首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes for the degradation of organic pollutants have usually been allocated to plasmid DNAs in bacteria or considered non-mobile when detected in the chromosome. New discoveries have shown that catabolic genes can also be part of so-called integrative and conjugative elements (ICElands), a group of mobile DNA elements also known as genomic islands and conjugative transposons. One such ICEland is the clc element for chlorobenzoate and chlorocatechol degradation in Pseudomonas sp. strain B13. Genome comparisons and genetic data on integrase functioning reveal that the clc element and several other unclassified ICElands belong to a group of elements with conserved features. The clc element is unique among them in carrying the genetic information for several degradation pathways, whereas the others give evidence for pathogenicity functions. Many more such elements may exist, bridging the gap between pathogenicity and degradation functions.  相似文献   

2.
Genomic islands are DNA elements acquired by horizontal gene transfer that are common to a large number of bacterial genomes, which can contribute specific adaptive functions, e.g. virulence, metabolic capacities or antibiotic resistances. Some genomic islands are still self-transferable and display an intricate life-style, reminiscent of both bacteriophages and conjugative plasmids. Here we studied the dynamical process of genomic island excision and intracellular reintegration using the integrative and conjugative element ICE clc from Pseudomonas knackmussii B13 as model. By using self-transfer of ICE clc from strain B13 to Pseudomonas putida and Cupriavidus necator as recipients, we show that ICE clc can target a number of different tRNA Gly genes in a bacterial genome, but only those which carry the GCC anticodon. Two conditional traps were designed for ICE clc based on the attR sequence, and we could show that ICE clc will insert with different frequencies in such traps producing brightly fluorescent cells. Starting from clonal primary transconjugants we demonstrate that ICE clc is excising and reintegrating at detectable frequencies, even in the absence of recipient. Recombination site analysis provided evidence to explain the characteristics of a larger number of genomic island insertions observed in a variety of strains, including Bordetella petri , Pseudomonas aeruginosa and Burkholderia .  相似文献   

3.
Rhodococcus sp. strain RHA1, a potent polychlorinated-biphenyl (PCB)-degrading strain, contains three linear plasmids ranging in size from 330 to 1,100 kb. As part of a genome sequencing project, we report here the complete sequence and characterization of the smallest and least-well-characterized of the RHA1 plasmids, pRHL3. The plasmid is an actinomycete invertron, containing large terminal inverted repeats with a tightly associated protein and a predicted open reading frame (ORF) that is similar to that of a mycobacterial rep gene. The pRHL3 plasmid has 300 putative genes, almost 21% of which are predicted to have a catabolic function. Most of these are organized into three clusters. One of the catabolic clusters was predicted to include limonene degradation genes. Consistent with this prediction, RHA1 grew on limonene, carveol, or carvone as the sole carbon source. The plasmid carries three cytochrome P450-encoding (CYP) genes, a finding consistent with the high number of CYP genes found in other actinomycetes. Two of the CYP genes appear to belong to novel families; the third belongs to CYP family 116 but appears to belong to a novel class based on the predicted domain structure of its reductase. Analyses indicate that pRHL3 also contains four putative "genomic islands" (likely to have been acquired by horizontal transfer), insertion sequence elements, 19 transposase genes, and a duplication that spans two ORFs. One of the genomic islands appears to encode resistance to heavy metals. The plasmid does not appear to contain any housekeeping genes. However, each of the three catabolic clusters contains related genes that appear to be involved in glucose metabolism.  相似文献   

4.
Transferable antibiotic resistance in Haemophilus influenzae was first detected in the early 1970s. After this, resistance spread rapidly worldwide and was shown to be transferred by a large 40- to 60-kb conjugative element. Bioinformatics analysis of the complete sequence of a typical H. influenzae conjugative resistance element, ICEHin1056, revealed the shared evolutionary origin of this element. ICEHin1056 has homology to 20 contiguous sequences in the National Center for Biotechnology Information database. Systematic comparison of these homologous sequences resulted in identification of a conserved syntenic genomic island consisting of up to 33 core genes in 16 beta- and gamma-Proteobacteria. These diverse genomic islands shared a common evolutionary origin, insert into tRNA genes, and have diverged widely, with G+C contents ranging from 40 to 70% and amino acid homologies as low as 20 to 25% for shared core genes. These core genes are likely to account for the conjugative transfer of the genomic islands and may even encode autonomous replication. Accessory gene clusters were nestled among the core genes and encode the following diverse major attributes: antibiotic, metal, and antiseptic resistance; degradation of chemicals; type IV secretion systems; two-component signaling systems; Vi antigen capsule synthesis; toxin production; and a wide range of metabolic functions. These related genomic islands include the following well-characterized structures: SPI-7, found in Salmonella enterica serovar Typhi; PAP1 or pKLC102, found in Pseudomonas aeruginosa; and the clc element, found in Pseudomonas sp. strain B13. This is the first report of a diverse family of related syntenic genomic islands with a deep evolutionary origin, and our findings challenge the view that genomic islands consist only of independently evolving modules.  相似文献   

5.
The genetic structure of two Ralstonia spp., strain JS705 and strain JS745, isolated from the same groundwater aquifer, was characterized with respect to the degradation capacities for toluene and chlorobenzene degradation. Cosmid library construction, cloning, DNA sequencing and mating experiments indicated that the genes for chlorobenzene degradation in strain JS705 were a mosaic of the clc genes, previously described for Pseudomonas sp. strain B13, and a 5 kb fragment identical to strain JS745. The 5 kb fragment identical to both JS705 and JS745 was flanked in JS705 by one complete and one incomplete insertion (IS) element. This suggested involvement of the IS element in mobilizing the genes from JS745 to JS705, although insertional activity of the IS element in its present configuration could not be demonstrated. The complete genetic structure for chlorobenzene degradation in strain JS705 resided on a genomic island very similar to the clc element (Ravatn, R., Studer, S., Springael, D., Zehnder, A.J., van der Meer, J.R. 1998. Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13. J Bacteriol 180: 4360-4369). The unique reconstruction of formation of a metabolic pathway through the activity of IS elements and a genomic island in the chlorobenzene-degrading strain JS705 demonstrated how pathway evolution can occur under natural conditions in a few 'steps'.  相似文献   

6.
The Barley yellow dwarf disease (BYD) was firstly recognized as an aphid transmitted virus disease by Oswald and Houston[1] in 1951. Now, Barley yel-low dwarf viruses (BYDVs) belong to members of the plant virus family Luteoviridae. They are phloem- limited and obligately transmitted in the circula-tive/persistent manner by several species of cereal aphids and can cause significant economic losses worldwide because of damage to barley, wheat, and oats. In China, BYDVs cause mainly yello…  相似文献   

7.
The complete nucleotide sequence of genomic RNA of BYDV-GAV was determined. It comprised 5685 nucleotides and contained six open reading frames and four un-translated regions. The size and organization of BYDV-GAV genome were similar to those of BYDV PAV-aus. The nucleotide and deduced amino acid sequences of the six ORFs were aligned and compared with those of other luteoviruses. The results showed that there was a high degree of identity between BYDV-GAV and MAV-PS1 in all ORFs except ORF5 and ORF6, which had only 87.4% and 70.2% identities respectively. The reported genomic nucleotide sequence of MAV was shorter than that of BYDV-GAV, but the comparison of the genomic nucleotide sequences for MAV-PS1 and GAV showed 90.4% sequence identity for the same region of the genome. According to the level of sequence similarities, BYDV-GAV should be closely related to BYDV-MAV.  相似文献   

8.
The 165-kb catabolic plasmid pAO1 enables the gram-positive soil bacterium Arthrobacter nicotinovorans to grow on the tobacco alkaloid L-nicotine. The 165,137-nucleotide sequence, with an overall G+C content of 59.7%, revealed, besides genes and open reading frames (ORFs) for nicotine degradation, a complete set of ORFs for enzymes essential for the biosynthesis of the molybdenum dinucleotide cofactor, as well as ORFs related to uptake and utilization of carbohydrates, sarcosine, and amino acids. Of the 165 ORFs, approximately 50% were related to metabolic functions. pAO1 conferred to A. nicotinovorans the ability to take up L-[(14)C]nicotine from the medium, with an K(m) of 5.6 +/- 2.2 micro M. ORFs of putative nicotine transporters formed a cluster with the gene of the D-nicotine-specific 6-hydroxy-D-nicotine oxidase. ORFs related to replication, chromosome partitioning, and natural transformation functions (dprA) were identified on pAO1. Few ORFs showed similarity to known conjugation-promoting proteins, but pAO1 could be transferred by conjugation to a pAO1-negative strain at a rate of 10(-2) to 10(-3) per donor. ORFs with no known function represented approximately 35% of the pAO1 sequence. The positions of insertion sequence elements and composite transposons, corroborated by the G+C content of the pAO1 sequence, suggest a modular composition of the plasmid.  相似文献   

9.
The complete 184,457-bp sequence of the aromatic catabolic plasmid, pNL1, from Sphingomonas aromaticivorans F199 has been determined. A total of 186 open reading frames (ORFs) are predicted to encode proteins, of which 79 are likely directly associated with catabolism or transport of aromatic compounds. Genes that encode enzymes associated with the degradation of biphenyl, naphthalene, m-xylene, and p-cresol are predicted to be distributed among 15 gene clusters. The unusual coclustering of genes associated with different pathways appears to have evolved in response to similarities in biochemical mechanisms required for the degradation of intermediates in different pathways. A putative efflux pump and several hypothetical membrane-associated proteins were identified and predicted to be involved in the transport of aromatic compounds and/or intermediates in catabolism across the cell wall. Several genes associated with integration and recombination, including two group II intron-associated maturases, were identified in the replication region, suggesting that pNL1 is able to undergo integration and excision events with the chromosome and/or other portions of the plasmid. Conjugative transfer of pNL1 to another Sphingomonas sp. was demonstrated, and genes associated with this function were found in two large clusters. Approximately one-third of the ORFs (59 of them) have no obvious homology to known genes.  相似文献   

10.
Cupriavidus necator JMP134 is a model for chloroaromatics biodegradation, capable of mineralizing 2,4-D, halobenzoates, chlorophenols and nitrophenols, among other aromatic compounds. We performed the metabolic reconstruction of aromatics degradation, linking the catabolic abilities predicted in silico from the complete genome sequence with the range of compounds that support growth of this bacterium. Of the 140 aromatic compounds tested, 60 serve as a sole carbon and energy source for this strain, strongly correlating with those catabolic abilities predicted from genomic data. Almost all the main ring-cleavage pathways for aromatic compounds are found in C. necator : the β-ketoadipate pathway, with its catechol, chlorocatechol, methylcatechol and protocatechuate ortho ring-cleavage branches; the (methyl)catechol meta ring-cleavage pathway; the gentisate pathway; the homogentisate pathway; the 2,3-dihydroxyphenylpropionate pathway; the (chloro)hydroxyquinol pathway; the (amino)hydroquinone pathway; the phenylacetyl-CoA pathway; the 2-aminobenzoyl-CoA pathway; the benzoyl-CoA pathway and the 3-hydroxyanthranilate pathway. A broad spectrum of peripheral reactions channel substituted aromatics into these ring cleavage pathways. Gene redundancy seems to play a significant role in the catabolic potential of this bacterium. The literature on the biochemistry and genetics of aromatic compounds degradation is reviewed based on the genomic data. The findings on aromatic compounds biodegradation in C. necator reviewed here can easily be extrapolated to other environmentally relevant bacteria, whose genomes also possess a significant proportion of catabolic genes.  相似文献   

11.
Ralstonia eutropha JMP134 (pJP4) is a useful model for the study of bacterial degradation of substituted aromatic pollutants. Several key degrading capabilities, encoded by tfd genes, are located in the 88 kb, self-transmissible, IncP-1 beta plasmid pJP4. The complete sequence of the 87,688 nucleotides of pJP4, encoding 83 open reading frames (ORFs), is reported. Most of the coding sequence corresponds to a well-conserved IncP-1 beta backbone and the previously reported tfd genes. In addition, we found hypothetical proteins putatively involved in the transport of aromatic compounds and short-chain fatty acid oxidation. ORFs related to mobile elements, including the Tn501-encoded mercury resistance determinants, an IS1071-based composite transposon and a cryptic class II transposon, are also present in pJP4. These mobile elements are inefficient in transposition and are located in two regions of pJP4 that are rich in remnants of lateral gene transfer events. pJP4 plasmid was able to capture chromosomal genes and form hybrid plasmids with the IncP-1 alpha plasmid RP4. These observations are integrated into a model for the evolution of pJP4, which reveals mechanisms of bacterial adaptation to degrade pollutants.  相似文献   

12.
The complete nucleotide sequences of two plasmids from Exiguobacterium arabatum sp. nov. RFL1109, pEspA (4563bp) and pEspB (38,945bp), have been determined. Five ORFs were identified in the pEspA plasmid, and putative functions were assigned to two of them. Using deletion mapping approach, the Rep-independent replication region of pEspA, which functions in Bacillus subtilis, was localized within a 0.6kb DNA region. Analysis of the pEspB sequence revealed 42 ORFs. From these, function of two genes encoding enzymes of the Lsp1109I restriction-modification system was confirmed experimentally, while putative functions of another 18 ORFs were suggested based on comparative analysis. Three functional regions have been proposed for the pEspB plasmid: the putative conjugative transfer region, the region involved in plasmid replication and maintenance, and the region responsible for transposition of the IS21 family-like transposable elements.  相似文献   

13.
The nucleotide sequence of the biphenyl catabolic transposon Tn4371 has been completed and analyzed. It confirmed that the element has a mosaic structure made of several building blocks. In addition to previously identified genes coding for a tyrosine recombinase related to phage integrases and for biphenyl degradation enzymes very similar to those of Achromobacter georgiopolitanum KKS102, Tn4371 carries many plasmid-related genes involved in replication, partition, and other, as-yet-unknown, plasmid functions. One gene cluster contains most of the genes required to express a type IV secretion-mating pair formation apparatus coupled with a TraG ATPase, all of which are related to those found on IncP and Ti plasmids. Orthologues of all Tn4371 plasmid-related genes and of the tyrosine recombinase gene were found, with a very similar organization, in the chromosome of Ralstonia solanacearum and on the yet-to-be-determined genomic sequences of Erwinia chrysanthemi and Azotobacter vinelandii. In each of these chromosomal segments, conserved segments were separated by different groups of genes, which also differed from the Tn4371 bph genes. The conserved blocks of genes were also identified, in at least two copies, in the chromosome of Ralstonia metallidurans CH34. Tn4371 thus appears to represent a new family of potentially mobile genomic islands with a broad host range since they reside in a wide range of soil proteobacteria, including plant pathogens.  相似文献   

14.
We have analyzed a sequence of approximately 70 base pairs (bp) that shows a high degree of similarity to sequences present in the non-coding regions of a number of human and other mammalian genes. The sequence was discovered in a fragment of human genomic DNA adjacent to an integrated hepatitis B virus genome in cells derived from human hepatocellular carcinoma tissue. When one of the viral flanking sequences was compared to nucleotide sequences in GenBank, more than thirty human genes were identified that contained a similar sequence in their non-coding regions. The sequence element was usually found once or twice in a gene, either in an intron or in the 5' or 3' flanking regions. It did not share any similarities with known short interspersed nucleotide elements (SINEs) or presently known gene regulatory elements. This element was highly conserved at the same position within the corresponding human and mouse genes for myoglobin and N-myc, indicating evolutionary conservation and possible functional importance. Preliminary DNase I footprinting data suggested that the element or its adjacent sequences may bind nuclear factors to generate specific DNase I hypersensitive sites. The size, structure, and evolutionary conservation of this sequence indicates that it is distinct from other types of short interspersed repetitive elements. It is possible that the element may have a cis-acting functional role in the genome.  相似文献   

15.
Intraclonal genome diversity of Pseudomonas aeruginosa was studied in one of the most diverse mosaic regions of the P. aeruginosa chromosome. The ca. 110-kb large hypervariable region located near the lipH gene in two members of the predominant P. aeruginosa clone C, strain C and strain SG17M, was sequenced. In both strains the region consists of an individual strain-specific gene island of 111 (strain C) or 106 (SG17M) open reading frames (ORFs) and of a 7-kb stretch of clone C-specific sequence of 9 ORFs. The gene islands are integrated into conserved tRNA(Gly) genes and have a bipartite structure. The first part adjacent to the tRNA gene consists of strain-specific ORFs encoding metabolic functions and transporters, the majority of which have homologs of known function in other eubacteria, such as hemophores, cytochrome c biosynthesis, or mercury resistance. The second part is made up mostly of ORFs of yet-unknown function. Forty-seven of these ORFs are mutual homologs with a pairwise amino acid sequence identity of 35 to 88% and are arranged in the same order in the two gene islands. We hypothesize that this novel type of gene island derives from mobile elements which, upon integration, endow the recipient with strain-specific metabolic properties, thus possibly conferring on it a selective advantage in its specific habitat.  相似文献   

16.
The nucleotide sequence of 42 775 bp of the vir-region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955 is reported here. Although the nucleotide sequences of several parts of this region from this or closely related plasmids have been published previously, the present work establishes for the first time the complete arrangement of all the essential virulence genes and their intergenic regions of an octopine Ti plasmid. The disruption of some of the intergenic areas by insertion (IS) elements is typical for the octopine Ti plasmids. Several new ORFs were identified, including ORFs immediately downstream of virD4 and virE2, which probably represent new genes involved in virulence.  相似文献   

17.
The complete nucleotide sequence (62.8 kb) of pGS18, the largest sequenced plasmid to date from the species Geobacillus stearothermophilus, was determined. Computational analysis of sequence data revealed 65 putative open reading frames (ORFs); 38 were carried on one strand and 27 were carried on the other. These ORFs comprised 84.1% of the pGS18 sequence. Twenty-five ORFs (38.4%) were assigned to putative functions; four ORFs (6.2%) were annotated as pseudogenes. The amino acid sequences obtained from 29 ORFs (44.6%) had the highest similarity to hypothetical proteins of the other microorganisms, and seven (10.8%) had no significant similarity to any genes present in the current open databases. Plasmid replication region, strongly resembling that of the theta-type replicon, and genes encoding three different plasmid maintenance systems were identified, and a putative discontinuous transfer region was localized. In addition, we also found several mobile genetic elements and genes, responsible for DNA repair, distributed along the whole sequence of pGS18. The alignment of pGS18 with two other large indigenous plasmids of the genus Geobacillus highlighted the presence of well-conserved segments and has provided a framework that can be exploited to formulate hypotheses concerning the molecular evolution of these three plasmids.  相似文献   

18.
Polaromonas sp. strain JS666 can grow on cis-1,2-dichloroethene (cDCE) as a sole carbon and energy source and may be useful for bioremediation of chlorinated solvent-contaminated sites. Analysis of the genome sequence of JS666 (5.9 Mb) shows a bacterium well adapted to pollution that carries many genes likely to be involved in hydrocarbon and xenobiotic catabolism and metal resistance. Clusters of genes coding for haloalkane, haloalkanoate, n-alkane, alicyclic acid, cyclic alcohol, and aromatic catabolism were analyzed in detail, and growth on acetate, catechol, chloroacetate, cyclohexane carboxylate, cyclohexanol, ferulate, heptane, 3-hydroxybenzoate, hydroxyquinol, gentisate, octane, protocatechuate, and salicylate was confirmed experimentally. Strain JS666 also harbors diverse putative mobile genetic elements, including retrons, inteins, a miniature inverted-repeat transposable element, insertion sequence transposases from 14 families, eight genomic islands, a Mu family bacteriophage, and two large (338- and 360-kb) plasmids. Both plasmids are likely to be self-transferable and carry genes for alkane, alcohol, aromatic, and haloacid metabolism. Overall, the JS666 genome sequence provides insights into the evolution of pollutant-degrading bacteria and provides a toolbox of catabolic genes with utility for biotechnology.  相似文献   

19.
The complete genomic sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7 which optimally grows at 80 degrees C, at low pH, and under aerobic conditions, has been determined by the whole genome shotgun method with slight modifications. The genomic size was 2,694,756 bp long and the G + C content was 32.8%. The following RNA-coding genes were identified: a single 16S-23S rRNA cluster, one 5S rRNA gene and 46 tRNA genes (including 24 intron-containing tRNA genes). The repetitive sequences identified were SR-type repetitive sequences, long dispersed-type repetitive sequences and Tn-like repetitive elements. The genome contained 2826 potential protein-coding regions (open reading frames, ORFs). By similarity search against public databases, 911 (32.2%) ORFs were related to functional assigned genes, 921 (32.6%) were related to conserved ORFs of unknown function, 145 (5.1%) contained some motifs, and remaining 849 (30.0%) did not show any significant similarity to the registered sequences. The ORFs with functional assignments included the candidate genes involved in sulfide metabolism, the TCA cycle and the respiratory chain. Sequence comparison provided evidence suggesting the integration of plasmid, rearrangement of genomic structure, and duplication of genomic regions that may be responsible for the larger genomic size of the S. tokodaii strain7 genome. The genome contained eukaryote-type genes which were not identified in other archaea and lacked the CCA sequence in the tRNA genes. The result suggests that this strain is closer to eukaryotes among the archaea strains so far sequenced. The data presented in this paper are also available on the internet homepage (http://www.bio.nite.go.jp/E-home/genome_list-e.html/).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号