-linked succinic semialdehyde dehydrogenase. Activity and stability conditions and true K m values for substrates and cosubstrates of the two enzymes were determined. Some aspects of the induction of the NAD-linked enzyme participating in the metabolism of 4-hydroxyphenylacetic and gamma-aminobutyrate were studied.  相似文献   

14.
Enzymatic preparation of radiolabeled succinic semialdehyde   总被引:1,自引:0,他引:1  
[U-14C]Succinic semialdehyde was prepared with yields of 30-40% by oxidation of purified [U-14C]4-aminobutyric acid with commercially available bovine plasma monoamine oxidase. [U-14C]Succinic semialdehyde was purified by cation-exchange chromatography and quantified as the oxime and methoxime derivatives using liquid partition chromatography on silicic acid. The availability of [U-14C]succinic semialdehyde permits the reliable assay of succinic semialdehyde dehydrogenase in crude cell extracts of lymphocytes isolated from human blood, cultured human lymphoblasts, and other tissues where 4-aminobutyric acid metabolism is known to occur.  相似文献   

15.
gamma-Hydroxybutyrate (GHB) is a putative neurotransmitter in brain. We have already demonstrated that it is transformed into gamma-aminobutyrate (GABA) by rat brain slices incubated under physiological conditions. This conversion occurs via a GABA-transaminase reaction. Therefore, succinic semialdehyde, the oxidative derivative of GHB, appears to be the primary catabolite of GHB degradation. Apparently, the kinetic characteristics and pH optimum of GHB dehydrogenase (high Km aldehyde reductase) in vitro do not favor a role for this enzyme in endogenous brain GHB oxidation. However, in the presence of glucuronate, glutamate, NADP and pyridoxal phosphate, pure GHB dehydrogenase, coupled to purified GABA-transaminase does produce GABA from GHB at an optimum pH close to the physiological value and with a low Km for GHB.  相似文献   

16.
Mitochondrial and cytosolic monoamine oxidases were purified 220- and 129-fold, respectively, from rat brain. The purification procedure involved extraction (without the use of detergents for mitochondrial monoamine oxidase), ammonium sulfate precipitation, and chromatography on Sephadex G-25 and a DEAE-cellulose column. The properties of both enzymes with kynuramine as substrate, including Km values and pH optima at different kynuramine concentrations; the Rf values on polyacrylamide gel electrophoresis; and the thermal inactivation patterns were different. 2-Mercaptoethanol, together with heat treatment, released the flavin and decreased the enzyme activity differentially for the two enzymes. The absorption spectrum showed a "Red shift" in the absorption maxima when the spectra of the non-Triton-treated purified preparations were compared with those of the Triton-treated ones, thus possibly revealing that the mitochondrial and the cytosolic monoamine oxidases may be two different enzyme entities.  相似文献   

17.
Abstract— An NADP+ -linked enzyme, capable of interconverting γ-hydroxybutyrate and succinic semialdehyde, has been isolated from hamster liver and brain. The enzyme which was isolated from liver has been purified 300-fold and exhibits a single band by polyacrylamide gel electrophoresis. The molecular weight of the enzyme is - 31,000 as estimated from gel filtration and 38,000 as estimated from sodium dodccyl sulfate gel electrophoresis. The enzyme is inhibited by amobarbital, diphenylhy-dantoin, 2-propylvalerate, and diethyldithiocarbamate, but not by pyrazole. The enzymes from brain and liver appear to be very similar with regard to their molecular weights and their kinetic constants for γ-hydroxybutyrate and succinic semialdehyde.  相似文献   

18.
19.
Precipitating monospecific antibodies against purified bovine retinal rod outer segment phosphodiesterase (EC 3.1.4.17) were obtained from rabbit blood serum. These antibodies do not form precipitating complexes with phosphodiesterase isolated from rat or ox brain tissues or from the heart, lung, liver, kidney, testes and uterus of the rat. The antibodies inhibit the activity of retinal rod outer segment phosphodiesterase or that of rat brain, liver, heart and uterus enzyme (despite the lack of precipitation) but have no effect on the phosphodiesterase activity of preparations obtained from rat lungs, kidney or testes. The same effect on the phosphodiesterase activity of all these tissues is exerted by monovalent fragments of the antibodies. Using partially purified preparations of phosphodiesterase from retinal rod outer segments and brain of the ox and from human myometrium, the mechanisms of inhibition of the enzyme catalytic activity by the antibodies was studied. In the presence of the antibodies, the Km and V values appeared to be different, depending on the preparation. It was assumed that a certain site in the phosphodiesterase molecule is characterized by great structural rigidity. Taking into account the shifts in the Km values induced by the antibodies, the differences in the localization of the antigenic determinant in relation to the enzyme active center are discussed.  相似文献   

20.
Rat brain succinic semialdehyde deshydrogenase has been purified 1300 fold. This enzyme is inhibited non competitively by the same branched chain fatty acids which inhibit GABA-transaminase competitively with respect to GABA. The respective activities of GABA-T and SSADH found in rat brain indicate that at anticonvulsant doses, the acids dipropylacetic and 2-methyl 2-ethyl caproic preferentially inhibit GABA-transaminase thus inducing a rise in cerebral GABA level. This increase is therefore not due to metabolism of the succinic semialdehyde by GABA-T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号